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Exercises

Chapter 2

1. Use the rate given by equation 2.1 with r0 = 50 Hz and

D(τ) = − cos
(

2π(τ − 20 ms)
140 ms

)
exp

(
−
τ

60 ms

)
Hz/ms

to predict the response of a neuron of the electrosensory lateral-line
lobe to a stimulus. The above equation is an approximation for
the linear kernel obtained from the spike-triggered average shown
in figure 1.9. Use an approximate Gaussian white noise stimulus
constructed by choosing a stimulus value every 10 ms (∆t = 10 ms)
from a Gaussian distribution with zero mean and variance σ2

s/∆t,
with σ2

s = 10. Compute the firing rate over a 10 s period. From the
results, compute the firing rate-stimulus correlation function Qrs(τ).
Using equation 2.6, compare Qrs(−τ)/σ2

s with the kernel D(τ) given
above.

2. matlab® file c1p8.mat contains the data described in exercise 8 of
chapter 1. Use the spike-triggered average (calculated in that exer-
cise) to construct a linear kernel and use it in equation 2.1 to provide a
model of the response of the H1 neuron. Choose r0 so that the average
firing rate predicted by the model in response to the stimulus used
for the data matches the actual average firing rate. Use a Poisson
generator with the computed rate to generate a synthetic spike train
from this linear estimate of the firing rate in response to the stimulus
stim. Plot examples of the actual and synthetic spike trains. How
are they similar and how do they differ? Plot the autocorrelation
function of the actual and the synthetic spike trains over the range 0
to 100 ms. Why is there a dip at a lag of 2 ms in the autocorrelation of
the actual spike train? Is there a dip for the synthetic train too? Plot
the interspike interval histogram for both spike trains. Why is there a
dip below 6 ms in the histogram for the actual spike train? What are
the coefficients of variation for the two spike trains and why might
they differ? (Based on a problem from Sebastian Seung).

3. matlab® file c2p3.mat contains the responses of a cat LGN cell to
two-dimensional visual images (these data are described in Kara, P,
Reinagel, P, & Reid, RC (2000) Low response variability in simul-
taneously recorded retinal, thalamic, and cortical neurons. Neuron
30:803-817 and were kindly provided by Clay Reid). In the file,
counts is a vector containing the number of spikes in each 15.6 ms
bin, and stim contains the 32767, 16× 16 images that were presented
at the corresponding times. Specifically, stim(x, y, t) is the stim-
ulus presented at the coordinate (x,y) at time-step t. Note that
stim is an int8 array that must to be converted into double using
the command stim=double(stim) in order to be manipulated within
matlab® . Calculate the spike-triggered average images for each of
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the 12 time steps before each spike and show them all (using the
imagesc command). Note that in this example, the time bins can
contain more than one spike, so the spike-triggered average must be
computed by weighting each stimulus by the number of spikes in
the corresponding time bin, rather than weighting it by either 1 or
0 depending on whether a spike is present or not. In the averaged
images, you should see a central receptive field that reverses sign
over time. By summing up the images across one spatial dimension,
produce a figure like that of figure 2.25C. (Based on a problem from
Sebastian Seung.)

4. For a Gaussian random variable x with zero mean and standard
deviation σ, prove that

⟨xF(αx)⟩ = ασ2
⟨F′(αx)⟩ ,

where α is a constant, F is any function, F′ is its derivative,

⟨xF(αx)⟩ =
∫

dx
1
√

2πσ
exp

(
−

x2

2σ2

)
xF(αx) ,

and similarly for ⟨F′(αx)⟩. This is the basis of the identity 2.64, which
can be derived by extending this basic result first to multivariate
functions and then to functionals.

5. Using the inverses of equations 2.15 and 2.17

ϵ = ϵ0
(
exp(X/λ) − 1

)
and a = −

180◦(ϵ0 + ϵ)Y
λϵπ

,

map from cortical coordinates back to visual coordinates and de-
termine what various patterns of activity across the primary visual
cortex would “look like”. Ermentrout and Cowan (Ermentrout, GB,
& Cowan, J (1979) A mathematical theory of visual hallucination pat-
terns. Biological Cybernetics 34:137–150) used these results as a basis of
a mathematical theory of visual hallucinations. The figure generated
by thematlab® program c2p5.m shows an illustrative example. This
program simulates a plane sine wave of activity across the primary
visual cortex with a specified spatial frequency and direction, and
then maps it back into retinal coordinates to see what visual pat-
tern would be perceived due to this activity. Consider various other
patterns of activity and show the visual hallucinations they would
generate.

6. Perform the integrals in equations 2.31 and 2.32 for the case σx = σy =
σ to obtain the results

Ls =
A
2

exp
(
−
σ2(k2 + K2)

2

) (
cos(ϕ −Φ) exp

(
σ2kK cos(Θ)

)
+ cos(ϕ + Φ) exp

(
−σ2kK cos(Θ)

))
.

and

Lt(t) =
α6
|ω|
√

ω2 + 4α2

(ω2 + α2)4 cos(ωt − δ) .
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with
δ = 8 arctan

(
ω
α

)
+ arctan

(2α
ω

)
− π .

From these results, verify the selectivity curves in figures 2.15 and
2.16. In addition, plot δ as a function of ω.

7. Numerically compute the spatial part of the linear response of a
simple cell with a separable space-time receptive field to a sinusoidal
grating, as given by equation 2.31. Use a stimulus oriented with
Θ = 0. For the spatial receptive field kernel, use equation 2.27 with
σx = σy = 1◦, ϕ = 0, and 1/k = 0.5◦. Plot Ls as a function of K taking
Φ = 0 and A = 50. This determines the spatial frequency selectivity of
the cell. What is its preferred spatial frequency? Plot Ls as a function
of Φ taking 1/K = 0.5◦ and A = 50. This determines the spatial phase
selectivity of the cell. What is its preferred spatial phase?

8. Consider a complex cell with the spatial part of its response given by
L2

1 + L2
2, where L1 and L2 are linear responses determined by equa-

tion 2.31 with kernels given by equation 2.27 with σx = σy = 1◦, and
1/k = 0.5◦; and with ϕ = 0 for L1 and ϕ = −π/2 for L2. Use a stimulus
oriented with Θ = 0. Compute and plot L2

1 + L2
2 as a function of K

taking Φ = 0 and A = 5. This determines the spatial frequency selec-
tivity of the cell. Compute and plot L2

1 + L2
2 as a function of Φ taking

1/K = 0.5◦ and A = 5. This determines the spatial phase selectivity
of the cell. Does the spatial phase selectivity match what you expect
for a complex cell?

9. Consider the linear temporal response for a simple or complex cell
given by equation 2.32 with a temporal kernel given by equation 2.29
with 1/α = 15 ms. Compute and plot Lt(t) for ω = 6π/s. This
determines the temporal response of the simple cell. Do not plot the
negative part of Lt(t) because the cell cannot fire at a negative rate.
Compute and plot L2

t (t) for ω = 6π/s. This determines the temporal
response of a complex cell. What are the differences between the
temporal responses of the simple and complex cells?

10. Compute the response of a model simple cell with a separable space-
time receptive field to a moving grating

s(x, y, t) = cos(Kx − ωt) .

For Ds, use equation 2.27 with σx = σy = 1◦,ϕ = 0, and 1/k = 0.5◦. For
Dt, use equation 2.29 with 1/α = 15 ms. Compute the linear estimate
of the response given by equation 2.24 and assume that the actual
response is proportional to a rectified version of this linear response
estimate. Plot the response as a function of time for 1/K = 1/k = 0.5◦

and ω = 8π/s. Plot the response amplitude as a function of ω for
1/K = 1/k = 0.5◦ and as a function of K for ω = 8π/s.

11. Compute the response of a model complex cell to the moving grating

s(x, y, t) = cos(Kx − ωt) .
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The complex cell should be modeled by squaring the unrectified
linear response estimate of a simple cells with a spatial receptive
field given by equation 2.27 with σx = σy = 1◦, ϕ = 0, and 1/k = 0.5◦,
and adding this to the square of the unrectified linear response of
a second simple cell with identical properties except that its spatial
phase preference is ϕ = −π/2 instead of ϕ = 0. Both linear responses
are computed from equation 2.24. For both of these, use equation 2.29
with 1/α = 15 ms for the temporal receptive field. Plot the complex
cell response as a function of time for 1/K = 1/k = 0.5◦ and ω = 8π/s.
Plot the response amplitude as a function of ω for 1/K = 1/k = 0.5◦

and as a function of K for ω = 8π/s.

12. Construct a model simple cell with the nonseparable space-time re-
ceptive field described in the caption of figure 2.21B. Compute its
response to the moving grating

s(x, y, t) = cos(Kx − ωt) .

Plot the amplitude of the response as a function of the velocity of the
grating, ω/K, using ω = 8π/s and varying K to obtain a range of both
positive and negative velocity values (use negative K values for this).
Show that the response is directionally selective.

13. Construct a model complex cell that is disparity tuned but insensitive
to the absolute position of a grating. The complex cell is constructed
by summing the squares of the unrectified linear responses of two
simple cells, but disparity effects are now included. For this exercise,
we ignore temporal factors and only consider the spatial dependence
of the response. Each simple cell response is composed of two terms
that correspond to inputs coming from the left and right eyes. Be-
cause of disparity, the spatial phases of the image of a grating in the
two eyes, ΦL and ΦR, may be different. We write the spatial part of
the linear response estimate for a grating with the preferred spatial
frequency (k = K) and orientation (Θ = θ = 0) as

L1 =
A
2

(cos(ΦL) + cos(ΦR)) ,

assuming that ϕ = 0 (this equation is a generalization of equa-
tion 2.34). Let the complex cell response be proportional to L2

1 + L2
2,

where L2 is similar to L1 but with the cosine functions replaced by
sine functions. Show that the response of this neuron is tuned to the
disparity, ΦL − ΦR, but is independent of the absolute spatial phase
of the grating, ΦL + ΦR. Plot the response tuning curve as a function
of disparity. (See DeAngelis, GC, Ohzawa, I, & Freeman, RD (1991)
Depth is encoded in the visual cortex by a specialized receptive field
structure. Nature 352:156–159.)

14. Determine the selectivity of the LGN receptive field of equation 2.45
to spatial frequency by computing its integrals when multiplied by
the stimulus

s = cos(Kx)
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for a range of K values. Use σc = 0.3◦, σs = 1.5◦, B = 5 and plot the
resulting spatial frequency tuning curve.

15. Construct the Hubel-Wiesel model of a simple-cell spatial receptive
field, as depicted in figure 2.27A. Use difference-of-Gaussian func-
tions (equation 2.45) to model the LGN receptive fields. Plot the
spatial receptive field of the simple cell constructed by summing
the spatial receptive fields of the LGN cells that provide its input.
Compare the result of summing appropriately placed LGN center-
surround receptive fields (figure 2.27A) with the results of an appro-
priately adjusted Gabor filter model of the simple cell that uses the
spatial kernel of equation 2.27.

16. Construct the Hubel-Wiesel model of a complex cell, as depicted in
figure 2.27B. Use Gabor functions (equation 2.27) to model the simple
cell responses, which should be rectified before being summed. Plot
the spatial receptive field of the complex cell constructed by summing
the different simple cell responses. Compare the responses of a com-
plex cell constructed by linearly summing the outputs of simple cells
(figure 2.27B) with different spatial phase preferences with the com-
plex cell model obtained by squaring and summing two unrectified
simple cell responses with spatial phases 90◦ apart as in exercise 8.


