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Exercises

Chapter 1

1. Generate spikes for 10 s (or longer if you want better statistics) using
a Poisson spike generator with a constant rate of 100 Hz, and record
their times of occurrence. Compute the coefficient of variation of the
interspike intervals, and the Fano factor for spike counts obtained
over counting intervals ranging from 1 to 100 ms. Plot the interspike
interval histogram.

2. Add a refractory period to the Poisson spike generator by allowing
the firing rate to depend on time. Initially, set the firing rate to a
constant value, r(t) = r0. After every spike, set r(t) to 0, and then
allow it to recover exponentially back to r0 with a time constant τref
that controls the refractory recovery rate. In other words, have r(t)
obey the equation

τref
dr
dt
= r0 − r

except immediately after a spike, when it is set to 0. Plot the coeffi-
cient of variation as a function of τref over the range 1 ms ≤ τref ≤ 20
ms, and plot interspike interval histograms for a few different values
of τref in this range. Compute the Fano factor for spike counts ob-
tained over counting intervals ranging from 1 to 100 ms for the case
τref = 10 ms.

3. Compute autocorrelation histograms of spike trains generated by a
Poisson generator with a constant firing rate of 100 Hz, a constant
firing rate of 100 Hz together with a refractory period modeled as
in exercise 2 with τref = 10 ms, and a variable firing rate r(t) =
100(1 + cos(2πt/25 ms)) Hz. Plot the histograms over a range from 0
to 100 ms.

4. Generate a Poisson spike train with a time-dependent firing rate
r(t) = 100(1+ cos(2πt/300 ms)) Hz. Approximate the firing rate from
this spike train using a variable rapprox that satisfies

τapprox
drapprox

dt
= −rapprox ,

except that rapprox → rapprox + 1/τapprox every time a spike occurs.
Make plots of the true rate, the spike sequence generated, and the
estimated rate. Experiment with a few different values of τapprox
in the range of 1 to 100 ms. Determine the best value of τapprox

by computing the average squared error of the estimate,
∫

dt(r(t) −
rapprox(t))2, for different values of τapprox, and finding the value of
τapprox that minimizes this error.

5. For a constant rate Poisson process, every specific (up to a finite
resolution) sequence of N spikes occurring over a given time interval
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is equally likely. This seems paradoxical because we certainly do not
expect to see all N spikes appearing within the first 1% of the time
interval. Resolve this paradox.

6. Build an approximate white-noise stimulus by choosing random val-
ues at discrete times separated by a time-step interval ∆t. Plot its
autocorrelation function and power spectrum (use thematlab® func-
tion spectrum or psd). Discuss how well this stimulus matches an
ideal white-noise stimulus given the value of ∆t you used.

7. Consider a model with a firing rate determined in terms of a stimulus
s(t) by integrating the equation

τr
drest(t)

dt
= [r0 + s]+ − rest(t) ,

where r0 is a constant that determines the background firing rate and
τr = 20 ms. Drive the model with an approximate white-noise stim-
ulus. Adjust the amplitude of the white-noise and the parameter r0
so that rectification is not a big effect (i.e. r0 + s > 0 most of the time).
From the responses of the model, compute the stimulus-response cor-
relation function, Qrs. Next, generate spikes from this model using a
Poisson generator with a rate rest(t), and compute the spike-triggered
average stimulus from the spike trains produced by the white-noise
stimulus. By comparing the stimulus-response correlation function
with the spike-triggered average, verify that equation 1.22 is satis-
fied. Examine what happens if you set r0 = 0, so that the white-noise
stimulus becomes half-wave rectified.

8. matlab® file c1p8.mat contains data collected and provided by Rob
de Ruyter van Steveninck from a fly H1 neuron responding to an ap-
proximate white-noise visual motion stimulus. Data were collected
for 20 minutes at a sampling rate of 500 Hz. In the file, rho is a vector
that gives the sequence of spiking events or nonevents at the sampled
times (every 2 ms). When an element of rho is one, this indicates the
presence of a spike at the corresponding time, whereas a zero value
indicates no spike. The variable stim gives the sequence of stimulus
values at the sampled times. Calculate and plot the spike-triggered
average from these data over the range from 0 to 300 ms (150 time
steps). (Based on a problem from Sebastian Seung.)

9. Using the data of problem 8, calculate and plot stimulus averages
triggered on events consisting of a pair of spikes (which need not nec-
essarily be adjacent) separated by a given interval (as in figure 1.10).
Plot these two-spike-triggered average stimuli for various separation
intervals ranging from 2 to 100 ms. (Hint: in matlab® , use convo-
lution for pattern matching: e.g. find(conv(rho,[1 0 1])==2)will
contain the indices of all the events with two spikes separated by 4
ms.) Plot, as a function of the separation between the two spikes,
the magnitude of the difference between the two-spike-triggered av-
erage and the sum of two single-spike-triggered averages (obtained
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in exercise 8) separated by the same time interval. At what temporal
separation does this difference become negligibly small. (Based on a
problem from Sebastian Seung.)

10. Using the data of problem 8, find the spike-triggered average stimu-
lus for events that contain exactly two adjacent spikes separated by
various different intervals ranging from 2 to 100 ms (e.g. for 4 ms,
the event [1 0 1] but not the event [1 1 1]). This is distinct from
exercise 9 in which we only required two spikes separated by a given
interval, but did not restrict what happened between the two spikes.
Compare results of the exclusive case considered here with those of
the inclusive two-spike-triggered average computed in exercise 9. In
what ways and why are they different? (Based on a problem from
Sebastian Seung.)
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Exercises

Chapter 2

1. Use the rate given by equation 2.1 with r0 = 50 Hz and

D(τ) = − cos
(

2π(τ − 20 ms)
140 ms

)
exp

(
−
τ

60 ms

)
Hz/ms

to predict the response of a neuron of the electrosensory lateral-line
lobe to a stimulus. The above equation is an approximation for
the linear kernel obtained from the spike-triggered average shown
in figure 1.9. Use an approximate Gaussian white noise stimulus
constructed by choosing a stimulus value every 10 ms (∆t = 10 ms)
from a Gaussian distribution with zero mean and variance σ2

s/∆t,
with σ2

s = 10. Compute the firing rate over a 10 s period. From the
results, compute the firing rate-stimulus correlation function Qrs(τ).
Using equation 2.6, compare Qrs(−τ)/σ2

s with the kernel D(τ) given
above.

2. matlab® file c1p8.mat contains the data described in exercise 8 of
chapter 1. Use the spike-triggered average (calculated in that exer-
cise) to construct a linear kernel and use it in equation 2.1 to provide a
model of the response of the H1 neuron. Choose r0 so that the average
firing rate predicted by the model in response to the stimulus used
for the data matches the actual average firing rate. Use a Poisson
generator with the computed rate to generate a synthetic spike train
from this linear estimate of the firing rate in response to the stimulus
stim. Plot examples of the actual and synthetic spike trains. How
are they similar and how do they differ? Plot the autocorrelation
function of the actual and the synthetic spike trains over the range 0
to 100 ms. Why is there a dip at a lag of 2 ms in the autocorrelation of
the actual spike train? Is there a dip for the synthetic train too? Plot
the interspike interval histogram for both spike trains. Why is there a
dip below 6 ms in the histogram for the actual spike train? What are
the coefficients of variation for the two spike trains and why might
they differ? (Based on a problem from Sebastian Seung).

3. matlab® file c2p3.mat contains the responses of a cat LGN cell to
two-dimensional visual images (these data are described in Kara, P,
Reinagel, P, & Reid, RC (2000) Low response variability in simul-
taneously recorded retinal, thalamic, and cortical neurons. Neuron
30:803-817 and were kindly provided by Clay Reid). In the file,
counts is a vector containing the number of spikes in each 15.6 ms
bin, and stim contains the 32767, 16× 16 images that were presented
at the corresponding times. Specifically, stim(x, y, t) is the stim-
ulus presented at the coordinate (x,y) at time-step t. Note that
stim is an int8 array that must to be converted into double using
the command stim=double(stim) in order to be manipulated within
matlab® . Calculate the spike-triggered average images for each of
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the 12 time steps before each spike and show them all (using the
imagesc command). Note that in this example, the time bins can
contain more than one spike, so the spike-triggered average must be
computed by weighting each stimulus by the number of spikes in
the corresponding time bin, rather than weighting it by either 1 or
0 depending on whether a spike is present or not. In the averaged
images, you should see a central receptive field that reverses sign
over time. By summing up the images across one spatial dimension,
produce a figure like that of figure 2.25C. (Based on a problem from
Sebastian Seung.)

4. For a Gaussian random variable x with zero mean and standard
deviation σ, prove that

⟨xF(αx)⟩ = ασ2
⟨F′(αx)⟩ ,

where α is a constant, F is any function, F′ is its derivative,

⟨xF(αx)⟩ =
∫

dx
1
√

2πσ
exp

(
−

x2

2σ2

)
xF(αx) ,

and similarly for ⟨F′(αx)⟩. This is the basis of the identity 2.64, which
can be derived by extending this basic result first to multivariate
functions and then to functionals.

5. Using the inverses of equations 2.15 and 2.17

ϵ = ϵ0
(
exp(X/λ) − 1

)
and a = −

180◦(ϵ0 + ϵ)Y
λϵπ

,

map from cortical coordinates back to visual coordinates and de-
termine what various patterns of activity across the primary visual
cortex would “look like”. Ermentrout and Cowan (Ermentrout, GB,
& Cowan, J (1979) A mathematical theory of visual hallucination pat-
terns. Biological Cybernetics 34:137–150) used these results as a basis of
a mathematical theory of visual hallucinations. The figure generated
by thematlab® program c2p5.m shows an illustrative example. This
program simulates a plane sine wave of activity across the primary
visual cortex with a specified spatial frequency and direction, and
then maps it back into retinal coordinates to see what visual pat-
tern would be perceived due to this activity. Consider various other
patterns of activity and show the visual hallucinations they would
generate.

6. Perform the integrals in equations 2.31 and 2.32 for the case σx = σy =
σ to obtain the results

Ls =
A
2

exp
(
−
σ2(k2 + K2)

2

) (
cos(ϕ −Φ) exp

(
σ2kK cos(Θ)

)
+ cos(ϕ + Φ) exp

(
−σ2kK cos(Θ)

))
.

and

Lt(t) =
α6
|ω|
√

ω2 + 4α2

(ω2 + α2)4 cos(ωt − δ) .
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with
δ = 8 arctan

(
ω
α

)
+ arctan

(2α
ω

)
− π .

From these results, verify the selectivity curves in figures 2.15 and
2.16. In addition, plot δ as a function of ω.

7. Numerically compute the spatial part of the linear response of a
simple cell with a separable space-time receptive field to a sinusoidal
grating, as given by equation 2.31. Use a stimulus oriented with
Θ = 0. For the spatial receptive field kernel, use equation 2.27 with
σx = σy = 1◦, ϕ = 0, and 1/k = 0.5◦. Plot Ls as a function of K taking
Φ = 0 and A = 50. This determines the spatial frequency selectivity of
the cell. What is its preferred spatial frequency? Plot Ls as a function
of Φ taking 1/K = 0.5◦ and A = 50. This determines the spatial phase
selectivity of the cell. What is its preferred spatial phase?

8. Consider a complex cell with the spatial part of its response given by
L2

1 + L2
2, where L1 and L2 are linear responses determined by equa-

tion 2.31 with kernels given by equation 2.27 with σx = σy = 1◦, and
1/k = 0.5◦; and with ϕ = 0 for L1 and ϕ = −π/2 for L2. Use a stimulus
oriented with Θ = 0. Compute and plot L2

1 + L2
2 as a function of K

taking Φ = 0 and A = 5. This determines the spatial frequency selec-
tivity of the cell. Compute and plot L2

1 + L2
2 as a function of Φ taking

1/K = 0.5◦ and A = 5. This determines the spatial phase selectivity
of the cell. Does the spatial phase selectivity match what you expect
for a complex cell?

9. Consider the linear temporal response for a simple or complex cell
given by equation 2.32 with a temporal kernel given by equation 2.29
with 1/α = 15 ms. Compute and plot Lt(t) for ω = 6π/s. This
determines the temporal response of the simple cell. Do not plot the
negative part of Lt(t) because the cell cannot fire at a negative rate.
Compute and plot L2

t (t) for ω = 6π/s. This determines the temporal
response of a complex cell. What are the differences between the
temporal responses of the simple and complex cells?

10. Compute the response of a model simple cell with a separable space-
time receptive field to a moving grating

s(x, y, t) = cos(Kx − ωt) .

For Ds, use equation 2.27 with σx = σy = 1◦,ϕ = 0, and 1/k = 0.5◦. For
Dt, use equation 2.29 with 1/α = 15 ms. Compute the linear estimate
of the response given by equation 2.24 and assume that the actual
response is proportional to a rectified version of this linear response
estimate. Plot the response as a function of time for 1/K = 1/k = 0.5◦

and ω = 8π/s. Plot the response amplitude as a function of ω for
1/K = 1/k = 0.5◦ and as a function of K for ω = 8π/s.

11. Compute the response of a model complex cell to the moving grating

s(x, y, t) = cos(Kx − ωt) .



7

The complex cell should be modeled by squaring the unrectified
linear response estimate of a simple cells with a spatial receptive
field given by equation 2.27 with σx = σy = 1◦, ϕ = 0, and 1/k = 0.5◦,
and adding this to the square of the unrectified linear response of
a second simple cell with identical properties except that its spatial
phase preference is ϕ = −π/2 instead of ϕ = 0. Both linear responses
are computed from equation 2.24. For both of these, use equation 2.29
with 1/α = 15 ms for the temporal receptive field. Plot the complex
cell response as a function of time for 1/K = 1/k = 0.5◦ and ω = 8π/s.
Plot the response amplitude as a function of ω for 1/K = 1/k = 0.5◦

and as a function of K for ω = 8π/s.

12. Construct a model simple cell with the nonseparable space-time re-
ceptive field described in the caption of figure 2.21B. Compute its
response to the moving grating

s(x, y, t) = cos(Kx − ωt) .

Plot the amplitude of the response as a function of the velocity of the
grating, ω/K, using ω = 8π/s and varying K to obtain a range of both
positive and negative velocity values (use negative K values for this).
Show that the response is directionally selective.

13. Construct a model complex cell that is disparity tuned but insensitive
to the absolute position of a grating. The complex cell is constructed
by summing the squares of the unrectified linear responses of two
simple cells, but disparity effects are now included. For this exercise,
we ignore temporal factors and only consider the spatial dependence
of the response. Each simple cell response is composed of two terms
that correspond to inputs coming from the left and right eyes. Be-
cause of disparity, the spatial phases of the image of a grating in the
two eyes, ΦL and ΦR, may be different. We write the spatial part of
the linear response estimate for a grating with the preferred spatial
frequency (k = K) and orientation (Θ = θ = 0) as

L1 =
A
2

(cos(ΦL) + cos(ΦR)) ,

assuming that ϕ = 0 (this equation is a generalization of equa-
tion 2.34). Let the complex cell response be proportional to L2

1 + L2
2,

where L2 is similar to L1 but with the cosine functions replaced by
sine functions. Show that the response of this neuron is tuned to the
disparity, ΦL − ΦR, but is independent of the absolute spatial phase
of the grating, ΦL + ΦR. Plot the response tuning curve as a function
of disparity. (See DeAngelis, GC, Ohzawa, I, & Freeman, RD (1991)
Depth is encoded in the visual cortex by a specialized receptive field
structure. Nature 352:156–159.)

14. Determine the selectivity of the LGN receptive field of equation 2.45
to spatial frequency by computing its integrals when multiplied by
the stimulus

s = cos(Kx)
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for a range of K values. Use σc = 0.3◦, σs = 1.5◦, B = 5 and plot the
resulting spatial frequency tuning curve.

15. Construct the Hubel-Wiesel model of a simple-cell spatial receptive
field, as depicted in figure 2.27A. Use difference-of-Gaussian func-
tions (equation 2.45) to model the LGN receptive fields. Plot the
spatial receptive field of the simple cell constructed by summing
the spatial receptive fields of the LGN cells that provide its input.
Compare the result of summing appropriately placed LGN center-
surround receptive fields (figure 2.27A) with the results of an appro-
priately adjusted Gabor filter model of the simple cell that uses the
spatial kernel of equation 2.27.

16. Construct the Hubel-Wiesel model of a complex cell, as depicted in
figure 2.27B. Use Gabor functions (equation 2.27) to model the simple
cell responses, which should be rectified before being summed. Plot
the spatial receptive field of the complex cell constructed by summing
the different simple cell responses. Compare the responses of a com-
plex cell constructed by linearly summing the outputs of simple cells
(figure 2.27B) with different spatial phase preferences with the com-
plex cell model obtained by squaring and summing two unrectified
simple cell responses with spatial phases 90◦ apart as in exercise 8.
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Exercises

Chapter 3

1. Suppose that the probabilities that a neuron responds with a firing
rate between r and r + ∆r to two stimuli labeled plus and minus are
p[r|±]∆r where

p[r|±] =
1

√
2πσr

exp
(
−

1
2

( r − ⟨r⟩±
σr

)2)
.

Assume that the two mean rate parameters ⟨r⟩+ and ⟨r⟩− and the
single variance σ2

r are chosen so that these distributions produce
negative rates rarely enough that we can integrate over r values over
the entire range −∞ < r < ∞. Suppose that you base discrimination
of the plus and minus stimuli on whether the evoked firing rate is
greater or less than a threshold z. Show that the size and power, α(z)
and β(z) of this test are given by

α(z) =
1
2

erfc
(

z − ⟨r⟩−
√

2σr

)
and β(z) =

1
2

erfc
(

z − ⟨r⟩+
√

2σr

)
.

Show that the probability of a correct answer in the associated two-
alternative forced choice task involving discriminating between plus-
then-minus and minus-then-plus presentations of the two stimuli is
given by equation 3.10. Also, derive the result of equation 3.17. Plot
ROC curves for different values of the discriminability

d′ =
⟨r⟩+ − ⟨r⟩−
σr

.

By simulation, determine the fraction of correct discriminations that
can be made in the two-alternative forced choice task. Show that the
fractions of correct answer for different values of d′ are equal to the
areas under the corresponding ROC curves.

2. Simulate the random-dot discrimination experiment. Denote the
stimulus by plus or minus, corresponding to the two directions of
motion. On each trial, choose the stimulus randomly with equal
probability for the two cases. When the minus stimulus is chosen,
generate the responses of the neuron as 20 Hz plus a random Gaus-
sian term with a standard deviation of 10 Hz (set any rates that come
out negative to zero). When the plus stimulus is chosen, generate
the responses as 20 + 10d Hz plus a random Gaussian term with a
standard deviation of 10 Hz, where d is the discriminability (again,
set any rates that come out negative to zero). First, choose a threshold
z = 20+5d, which is half-way between the means of the two response
distributions. Whenever r ≥ z guess “plus”, otherwise guess “mi-
nus”. Over a large number of trials (1000, for example) determine
how often you get the right answer for different d values. Plot the
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percent correct as a function of d over the range 0 ≤ d ≤ 10. Next, by
allowing z to vary over a range, plot ROC curves for several values
of d (starting with d = 2). To do this, determine how frequently the
guess is “plus” when the stimulus is, in fact, plus (this is β), and how
often the guess is “plus” when the real stimulus is minus (this is α).
Then, plot β versus α for z over the range 0 ≤ z ≤ 140.

3. Simulate the responses of four interneurons in the cercal system of
the cricket and check the accuracy of a vector decoding scheme. For a
true wind directionθ, the average firing rates of the four interneurons
should be generated as

⟨ri⟩ = [50 Hz cos(θ − θi)]+ ,

where [ ]+ indicates half-wave rectification, and θi = π/4, 3π/4, 5π/4,
7π/4 for i = 1, 2, 3, 4. The actual rates, ri, are then obtained by adding
to these mean rates a random number chosen from a Gaussian dis-
tribution with zero mean and a standard deviation of 5 Hz (set any
rates the come out negative to zero). From these rates, construct the
x and y components of the population vector

x =
4∑

i=1

ri cos(θi) and y =
4∑

i=1

ri sin(θi)

and, from the direction of this vector, compute an estimate θest of the
wind direction. Average the squared difference (θ − θest)2 over 1000
trials. The square root of of this quantity is the error. Plot the error
as a function of θ over the range −90◦ ≤ θ ≤ 90◦.

4. Show that if an infinite number of unit vectors c⃗a is chosen uniformly
from a probability distribution that is independent of direction,

∑
(v⃗ ·

c⃗a )⃗ca ∝ v⃗ for any vector v⃗. How does the sum approach this limit for
a finite number of terms?

5. Show that the Bayesian estimator that minimizes the expected aver-
age value of the the loss function L(s, sbayes) = (s− sbayes)2 is the mean
of the distribution p[s|r], given by equation 3.27. Also show that
the estimate that arises from minimizing the expected loss function
L(s, sbayes) = |s − sbayes| is the median of p[s|r].

6. Show that the equations for the Fisher information in equation 3.42
can also be written as in equation 3.43,

IF(s) =
〈(
∂ ln p[r|s]
∂s

)2〉
=

∫
dr p[r|s]

(
∂ ln p[r|s]
∂s

)2

or as

IF(s) =
∫

dr
1

p[r|s]

(
∂p[r|s]
∂s

)2

.

Use the fact that
∫

dr p[r|s] = 1.
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7. The discriminability for the variable Z defined in equation 3.19 is the
difference between the average Z values for the two stimuli s + ∆s
and s divided by the standard deviation of Z. The average of the
difference in Z values is

⟨∆Z⟩ =
∫

dr
∂ ln p[r|s]
∂s

(
p[r|s + ∆s] − p[r|s]

)
.

Show that for small ∆s, ⟨∆Z⟩ = IF(s)∆s. Also prove that the average
value of Z,

⟨Z⟩ =
∫

dr p[r|s]
∂ ln p[r|s]
∂s

,

is zero, and that the variance of Z is IF(s). Computing the ratio,
we find from these results that d′ = ∆s

√
IF(s) which matches the

discriminability 3.49 of the ML estimator.

8. Extend equation 3.46 to the case of neurons encoding a D-
dimensional vector stimulus s⃗ with tuning curves given by

fa(⃗s) = rmax exp
(
−
|⃗s − s⃗a|

2

2σ2
r

)
and perform the sum by approximating it as an integral over uni-
formly and densely distributed values of s⃗a to derive the result in
equation 3.48.

9. Derive equation 3.54 by minimizing the expression 3.53. Use the
methods of appendix A of chapter 2.

10. matlab® program c3p10.m performs acausal decoding using signal
processing techniques to construct an approximate solution of equa-
tion 3.54, while suppressing unwanted effects of noise (for an illus-
tration of these effects, see part (e) of this exercise). The program is
called as [est,K,ind]=ch3ex10(stim,spk,nfft), where stim and
spk are the stimulus and response respectively, nfft is the length of
a discrete Fourier transform (suitable values are nfft= 210 = 1024
or 211 = 2048), K is the acausal kernel, est is the resulting stimulus
estimate, and ind is a vector of indices that specifies the range over
which the estimate and stimulus should be compared. Specifically,
est provides an estimate of stim(ind).

a) Compute an estimated firing rate rest from equation 2.1 with r0 = 50
Hz and

D(τ) = − cos
(

2π(τ − 20ms)
140ms

)
exp

(
−
τ

60ms

)
Hz/ms

in response to an approximate white noise stimulus (roughly 500
seconds long) calculated by choosing at each time step (with ∆t = 10
ms) a stimulus value from a Gaussian distribution with mean 0 and
variance 2. Generate a kernel and estimate for this stimulus using
c3p10.m with rest playing the role of the argument spk. Verify that
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est and stim(ind) are closely related, and describe the relationship
between the coding kernel D and the decoding kernel K.

b) Repeat (a) with a rectification non-linearity, so that [rest]+ is used
in place of rest. Measure the effect of the nonlinearity by comparing
the average (over time) of the squared difference between est and
stim(ind), divided by the variance of stim, for the rectified and
nonrectified cases. What is the effect of rectification on the optimal
decoding kernel K, and why? Assess the accuracy with which differ-
ent frequency components in stim are captured in est by considering
the power spectrum of the average squared difference between est
and stim(ind).

c) Generate a spike sequence spk from the rectified firing rate [rest]+
using a Poisson generator. The sequence spk should consist of a one
or a zero at each time step, depending on whether or not a spike
occurred. Recompute the acausal kernel as in part (a), but using
spk as the response rather than rest. How accurate is the resulting
decoding, and what is the effect of using spikes rather than rates on
the decoding kernel K?

d) What happens to decoding accuracy as the value of ∆t, which
defines the approximation to a white noise stimulus, increases and
why? In the general case, the approximate white noise should be
generated by choosing a stimulus value at each time step from a
Gaussian distribution with mean 0 and variance 20 ms/∆t.

e) Attempt to repeat the decoding in (a) using the cross-correlation
function xcorr and the fast Fourier transform fft to solve equa-
tion 3.54. Why is the answer so noisy?
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Exercises

Chapter 4

1. Show that the firing-rate distribution that maximizes the entropy
when the firing rate is constrained to lie in the range 0 ≤ r ≤ rmax
is given by equation 4.22, and that its entropy for a fixed resolution
∆r is given by equation 4.23. Use a Lagrange multiplier (see the
Mathematical Appendix) to constrain the integral of p[r] to one.

2. Show that the firing-rate distribution that maximizes the entropy
when the mean of the firing rate is held fixed is an exponential,
and compute its entropy for a fixed resolution ∆r. Assume that the
firing rate can fall anywhere in the range from 0 to∞. Use Lagrange
multipliers (see the Mathematical Appendix) to constrain the integral
of p[r] to 1 and the integral of p[r]r to the fixed average firing rate.

3. Show that the distribution that maximizes the entropy when the
mean and variance of the firing rate are held fixed is a Gaussian,
and compute its entropy for a fixed resolution ∆r. To simplify the
mathematics, allow the firing rate to take any value between −∞ and
+∞. Use Lagrange multipliers (see the Mathematical Appendix) to
constrain the integral of p[r] to 1, the integral of p[r]r to the fixed
average firing rate ⟨r⟩, and the integral of p[r](r − ⟨r⟩)2 to the fixed
variance.

4. Using Fourier transforms, solve equation 4.37, using equation 4.36,
to obtain the result of equation 4.42.

5. Suppose the filter Ls(a⃗) has a correlation function that satisfies equa-
tion 4.37. Consider a new filter constructed in terms of this old one
by writing

L′s(a⃗) =
∫

dc⃗ U(a⃗, c⃗)Ls (⃗c) . (1)

Show that if U(a⃗, c⃗) satisfies the condition of an orthogonal transfor-
mation, ∫

dc⃗ U(a⃗, c⃗)U(⃗b, c⃗) = δ(a⃗ − b⃗) , (2)

the correlation function for this new filter also satisfies equation 4.37.

6. Consider a stimulus sr = ss+η that is given by the sum of a true stim-
ulus ss and a noise term η. Values of the true stimulus ss are drawn
from a Gaussian distribution with mean 0 and variance Qss. Values
of the noise term η are also obtained from a Gaussian distribution,
with mean 0 and variance Qηη. The two terms η and ss are indepen-
dent of each other. Using the formula for the continuous entropy of
a Gaussian random variable calculated in problem 3, calculate the
mutual information between sr and ss.
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7. Consider a multivariate signal ss drawn from a Gaussian distribution
with mean 000 and covariance matrix Qss. Compute the continuous
entropy of s in terms of the eigenvalues of Qss, up to the usual
resolution term for a continuous entropy.

8. Suppose that a stimulus at one point on the retina, and at a given
time, sr = ss +η, is the sum of a true stimulus ss and a noise term η, as
in exercise 6. Model the retinal processing at this particular location
as producing a signal at the thalamus

sl = Dssr + ηl ,

where Ds is a parameter called the transfer constant, and ηl represents
an additional, independent source of noise that can be modeled as
being drawn from a Gaussian distribution with mean 0 and variance
Qηlηl . Calculate the mutual information Il between sl and ss as a
function of Ds. The power of the signal produced by the retina is
defined as Pr = ⟨(Dssr)2

⟩. By maximizing

Il − kPr

as a function of Ds, find the transfer constant that maximizes the
mutual information for a given value of k (with k > 0), a parameter
that controls the trade-off between information and power. What
happens when Qss, describing the visual signal, gets much smaller
than Qηη? (Based on a problem from Dawei Dong.)

9. Consider two independent inputs s and s′ drawn from Gaussian
distributions with means 0 and with different variances Qss and Qs′s′ .
These generate two thalamic signals, as in exercise 8.

sl = Dss + η and s′l = Ds′s′ + η′ ,

defined by two separate transfer constants, Ds and Ds′ , and two
independent noise terms with variances Qηη and Qη′η′ . Find the
transfer constants that maximize the total mutual information Il + I′l
for a fixed total power Pr + P′r, where the non-primes and primes
denote the information and power for sl and s′l , respectively.
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Exercises

Chapter 5

1. The Nernst equation (equation 5.4) was derived in chapter 5 under
the assumption that the membrane potential was negative and the
ion being considered was positively charged. Rederive this result for
a negatively charged ion and for the case when E is positive to verify
that it applies in all these cases.

2. Verify that equation 5.47 is a solution of equation 5.46 when V∞ is
independent of time. Then, solve equation 5.46 for the case when V∞
is an arbitrary function of time. In this solution, V(t) is expressed in
terms of integrals involving V∞(t).

3. Build a model integrate-and-fire neuron from equation 5.8. Use
Vrest = −70 mV, Rm = 10 MΩ, and τm = 10 ms. Initially set V = Vrest.
When the membrane potential reaches Vth = −54 mV, make the neu-
ron fire a spike and reset the potential to Vreset = −80 mV. Show
sample voltage traces (with spikes) for a 300-ms-long current pulse
(choose a reasonable current Ie) centered in a 500-ms-long simula-
tion. Determine the firing rate of the model for various magnitudes
of constant Ie and compare the results with equation 5.11.

4. Include an extra current in the integrate-and-fire model to introduce
spike-rate adaptation, as described in equations 5.13 and 5.14, and in
the caption to figure 5.6.

5. Add an excitatory synaptic conductance to the integrate-and-fire neu-
ron of exercise 3 by adding the extra synaptic conductance term in
equation 5.43 with Es = 0. Set the external current to zero, Ie = 0, in
this example, and assume that the probability of release on receipt
of a presynaptic spike is 1. Use rmgs = 0.5 and describe Ps using the
alpha function of equation 5.35 with τs = 10 ms and Pmax = 0.5. To
incorporate multiple presynaptic spikes, Ps should be described by a
pair of differential equations,

τs
dPs

dt
= ePmaxz − Ps

with e = exp(1), and

τs
dz
dt
= −z ,

with the additional rule that z is set to 1 whenever a presynaptic spike
arrives. Plot V(t) in one graph and the synaptic current in another.
Trigger synaptic events at times 50, 150, 190, 300, 320, 400, and 410
ms. Explain what you see.

6. The equations in exercise 5 generate anα function response to a single
input spike, but they do not prevent Ps from growing greater than 1
when the model synapse is driven by multiple spikes at a sufficiently
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high frequency. In other words, this model synapse does not saturate.
To introduce saturation, modify the equations of exercise 5 to

τs
dPs

dt
= ePmaxz(1 − Ps) − Ps

with e = exp(1), and

τs
dz
dt
= −z ,

with the additional rule that z is set to 1 whenever a presynaptic
spike arrives. Compare Ps(t) computed using these equations with
Ps(t) computed using the equations of exercise 5 for constant rate,
regular (periodic) presynaptic spike trains with frequencies ranging
from 1 to 100 Hz. In both cases, use τs = 10 ms and Pmax = 0.5.

7. Construct a model of two coupled integrate-and-fire neurons sim-
ilar to that of figure 5.20. Both model neurons obey equation 5.43
with EL = −70 mV, Vth = −54 mV, Vreset = −80 mV, τm = 20 ms,
rmgs = 0.15, and RmIe = 18 mV. Both synapses should be described
as in exercise 5 with Pmax = 0.5 and τs = 10 ms. Consider cases
where both synapses are excitatory, with Es = 0 mV, and both are
inhibitory, with Es = −80 mV. Show how the pattern of firing for
the two neurons depends on the type (excitatory or inhibitory) of the
reciprocal synaptic connections. For these simulations, set the initial
membrane voltages of the two neurons to slightly different values,
randomly, and run the simulation until an equilibrium situation has
been reached, which may take a few seconds of simulated run time.
Start from a few different random initial conditions to study whether
the results are consistent. Investigate what happens if you change
the strengths and time constants of the reciprocal synapses.

8. Build a Hodgkin-Huxley model neuron by numerically integrating
the equations for V, m, h, and n given in chapter 5 (see, in particular
equations 5.6, 5.17–5.19, 5.22, 5.24, and 5.25). Take cm = 10 nF/mm2,
and as initial values take: V = −65 mV, m = 0.0529, h = 0.5961, and
n = 0.3177. Use an integration time step of 0.1 ms. Use an external
current with Ie/A = 200 nA/mm2 and plot V, m, h, and n as functions
of time for a suitable interval. Also, plot the firing rate of the model
as a function of Ie/A over the range from 0 to 500 nA/mm2. Show
that the firing rate jumps discontinuously from zero to a finite value
when the current passes through the minimum value required to
produce sustained firing. Finally, apply a pulse of negative current
with Ie/A = −50 nA/mm2 for 5 ms followed by Ie/A = 0 and show
what happens.

9. Construct and simulate the K+ channel model of figure 5.12. Plot the
mean squared deviation between the current produced by N such
model channels and the Hodgkin-Huxley current as a function of N
over the range 1 ≤ N ≤ 100, matching the amplitude of the Hodgkin-
Huxley model so that the mean currents are the same.
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10. Compute analytically the value of the release probability Prel just be-
fore the time of each presynaptic spike for a regular (periodic rather
than Poisson), constant-frequency presynaptic spike train as a func-
tion of the presynaptic firing rate. Do this for both the depression
and facilitation models described by equation 5.37.
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Exercises

Chapter 6

1. Build a Connor-Stevens model neuron by numerically integrating the
equations for V, m, h, n, a, and b given in chapter 6 (see, in particular,
equations 6.1, 6.4, and appendix A). Use cm = 10 nF/mm2, and as
initial values take: V = −68 mV, m = 0.0101, h = 0.9659, n = 0.1559,
a = 0.5404, and b = 0.2887. Use an integration time step of 0.1 ms.
Use an external current with Ie/A = 200 nA/mm2 and plot V, m, h, n,
a, and b as functions of time over a suitable interval. Plot the firing
rate of the model as a function of Ie/A over the range from 0 to 500
nA/mm2. How does this differ from what you got for the Hodgkin-
Huxley model in exercise 8 of chapter 5. Finally, apply a pulse of
negative current with Ie/A = −500 nA/mm2 for 5 ms followed by
Ie/A = 200 nA/mm2and show what happens.

2. Construct a Morris-Lecar model neuron (Morris, C & Lecar, H (1981)
Voltage oscillations in the barnacle giant muscle fiber. Biophysical
Journal 35:193–213). Instead of simulating the fast sodium spikes
of an action potential, this model describes slower calcium spikes.
The model has just two active currents, an instantaneous voltage-
dependent Ca2+ current and a persistent K+ current, described by a
single dynamical gating variable N:

im = gL(V − EL) + gCaM∞(V)(V − ECa) + gKN(V − EK)

with gL = 0.005 mS/mm2, gCa = 0.01 mS/mm2 and gK = 0.02 mS/mm2,
EL = −50 mV, ECa = 100 mV and EK = −70 mV. Use cm = 10 nF/mm2.
The function M∞(V) is given by

M∞(V) =
1

1 + exp[−.133(V + 1)]

and the gating variable N is given by

τN(V)
dN
dt
= N∞(V) −N

with
τN(V) =

3
cosh[.0345(V − 10)]

and
N∞(V) =

1
1 + exp[−.138(V − 10)]

.

Here, V is understood to be in mV units, and τN is expressed in ms
units. Determine the firing rate as a function of injected current and
plot the membrane potential and N as a functions of time. Also, show
a phase-plane trajectory, which is a plot of that path taken by these
variables in the two-dimensional space described by the points (V,
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N), while the model is firing. In the phase plane, plot the nullclines
for the V and N equations. These are lines in the V-N plane along
which either dV/dt = 0 or dN/dt = 0. (Phase-plane descriptions and
nullclines are described in chapter 7.)

3. The FitzHugh-Nagumo equations (see FitzHugh, R (1961) Impulses
and physiological states in models of nerve membrane. Biophysical
Journal 1:445–466) are given by

dv
dt
= v(1 − v2) − u + Ie and

du
dt
= ϵ(v − 0.5u)

Draw the nullclines for these equations for Ie = 0 and Ie = −1. These
are the lines in the v-u plane where the right side of one or the other
of these two equations is zero. In which case or cases do you think
the model will produce oscillations? Next simulate the model to
see what happens when these equations are integrated over time.
Determine what happens for Ie = 0 with ϵ = 0.3, 0.1, and 1 and for
Ie = −1 with ϵ = 0.3. (Phase-plane descriptions and nullclines are
described in chapter 7.)

4. Show that solution of equation 6.19 satisfies the cable equation
along an infinite cable in response to the injected current ie =
Ieτmδ(x)δ(t)/(2πa).

5. Verify that the solution for an isolated junction given by equations
6.21 and 6.22 satisfies the correct boundary conditions at the junction
point: v1(0) = v2(0) = v3(0) and

3∑
i=1

a2
i
∂vi

∂x

∣∣∣∣∣
x=0
= 0 .

6. Generalize the solution for an isolated junction of equation 6.21 to
the time-dependent case when the injected current on segment 2 is
ie = Ieτmδ(x2 − y)δ(t)/(2πa).

7. Show that the expression for v(x) given in figure 6.10, with R1 and R2
given by equations 6.23 and 6.24, satisfies the cable equation and the
boundary conditions, v(0) = vsoma and ∂v/∂x = 0 when x = L.

8. Show that the expression for v(x) given in figure 6.12, with R3 and R4
given by equations 6.26 and 6.27, satisfies the cable equation and the
boundary conditions, v(0) = 0 and ∂v/∂x = 0 when x = L.

9. Construct a non-branching axonal cable with conductances in each
compartment described by the Connor-Stevens model (as in exer-
cise 1). Solve for the membrane potential using the methods of
appendix B of chapter 6. Initiate action potential propagation at one
end of the cable by injecting current into the terminal compartment
of the cable. Plot the action potential propagation velocity as a func-
tion of the axon radius. Inject current into the middle of the cable
to generate two, opposite-moving action potentials. Generate action
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potentials from each end of the cable and show that they annihilate
each other when they collide.

10. Determine the numerical solution for a multi-compartment cable
with a single branching node (where a single cable splits into two
branches) analogous to the solution for a non-branching cable (equa-
tions 6.53–6.56) given in appendix B of chapter 6.
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Exercises

Chapter 7

1. a) Consider network activities v(θ) that are steady-state solutions of
equation 7.36, satisfying

v(θ) =
[
h(θ) +

∫ π/2

−π/2

dθ′

π
(−λ0 + λ1 cos(2(θ − θ′))) v(θ′)

]
+

, (1)

in response to input h(θ) = Ac(1 − ϵ + ϵ cos(2θ)) as in equation 7.37.
Assuming that v(θ) is symmetric about θ = 0, show that v(θ) takes
either the form

v(θ) = α [cos(2θ) − cos(2θC)]+ (2)

or the form

v(θ) = α cos(2θ) + v0 . (3)

In the case of equation 2, which applies when θC < π/2 and for which
θC defines the width of the orientation tuning curve, by calculating
the integral ∫ π/2

−π/2

dθ′

π
(−λ0 + λ1 cos(2(θ − θ′))v(θ′) ,

show that α and θC must satisfy the consistency conditions

α =
Acϵ

1 − λ1 (θC − sin(4θC)/4) /π

cos(2θC) =
λ0

π
(sin(2θC) − 2θC cos(2θC))− (4)

(1 − ϵ)
ϵ

(
1 −
λ1

π

(
θC −

sin(4θC)
4

))
.

b) In the case of equation 3, calculate α and v0.

c) For values λ0 = 7.3, λ1 = 11, c = 1, and A = 40 Hz, use the
matlab® function fzero to find the value of θC that satisfies the
consistency condition in equation 4 as a function of ϵ for 0 < ϵ ≤ 1. For
ϵ = 0.1 and c = 0.1, 0.2, 0.4, and 0.8, solve forα, and thereby reproduce
figure 7.10B. Repeat the plots for λ1 = 0. At what value of ϵ does θC
fall below π/2. This corresponds to a model in which feedforward
orientation tuning is sharpened only by inhibition. [Corrected by
Sune Jespersen]

d) Numerically integrate equation 7.36 for the sets of parameters in
(c) to confirm your results. Use 100 neurons with preferred values
evenly spaced between −π/2 and π/2.
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e) Plot θC − sin(4θC)/4 for 0 ≤ θC ≤ π/2. What is its maximum
value? As ϵ→ 0 (so that (1 − ϵ)/ϵ→ ∞), calculate (from equation 4)
a condition on λ1 that ensures there will always be a solution with
θC < π/2. This defines a marginal phase in which the recurrent
connections create a tuned output even from untuned input, and it
constitutes what is called a continuous attractor.

2. A Hopfield associative memory network has activities for individual
units, va for a = 1, 2, . . . ,N (or collectively v), that take values of either
+1 or −1, and are updated at every discrete time step of the network
dynamics by the rule

va(t + 1) = sgn

 N∑
a′=1

Maa′va′ (t)

 , (5)

where

sgn(z) =
{
+1 if z ≥ 0
−1 if z < 0 .

Here M is a matrix constructed from P “memory” vectors vm (m =
1, 2, . . .P), also composed of elements that are either+1 or−1, through
the sum of outer products

Maa′ = (1 − δaa′ )
P∑

m=1

vm
a vm

a′ . (6)

Note that the diagonal elements of M are set to zero by this equation.
Consider a 100-element network (N = 100). Construct P memory
states by randomly assigning +1 and −1 values with equal probabil-
ities to the N elements of each vm. Using these memory vectors, set
the matrix of synaptic weights according to equation 6. Then, study
the behavior of the network by iterating equation 5. To measure how
close the state of the network at time t, v(t), is to a particular memory
state, define the overlap function q(t) = v(t) · vm/N. This is equal to 1
if v(t) = vm, is near zero if v(t) is unrelated to vm, and is equal to −1 if
v(t) = −vm. Set the initial state v(0) so that it has a positive overlap,
q(0), with memory state v1. Plot q(t) as the network evolves from this
state according to equation 5. Final values of q(t) near one indicate
successful recovery of the memory. Do the same starting from v(0)
close to the inverse of the memory state −v1. What accounts for this
behavior? Determine the range of q(0) values (about v1) that assures
successful memory recovery for different values of P. Start with P = 1
and increase it until memory recovery fails even for q(0) = 1. At what
P value does this occur?

3. Repeat exercise 2 with the matrix M replaced by

Maa′ = (1 − δaa′ )
P∑

m,m′=1

vm
a Cmm′vm′

a′ ,
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where Cmm′ is the m,m′ element of the inverse of the matrix
N∑

a=1

vm
a vm′

a .

Compare the performance and capacity of the associative memory
constructed using this matrix with that of the associative memory in
exercise 2.

4. Build and study a simple model of oscillations arising from the in-
teraction of excitatory and inhibitory populations of neurons. The
firing rate of the excitatory neurons is rE, and that of the inhibitory
neurons is rI and these are characterized by equations 7.50 and 7.51.
Set MEE = 1.25, MIE = 1, MII = 0, MEI = −1, γE = −10 Hz, γI = 10
Hz, τE = 10 ms, and vary the value of τI. The negative value of γE
means that this parameter serves as a source of background activity
(activity in the absence of excitatory input) rather than as a threshold.
Show what happens for τI = 30 ms and for τI = 50 ms. Find the value
of τI for which there is a transition between fixed-point and oscilla-
tory behavior, thereby verifying the results obtained analytically in
chapter 7 on the basis of equation 7.53.

5. matlab® files c7p5.m and c7p5sub.m perform a numerical integra-
tion of a two-unit, nonlinear, symmetric recurrent network with a
threshold linear activation function F(I) = β[I]+ and plot the results.
Here, the dynamics come from

dv
dt
= −v + F(M · v + h)

with v = (v1, v2) and h1 = h2 = 1. The weight matrix in this example
is M = [0 −1 ; −1 0], which tends to make v1 and v2 compete. Execute
c7p5.m to see the consequences of regimes of high (β = 2) and low
(β = 0.5) activation (which is equivalent to large and small recurrent
weights). For these two values of β, plot the nullclines (the locations
in the v1-v2 phase plane where dv1/dt = 0 and dv2/dt = 0). You should
find one fixed point for β = 0.5 and three for β = 2. Linearize the
network about the fixed point with v1 = v2 and derive a condition on
β for this fixed point to be stable. (Based on a problem from Dawei
Dong.)

6. Plot the results of exercise 5 for the inputs h = (0.75, 1.25) and h =
(0.5, 1.5). By plotting nullclines for these values of h, explain the
resulting behavior. (Based on a problem from Dawei Dong.)

7. Use the expression

fu(s − ξ, g − γ) = A exp
(
−

(s − ξ)2

2σ2
s

)
N

(
g − γ
σg

)
,

where A, ξ, σs, γ, and σg are parameters and N is the (sigmoidal)
cumulative normal function

N(z) =
∫ z

−∞

dx
1
√

2π
exp

(
−

x2

2

)
= 1 −

1
2

erfc
(

z
√

2

)
.
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Plot fu(s − ξ, g − γ) and find values of the parameters that make it
roughly match the gain-modulated response of figure 7.6B. Using
w(ξ, γ) = exp(−(ξ + γ)2/2σ2

w), evaluate the integral in equation 7.15
in terms of a single cumulative normal function to show that the
resulting tuning curves are functions of s + g, and assess how the
tuning width depends on σs, σg and σw.
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Exercises

Chapter 8

1. Simulate the course of Hebbian learning for the case of figure 8.3.
Find the ranges of initial weight values, (w1,w2), that lead to sat-
uration at (1, 1). Can you predict the result analytically? If the
off-diagonal term in the correlation matrix is -2 instead of -0.4 and
there are no saturation boundaries, what happens to the sum of the
weights? Could this be used as a way of normalizing the weights?

2. Show that the averaged form of the single-trial Oja rule in equa-
tion 8.16 is given by

τw
dw
dt
= Q ·w − α(w ·Q ·w)w .

Prove that if it converges, the averaged learning rule produces a set
of weights proportional to an eigenvector of the correlation matrix
Q, normalized so that |w|2=1/α.

3. Simulate the ocular dominance model of figure 8.7 using a subtrac-
tively normalized version of equation 8.31 (i.e. equation 8.14) with
saturation limits at 0 and 1, and cortical interactions generated as in
figure 8.8 from

Kaa′ = exp
(
−

(a − a′)2

2σ2

)
−

1
9

exp
(
−

(a − a′)2

18σ2

)
,

where σ = 0.066 mm. Use 512 cortical cells with locations a spread
evenly over a nominal 10 mm of cortex, and periodic boundary con-
ditions (this means that you can use Fourier transforms to calculate
the effect of the cortical interactions). Also use the discrete form of
equation 8.31

W→W + ϵK ·W ·Q

with a learning rate of ϵ = 0.01. Plot w− as it evolves from near 000
to the final form of ocular dominance. Calculate the magnitude of
the discrete Fourier transform of w−. Repeat this around 100 times,
work out the average of the magnitudes of the Fourier transforms,
and compare this to the Fourier transform of K.

4. Construct two-dimensional input data sets similar to those shown
in figure 8.4 and use them to train a two-input, one output linear
network using correlation- and covariance-based Hebbian learning
rules with multiplicative normalization. Compare the final outcome
for the weights with the principal components of the data when the
mean of the input distribution is zero and when it is nonzero.

5. Repeat exercise 4 for a data set with zero mean, but with subtractive
normalization and saturation. Start with initial values for the weights
that are chosen randomly over the full range from 0 to their saturation
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limit. When does this algorithm produce a weight vector aligned
with the principal component axis of the input data set, and when
does it fail to do so. Why does the weight vector sometimes fail to
align with the principal component axis?

6. Consider minimizing the function E(w) = (w− 2)2 using the gradient
descent rule for w,

w→ w − ϵ
dE
dw
.

Plot E(w) together with the trajectories of w starting from w = 5 for
ϵ = 0.01, 0.1, 1, 2, 3. Why does learning diverge as ϵ gets large?

7. Consider E(w) ∝
〈
(h(s) −w · f(s))2

〉
, as in equation 8.52, in the case

that matrix ⟨f(s)f(s)⟩ is invertible. An extended delta rule can be
written as

w→ w + ⟨(h(s) −w · f(s))H · f(s)⟩ ,

where H is a matrix that generalizes the learning rate ϵ of the standard
delta rule. For what matrix H does this rule go from any initial value
w to the optimal weights in one single step. This amounts to a form
of the Newton-Raphson method.

8. Train the feedforward network of figure 8.13 to produce the output
v = cos(0.6s) when the input tuning curves are given as in the caption
to figure 8.14. Train the network by using the stochastic delta learning
rule (equation 8.61) with s values chosen randomly in the range
between -10 and 10.

9. Construct a perceptron (equation 8.46) that classifies 10 binary inputs
according to whether their sum

∑
ua is positive or negative. Use a

random set of binary inputs during training and compare the perfor-
mance (both the learning rate and the final accuracy) of the Hebbian
(equation 8.47), delta, and perceptron learning rules. Repeat this
training protocol, but this time attempt to make the output of the
perceptron classify according to the parity of the inputs, which is the
sign of their product

∏
ua. Why is this example so much harder than

the first case?
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Exercises

Chapter 9

1. Implement acquisition and extinction as in figure 9.1 using the
Rescorla-Wagner (delta) rule (equation 9.2).

2. Add a second stimulus and demonstrate that the delta rule can de-
scribe blocking, but that it fails to exhibit secondary conditioning.

3. Consider the case of partial reinforcement (studied in figure 9.1) in
which reward r = 1 is provided randomly with probability p on any
given trial. Assume that there is a single stimulus with u = 1, so that
ϵδu, with δ = r − v = r − wu, is equal to ϵ(r − w). By considering
the expected value ⟨w + ϵ(r − w)⟩ and the expected square value
⟨(w + ϵ(r − w))2

⟩ of the new weights, calculate the self-consistent
equilibrium values of the mean and variance of the weight w. What
happens to your expression for the variance if ϵ = 2 or ϵ > 2? To
what features of the learning rule do these effects correspond?

4. The original application of temporal difference learning to condition-
ing (Sutton & Barto, 1990) considered the use of stimulus traces (as a
preliminary to the linear filter of equation 9.5). That is, the prediction
of sum future reward at time t is v(t) = w · u(t) where ui(t), with pre-
diction weight is wi, marks the presence (when ui(t) = 1) or absence
(when ui(t) = 0) of stimulus i at time t. Also, the temporal difference
learning rule of equation 9.10 is replaced by

wi → wi + ϵδ(t)ūi(t) ,

where
ūi(t) = λūi(t − 1) + (1 − λ)ui(t)

is the stimulus trace for stimulus i, and δ(t) is as in equation 9.10. Here
λ is the trace parameter which governs the length of the memory of
the past occurrence of stimuli (see equation 9.30). Construct a trace
learning model for a case similar to that of figure 9.2, but taking
r(t) to be the hat-function r(t) = 1/5, 200 ≤ t ≤ 210 and r(t) = 0
otherwise. Note that to match figure 9.2, you must use ∆t = 5 for
each time step rather than ∆t = 1. Show the signals as in figure 9.2B
for λ = 0.5, 0.9, 0.99, using ϵ = 0.2. Could this model account for the
data on the activity of the dopamine cells? Would it show secondary
conditioning?

5. Use the prediction model of equation 9.5 and the standard temporal
difference learning rule of equation 9.10 to reproduce figure 9.2. Take
r(t) to be the hat-function r(t) = 1/5, 200 ≤ t ≤ 210 and r(t) = 0
otherwise. In this figure, the increments of time are in steps of∆t = 5,
and ϵ = 0.4. Consider what happens if the time between the stimulus
and the reward is stochastic, drawn from a uniform distribution
between 50 and 150. Show the average prediction error signal δ(t)
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time-locked to the stimulus and the reward. How does this differ
from those in figure 9.2.

6. Implement a stochastic three-armed bandit using the indirect actor
and the action choice softmax rule 9.12. Let arm a produce a reward
of pa, with p1 = 1/4, p2 = 1/2, p3 = 3/4, and use a learning rate of
ϵ = 0.01, 0.1, 0.5 and β = 1, 10, 100. Consider what happens if after
every 250 trials, the arms swap their reward probabilities at random.
Averaging over a long run, explore to see which values of ϵ and β
lead to the greatest cumulative reward. Can you account for this
behavior?

7. Repeat exercise 6 using the direct actor (with learning rule 9.22).
For r̄, use a low-pass filtered version of the actual reward, which is
obtained by using the update rule

r̄→ λr̄ + (1 − λ)r

with λ = 0.95. Study the effect of the different values of ϵ and β in
controlling the average rate of rewards when the arms swap their
reward probabilities at random every 250 trials.

8. Implement actor critic learning (equations 9.24 and 9.25) in the maze
of figure 9.7, with learning rate ϵ = 0.5 for both actor and critic, and
β = 1 for the critic. Starting from zero weights for both the actor and
critic, plot learning curves as in figures 9.8 and 9.9. Start instead from
a policy in which the agent is biased to go left at both B and C, with
initial probability 0.99. How does this affect learning at A?

9. Implement actor critic learning for the maze, as in exercise 8, ex-
cept using vectorial state representations as in equations 9.26, 9.27,
and 9.28. If u(A) = (1, 0, 0),u(B) = (0, 1, 0) and u(C) = (0, 0, 1), then
the result should be exactly as in exercise 8. What happens to the
speed of leaning if u(A) = (1, a, a) (while retaining u(B) = (0, 1, 0) and
u(C) = (0, 0, 1)) for a = +0.5 and a = −0.5, and why?
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Exercises

Chapter 10

1. Data file c10p1.mat contains 100 data points drawn from the same
two-dimensional distribution as those in figure 10.1. Fit a mixture
of two circular Gaussian distributions to these data using EM, as in
equation 10.4. Do not allow the variance of either of the Gaussians
to become smaller than a minimal value of 0.0001.

2. Explore what happens to the fit of the mixture of Gaussians model
from exercise 1 as the number of data points from each Gaussian
is reduced and the number of potential Gaussians is increased. If
you set the minimal variance given in exercise 1 to 0, a Gaussian
distribution can settle around a single sample point and then have
its variance shrink to 0. Why does this pathological behavior occur?

3. Modify your code from exercise 1 to calculate function F of equa-
tion 10.14 during each E and M step of EM. Check that F changes
monotonically. Explicitly calculate the true log likelihood of the data
from equation 10.7 at the end of each M phase. Is it equal to F ?

4. Modify the code in exercise 1 to fit a K-means model rather than a
mixture of Gaussians. Can you see any practical differences in the
solutions that arise?

5. Consider the factor analysis model of figure 10.3 (discussed in more
generality later in the chapter). Using the joint probability over v and
u given in equation 10.15, derive an expression for F , and thus the
learning rules of equation 10.5.

6. Using the EM version of factor analysis (see the appendix of chap-
ter 10), reproduce figure 10.4. matlab® file c10p6.m shows how to
generate data u1 for figure 10.4A and B, and u2 for C and D. First
perform factor analysis on these data and reproduce figures 10.4A
and C. Next, use the eig function to perform principal components
analysis on u1 and u2, and thereby produce the rest of the figures. For
some initial conditions, the cloud of points in the figures might slope
downwards instead of upwards. Why? Calculate the expression for
F derived in exercise 5 as factor analysis progresses and show that
it changes monotonically.

7. Apply a rotation matrix to the data set u2 from exercise 6 (an example
rotation matrix is given as rot inmatlab® file c10p6.m). Perform fac-
tor analysis and principal components analysis on the rotated data.
How do the results compare with those for the unrotated data (re-
member to rotate your results back, if necessary, so that appropriate
comparisons can be made)?

8. Construct a data set u from a set of independent, heavy-tailed,
“sources” v through the relation u = G · v. Both u and v should
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be four-dimensional vectors. Choose the components of v inde-
pendently and randomly from a double exponential distribution,
for which the probability of getting the value v is proportional to
exp(−|v|) (note that a one-sided exponentially distributed random
variable can be generated using either exprnd(·) or -log(rand(·))).
Choose a random matrix G and generate the corresponding u values
as u = G · v. Use 2000 randomly chosen v’s and their correspond-
ing u′s. Then, use independent components analysis, as in equa-
tion 10.40, to learn generative sources from the inputs u. How well
do the values of the extracted sources match those of the original
sources?

9. Compare the actual G you used to generate the data in problem 8
with the G that is recovered by independent components analysis.
Plot the six two-dimensional projections of the input data (u1 versus
u2; u1 versus u3; etc) together with the projections of the mixing axes
coming from G (it is good to use more data points for this, say 10000).
The mixing axes are lines parallel to vectors with components G1i,
G2i, G3i, and G4i, for i = 1, 2, 3, 4. What relationship exists between
these mixing axes and the envelope of the data points, and why? Plot
u generated in the same way when the components of v are chosen
independently from identical Gaussian distributions, together with
the mixing axes coming from G. What differences do you see?

10. Implement wake-sleep learning for the Helmholtz machine with bi-
nary units when the input data is derived from a square “retina” of
size ndim×ndim. The ndim columns of the input array are indepen-
dently turned “on” with probability pbar. Each unit in a column that
is “on” takes the value 1 with probability 1−pout and 0 with proba-
bility pout, and each unit in a column that is “off” takes the value 1
with probability pout and 0 with probability 1−pout. matlab® pro-
gram c10p10.m is an example. In what way does the activity of the
v units in the model capture the way that each input u was actually
generated? What happens if there are not enough hidden units to
represent each column separately?

11. Implement wake-sleep learning for the binary Helmholtz machine as
in problem 10, except now make a correlational structure between the
columns – so that for half the input patterns, only columns 1 . . .ndim/2
are eligible to be turned on (with probability pbar), and for the other
half, only the other columns ndim/2+ 1 . . .ndim are eligible. Program
c10p11.m shows one way to generate such inputs. Train a Helmholtz
machine with two representational layers (v and z), the top layer (z)
having just one unit, the middle layer (v) with ndim+1 units. Does
this build a generative model that captures the hierarchical way in
which each input pattern is generated?


