
1

Exercises

Chapter 1

1. Generate spikes for 10 s (or longer if you want better statistics) using
a Poisson spike generator with a constant rate of 100 Hz, and record
their times of occurrence. Compute the coeÆcient of variation of the
interspike intervals, and the Fano factor for spike counts obtained
over counting intervals ranging from 1 to 100 ms. Plot the interspike
interval histogram.

2. Add a refractory period to the Poisson spike generator by allowing
the firing rate to depend on time. Initially, set the firing rate to a
constant value, r(t) = r0. After every spike, set r(t) to 0, and then
allow it to recover exponentially back to r0 with a time constant �ref
that controls the refractory recovery rate. In other words, have r(t)
obey the equation �ref dr

dt
= r0 � r

except immediately after a spike, when it is set to 0. Plot the coeÆ-
cient of variation as a function of �ref over the range 1 ms � �ref � 20
ms, and plot interspike interval histograms for a few di�erent values
of �ref in this range. Compute the Fano factor for spike counts ob-
tained over counting intervals ranging from 1 to 100 ms for the case�ref = 10 ms.

3. Compute autocorrelation histograms of spike trains generated by a
Poisson generator with a constant firing rate of 100 Hz, a constant
firing rate of 100 Hz together with a refractory period modeled as
in exercise 2 with �ref = 10 ms, and a variable firing rate r(t) =
100(1+ cos(2�t=25 ms)) Hz. Plot the histograms over a range from 0
to 100 ms.

4. Generate a Poisson spike train with a time-dependent firing rate
r(t) = 100(1+ cos(2�t=300 ms)) Hz. Approximate the firing rate from
this spike train using a variable rapprox that satisfies�approx drapprox

dt
= �rapprox ;

except that rapprox ! rapprox + 1=�approx every time a spike occurs.
Make plots of the true rate, the spike sequence generated, and the
estimated rate. Experiment with a few di�erent values of �approx
in the range of 1 to 100 ms. Determine the best value of �approx
by computing the average squared error of the estimate,

R
dt(r(t) �

rapprox(t))2, for di�erent values of �approx, and finding the value of�approx that minimizes this error.

5. For a constant rate Poisson process, every specific (up to a finite
resolution) sequence ofN spikes occurring over a given time interval
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is equally likely. This seems paradoxical because we certainly do not
expect to see all N spikes appearing within the first 1% of the time
interval. Resolve this paradox.

6. Build an approximatewhite-noise stimulus by choosing random val-
ues at discrete times separated by a time-step interval �t. Plot its
autocorrelation function andpower spectrum (use thematl ab® func-
tion spetrum or psd). Discuss how well this stimulus matches an
ideal white-noise stimulus given the value of �t you used.

7. Consider amodel with a firing rate determined in terms of a stimulus
s(t) by integrating the equation�r drest(t)

dt
= [r0 + s]+ � rest(t) ;

where r0 is a constant that determines the background firing rate and�r = 20 ms. Drive the model with an approximate white-noise stim-
ulus. Adjust the amplitude of the white-noise and the parameter r0
so that rectification is not a big e�ect (i.e. r0 + s > 0 most of the time).
From the responses of themodel, compute the stimulus-response cor-
relation function, Qrs. Next, generate spikes from this model using a
Poisson generator with a rate rest(t), and compute the spike-triggered
average stimulus from the spike trains produced by the white-noise
stimulus. By comparing the stimulus-response correlation function
with the spike-triggered average, verify that equation 1.22 is satis-
fied. Examine what happens if you set r0 = 0, so that the white-noise
stimulus becomes half-wave rectified.

8. matl ab® file 1p8.mat contains data collected and provided by Rob
de Ruyter van Steveninck from a fly H1 neuron responding to an ap-
proximate white-noise visual motion stimulus. Data were collected
for 20 minutes at a sampling rate of 500 Hz. In the file, rho is a vector
that gives the sequence of spiking events or nonevents at the sampled
times (every 2 ms). When an element of rho is one, this indicates the
presence of a spike at the corresponding time, whereas a zero value
indicates no spike. The variable stim gives the sequence of stimulus
values at the sampled times. Calculate and plot the spike-triggered
average from these data over the range from 0 to 300 ms (150 time
steps). (Based on a problem from Sebastian Seung.)

9. Using the data of problem 8, calculate and plot stimulus averages
triggeredon events consisting of a pair of spikes (which need not nec-
essarily be adjacent) separated by a given interval (as in figure 1.10).
Plot these two-spike-triggered average stimuli for various separation
intervals ranging from 2 to 100 ms. (Hint: in matl ab® , use convo-
lution for pattern matching: e.g. find(onv(rho,[1 0 1℄)==2)will
contain the indices of all the events with two spikes separated by 4
ms.) Plot, as a function of the separation between the two spikes,
the magnitude of the di�erence between the two-spike-triggered av-
erage and the sum of two single-spike-triggered averages (obtained
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in exercise 8) separated by the same time interval. At what temporal
separation does this di�erence become negligibly small. (Based on a
problem from Sebastian Seung.)

10. Using the data of problem 8, find the spike-triggered average stimu-
lus for events that contain exactly two adjacent spikes separated by
various di�erent intervals ranging from 2 to 100 ms (e.g. for 4 ms,
the event [1 0 1℄ but not the event [1 1 1℄). This is distinct from
exercise 9 in which we only required two spikes separated by a given
interval, but did not restrict what happened between the two spikes.
Compare results of the exclusive case considered here with those of
the inclusive two-spike-triggered average computed in exercise 9. In
what ways and why are they di�erent? (Based on a problem from
Sebastian Seung.)


