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Exercises

Chapter 4

1. Show that the firing-rate distribution that maximizes the entropy
when the firing rate is constrained to lie in the range 0 � r � rmax

is given by equation 4.22, and that its entropy for a fixed resolution�r is given by equation 4.23. Use a Lagrange multiplier (see the
Mathematical Appendix) to constrain the integral of p[r] to one.

2. Show that the firing-rate distribution that maximizes the entropy
when the mean of the firing rate is held fixed is an exponential,
and compute its entropy for a fixed resolution �r. Assume that the
firing rate can fall anywhere in the range from 0 to1. Use Lagrange
multipliers (see theMathematicalAppendix) to constrain the integral
of p[r] to 1 and the integral of p[r]r to the fixed average firing rate.

3. Show that the distribution that maximizes the entropy when the
mean and variance of the firing rate are held fixed is a Gaussian,
and compute its entropy for a fixed resolution �r. To simplify the
mathematics, allow the firing rate to take any value between �1 and+1. Use Lagrange multipliers (see the Mathematical Appendix) to
constrain the integral of p[r] to 1, the integral of p[r]r to the fixed
average firing rate hri, and the integral of p[r](r � hri)2 to the fixed
variance.

4. Using Fourier transforms, solve equation 4.37, using equation 4.36,
to obtain the result of equation 4.42.

5. Suppose the filter Ls(~a) has a correlation function that satisfies equa-
tion 4.37. Consider a new filter constructed in terms of this old one
by writing

L0
s(~a) = Z d~cU(~a;~c)Ls(~c) : (1)

Show that if U(~a;~c) satisfies the condition of an orthogonal transfor-
mation, Z

d~cU(~a;~c)U(~b;~c) = Æ(~a �~b) ; (2)

the correlation function for this new filter also satisfies equation 4.37.

6. Consider a stimulus sr = ss+� that is given by the sum of a true stim-
ulus ss and a noise term �. Values of the true stimulus ss are drawn
from a Gaussian distribution with mean 0 and variance Qss. Values
of the noise term � are also obtained from a Gaussian distribution,
with mean 0 and variance Q��. The two terms � and ss are indepen-
dent of each other. Using the formula for the continuous entropy of
a Gaussian random variable calculated in problem 3, calculate the
mutual information between sr and ss.
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7. Consider amultivariate signal ss drawn from aGaussian distribution
with mean 000 and covariance matrix Qss. Compute the continuous
entropy of s in terms of the eigenvalues of Qss, up to the usual
resolution term for a continuous entropy.

8. Suppose that a stimulus at one point on the retina, and at a given
time, sr = ss +�, is the sum of a true stimulus ss and a noise term �, as
in exercise 6. Model the retinal processing at this particular location
as producing a signal at the thalamus

sl = Dssr + �l ;
whereDs is a parameter called the transfer constant, and �l represents
an additional, independent source of noise that can be modeled as
being drawn from a Gaussian distribution with mean 0 and variance
Q�l�l . Calculate the mutual information Il between sl and ss as a
function of Ds. The power of the signal produced by the retina is
defined as Pr = h(Dssr)

2i. By maximizing

Il � kPr

as a function of Ds, find the transfer constant that maximizes the
mutual information for a given value of k (with k > 0), a parameter
that controls the trade-o� between information and power. What
happens when Qss, describing the visual signal, gets much smaller
than Q��? (Based on a problem from Dawei Dong.)

9. Consider two independent inputs s and s0 drawn from Gaussian
distributions withmeans 0 andwith di�erent variancesQss andQs0s0 .
These generate two thalamic signals, as in exercise 8.

sl = Dss + � and s0l = Ds0s0 + �0 ;
defined by two separate transfer constants, Ds and Ds0 , and two
independent noise terms with variances Q�� and Q�0�0 . Find the
transfer constants that maximize the total mutual information Il + I0

l
for a fixed total power Pr + P0

r, where the non-primes and primes
denote the information and power for sl and s0

l
, respectively.


