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Exercises

Chapter 10

1.

Data file c10p1.mat contains 100 data points drawn from the same
two-dimensional distribution as those in figure 10.1. Fit a mixture
of two circular Gaussian distributions to these data using EM, as in
equation 10.4. Do not allow the variance of either of the Gaussians
to become smaller than a minimal value of 0.0001.

. Explore what happens to the fit of the mixture of Gaussians model

from exercise 1 as the number of data points from each Gaussian
is reduced and the number of potential Gaussians is increased. If
you set the minimal variance given in exercise 1 to 0, a Gaussian
distribution can settle around a single sample point and then have
its variance shrink to 0. Why does this pathological behavior occur?

. Modify your code from exercise 1 to calculate function ¥ of equa-

tion 10.14 during each E and M step of EM. Check that # changes
monotonically. Explicitly calculate the true log likelihood of the data
from equation 10.7 at the end of each M phase. Is it equal to ¥?

. Modify the code in exercise 1 to fit a K-means model rather than a

mixture of Gaussians. Can you see any practical differences in the
solutions that arise?

. Consider the factor analysis model of figure 10.3 (discussed in more

generality later in the chapter). Using the joint probability over v and
u given in equation 10.15, derive an expression for ¥, and thus the
learning rules of equation 10.5.

. Using the EM version of factor analysis (see the appendix of chap-

ter 10), reproduce figure 10.4. matlabg file c10p6.m shows how to
generate data ul for figure 10.4A and B, and u2 for C and D. First
perform factor analysis on these data and reproduce figures 10.4A
and C. Next, use the eig function to perform principal components
analysis on ul and u2, and thereby produce the rest of the figures. For
some initial conditions, the cloud of points in the figures might slope
downwards instead of upwards. Why? Calculate the expression for
¥ derived in exercise 5 as factor analysis progresses and show that
it changes monotonically.

. Apply a rotation matrix to the data set u2 from exercise 6 (an example

rotation matrix is given as rot in matl abg file c18p6.m). Perform fac-
tor analysis and principal components analysis on the rotated data.
How do the results compare with those for the unrotated data (re-
member to rotate your results back, if necessary, so that appropriate
comparisons can be made)?

. Construct a data set u from a set of independent, heavy-tailed,

“sources” v through the relation u = G - v. Both u and v should
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10.

11.

be four-dimensional vectors. Choose the components of v inde-
pendently and randomly from a double exponential distribution,
for which the probability of getting the value v is proportional to
exp(—|v|) (note that a one-sided exponentially distributed random
variable can be generated using either exprnd(-) or -log(rand(-))).
Choose a random matrix G and generate the corresponding u values
as u = G- v. Use 2000 randomly chosen v’s and their correspond-
ing u’s. Then, use independent components analysis, as in equa-
tion 10.40, to learn generative sources from the inputs u. How well
do the values of the extracted sources match those of the original
sources?

. Compare the actual G you used to generate the data in problem 8

with the G that is recovered by independent components analysis.
Plot the six two-dimensional projections of the input data (11 versus
uy; U1 versus ug; etc) together with the projections of the mixing axes
coming from G (it is good to use more data points for this, say 10000).
The mixing axes are lines parallel to vectors with components Gy;,
Gai, Gsi, and Gy;, for i = 1,2,3,4. What relationship exists between
these mixing axes and the envelope of the data points, and why? Plot
u generated in the same way when the components of v are chosen
independently from identical Gaussian distributions, together with
the mixing axes coming from G. What differences do you see?

Implement wake-sleep learning for the Helmholtz machine with bi-
nary units when the input data is derived from a square “retina” of
size ndimxndim. The ndim columns of the input array are indepen-
dently turned “on” with probability pbar. Each unit in a column that
is “on” takes the value 1 with probability 1-pout and 0 with proba-
bility pout, and each unit in a column that is “off” takes the value 1
with probability pout and 0 with probability 1-pout. matlabg pro-
gram c10p10.mis an example. In what way does the activity of the
v units in the model capture the way that each input u was actually
generated? What happens if there are not enough hidden units to
represent each column separately?

Implement wake-sleep learning for the binary Helmholtz machine as
in problem 10, except now make a correlational structure between the
columns - so that for half the input patterns, only columns 1. . .ndim/2
are eligible to be turned on (with probability pbar), and for the other
half, only the other columns ndim/2 +1...ndimare eligible. Program
c10pl1l.mshows one way to generate such inputs. Train a Helmholtz
machine with two representational layers (v and z), the top layer (z)
having just one unit, the middle layer (v) with ndim+1 units. Does
this build a generative model that captures the hierarchical way in
which each input pattern is generated?



