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Exercises

Chapter 6

1. Build aConnor-Stevensmodel neuron bynumerically integrating the
equations for V,m, h, n, a, and b given in chapter 6 (see, in particular,
equations 6.1, 6.4, and appendix A). Use cm = 10 nF/mm2, and as
initial values take: V = �68 mV, m = 0:0101, h = 0:9659, n = 0:1559,
a = 0:5404, and b = 0:2887. Use an integration time step of 0.1 ms.
Use an external current with Ie=A = 200 nA/mm2 and plot V, m, h, n,
a, and b as functions of time over a suitable interval. Plot the firing
rate of the model as a function of Ie=A over the range from 0 to 500
nA/mm2. How does this di�er from what you got for the Hodgkin-
Huxley model in exercise 8 of chapter 5. Finally, apply a pulse of
negative current with Ie=A = �500 nA/mm2 for 5 ms followed by
Ie=A = 200 nA/mm2and show what happens.

2. Construct a Morris-Lecar model neuron (Morris, C & Lecar, H (1981)
Voltage oscillations in the barnacle giant muscle fiber. Biophysical
Journal 35:193–213). Instead of simulating the fast sodium spikes
of an action potential, this model describes slower calcium spikes.
The model has just two active currents, an instantaneous voltage-
dependent Ca2+ current and a persistent K+ current, described by a
single dynamical gating variableN:

im = gL(V � EL) + gCaM1(V)(V � ECa) + gKN(V � EK)

with gL = 0:005mS/mm2, gCa = 0:01mS/mm2 and gK = 0:02mS/mm2,
EL = �50mV, ECa = 100mV and EK = �70mV. Use cm = 10 nF/mm2.
The function M1(V) is given by

M1(V) = 1

1 + exp[�:133(V + 1)]

and the gating variableN is given by�N(V)
dN

dt
= N1(V) �N

with �N(V) = 3

cosh[:0345(V � 10)]

and

N1(V) = 1

1 + exp[�:138(V � 10)]
:

Here, V is understood to be in mV units, and �N is expressed in ms
units. Determine the firing rate as a function of injected current and
plot themembrane potential andN as a functions of time. Also, show
a phase-plane trajectory, which is a plot of that path taken by these
variables in the two-dimensional space described by the points (V,
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N), while the model is firing. In the phase plane, plot the nullclines
for the V and N equations. These are lines in the V-N plane along
which either dV=dt = 0 or dN=dt = 0. (Phase-plane descriptions and
nullclines are described in chapter 7.)

3. The FitzHugh-Nagumo equations (see FitzHugh, R (1961) Impulses
and physiological states in models of nerve membrane. Biophysical
Journal 1:445–466) are given by

dv

dt
= v(1 � v2) � u + Ie and

du

dt
= �(v � 0:5u)

Draw the nullclines for these equations for Ie = 0 and Ie = �1. These
are the lines in the v-u plane where the right side of one or the other
of these two equations is zero. In which case or cases do you think
the model will produce oscillations? Next simulate the model to
see what happens when these equations are integrated over time.
Determine what happens for Ie = 0 with � = 0.3, 0.1, and 1 and for
Ie = �1 with � = 0:3. (Phase-plane descriptions and nullclines are
described in chapter 7.)

4. Show that solution of equation 6.19 satisfies the cable equation
along an infinite cable in response to the injected current ie =
Ie�mÆ(x)Æ(t)=(2�a).

5. Verify that the solution for an isolated junction given by equations
6.21 and 6.22 satisfies the correct boundary conditions at the junction
point: v1(0) = v2(0) = v3(0) and

3X
i=1 a2i �vi�x �����x=0 = 0 :

6. Generalize the solution for an isolated junction of equation 6.21 to
the time-dependent case when the injected current on segment 2 is
ie = Ie�mÆ(x2 � y)Æ(t)=(2�a).

7. Show that the expression for v(x) given in figure 6.10, with R1 and R2

given by equations 6.23 and 6.24, satisfies the cable equation and the
boundary conditions, v(0) = vsoma and �v=�x = 0 when x = L.

8. Show that the expression for v(x) given in figure 6.12, with R3 and R4

given by equations 6.26 and 6.27, satisfies the cable equation and the
boundary conditions, v(0) = 0 and �v=�x = 0 when x = L.

9. Construct a non-branching axonal cable with conductances in each
compartment described by the Connor-Stevens model (as in exer-
cise 1). Solve for the membrane potential using the methods of
appendix B of chapter 6. Initiate action potential propagation at one
end of the cable by injecting current into the terminal compartment
of the cable. Plot the action potential propagation velocity as a func-
tion of the axon radius. Inject current into the middle of the cable
to generate two, opposite-moving action potentials. Generate action
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potentials from each end of the cable and show that they annihilate
each other when they collide.

10. Determine the numerical solution for a multi-compartment cable
with a single branching node (where a single cable splits into two
branches) analogous to the solution for a non-branching cable (equa-
tions 6.53–6.56) given in appendix B of chapter 6.


