
25

Exercises

Chapter 8

1. Simulate the course of Hebbian learning for the case of figure 8.3.
Find the ranges of initial weight values, (w1;w2), that lead to sat-
uration at (1; 1). Can you predict the result analytically? If the
o�-diagonal term in the correlation matrix is -2 instead of -0.4 and
there are no saturation boundaries, what happens to the sum of the
weights? Could this be used as a way of normalizing the weights?

2. Show that the averaged form of the single-trial Oja rule in equa-
tion 8.16 is given by�w dw

dt
= Q �w � �(w �Q �w)w :

Prove that if it converges, the averaged learning rule produces a set
of weights proportional to an eigenvector of the correlation matrix
Q, normalized so that jwj2=1=�.

3. Simulate the ocular dominance model of figure 8.7 using a subtrac-
tively normalized version of equation 8.31 (i.e. equation 8.14) with
saturation limits at 0 and 1, and cortical interactions generated as in
figure 8.8 from

Kaa0 = exp

 � (a � a0)2
2�2

! � 1

9
exp

 � (a � a0)2
18�2

! ;
where � = 0:066 mm. Use 512 cortical cells with locations a spread
evenly over a nominal 10 mm of cortex, and periodic boundary con-
ditions (this means that you can use Fourier transforms to calculate
the e�ect of the cortical interactions). Also use the discrete form of
equation 8.31

W ! W + �K �W �Q
with a learning rate of � = 0:01. Plot w� as it evolves from near 000
to the final form of ocular dominance. Calculate the magnitude of
the discrete Fourier transform of w�. Repeat this around 100 times,
work out the average of the magnitudes of the Fourier transforms,
and compare this to the Fourier transform of K.

4. Construct two-dimensional input data sets similar to those shown
in figure 8.4 and use them to train a two-input, one output linear
network using correlation- and covariance-based Hebbian learning
rules with multiplicative normalization. Compare the final outcome
for the weights with the principal components of the data when the
mean of the input distribution is zero and when it is nonzero.

5. Repeat exercise 4 for a data set with zero mean, but with subtractive
normalization and saturation. Startwith initial values for theweights
that are chosen randomly over the full range from0 to their saturation



26

limit. When does this algorithm produce a weight vector aligned
with the principal component axis of the input data set, and when
does it fail to do so. Why does the weight vector sometimes fail to
align with the principal component axis?

6. Consider minimizing the function E(w) = (w� 2)2 using the gradient
descent rule for w,

w ! w � � dE
dw

:
Plot E(w) together with the trajectories of w starting from w = 5 for� = 0:01; 0:1; 1; 2; 3. Why does learning diverge as � gets large?

7. Consider E(w) / D
(h(s) �w � f(s))2E, as in equation 8.52, in the case

that matrix hf(s)f(s)i is invertible. An extended delta rule can be
written as

w ! w + h(h(s) �w � f(s))H � f(s)i ;
whereH is amatrix that generalizes the learning rate � of the standard
delta rule. For what matrixH does this rule go from any initial value
w to the optimal weights in one single step. This amounts to a form
of the Newton-Raphson method.

8. Train the feedforward network of figure 8.13 to produce the output
v = cos(0:6s) when the input tuning curves are given as in the caption
to figure 8.14. Train the network byusing the stochastic delta learning
rule (equation 8.61) with s values chosen randomly in the range
between -10 and 10.

9. Construct a perceptron (equation 8.46) that classifies 10 binary inputs
according to whether their sum

P
ua is positive or negative. Use a

random set of binary inputs during training and compare the perfor-
mance (both the learning rate and the final accuracy) of the Hebbian
(equation 8.47), delta, and perceptron learning rules. Repeat this
training protocol, but this time attempt to make the output of the
perceptron classify according to the parity of the inputs, which is the
sign of their product

Q
ua. Why is this example so much harder than

the first case?


