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Abstract

Substantial evidence suggests that phasic activities of midbrain dopaminergic neurons rep-
resent reward prediction errors. This interpretation has been challenged by recent experimen-
tal results, that show ramps in dopamine activity which are related to reward uncertainty. We
show that these ramps result from reward prediction errors alone, given differential scaling of
positive and negative errors, thus rendering uncertainty moot.

A seminal series of experiments by Wolfram Schultz and his colleagues1 has persuasively sug-
gested that the phasic activities of midbrain dopamine neurons represent a temporal difference
(TD) error (written δ(t)) in the predictions of future reward.2–5 This prediction error signal oc-
curs at the time of the delivery of unpredicted rewards, or stimuli predicting future rewards, and
can be used to guide prediction learning. TD offers a computationally compelling account of a
role for DA in appetitive classical and instrumental conditioning, and a precise and parsimonious
computational theory of the generation of DA £ring patterns.

Figure 1a shows data from a recent, fascinating, experiment by Fiorillo, Tobler & Schultz (FTS)6

that presents a crucial challenge to TD theory of DA. They studied the consequences of present-
ing stochastic rewards, and argued that DA activity explicitly represents uncertainty. In the task,
presentation of visual stimuli to macaques was associated with the delayed, probabilistic delivery
of rewards (drops of juice). Five different stimuli were associated with £ve different reward prob-
abilities (pr = 0, 0.25, 0.5, 0.75, 1). The traces in £gure 1a show the activity of DA cells averaged
over trials for each pr, in well-trained monkeys. The £ring patterns in £gure 1a can be separated
into three main components, one consistent with the TD account and two at apparent variance
with it. The £rst component is the sharp peak just after the time of the predictive stimulus. TD
predicts that this response should scale with the probability of reward, and FTS’ is the £rst report
that this happens.

The second component is the ramp in the responses towards the time of the reward, which is
largest for p=0.5. FTS suggested that the ramp represents the uncertainty of the delivery of reward,
instead of a prediction error. The ramp is problematic for the TD account of DA activity, because
there is no apparent reason for its occurrence (as there is no prediction error in the inter-stimulus
interval). Furthermore, since TD learning operates by arranging for DA activity at one time in
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a trial to be predicted away by cues available earlier in that trial, it is not clear how a seemingly
predictable ramp in activity could persist without being predicted by the same preceding stimuli
which predict away the average activity at the time of the reward.

The third component in £gure 1a is the activity just after the time of the delivery or non-delivery of
the reward. For the conventional TD rule, the prediction error at this time should be the difference
between the actual reward and the reward that is expected based on the stimulus presented. For
pr 6= {0, 1}, this should be positive for trials on which a reward is delivered, and negative for those
on which it is not (see £gure 1c). Crucially, under TD, the average of these differences, weighted
by their probabilities of occurring, should be 0. The data clearly show positive activity on average.

This last component points to a TD account of the ramp. A key issue is that the low baseline rate
of activity of DA neurons constrains the coding of δ(t) such that positive and negative values are
represented respectively by £ring rates of ∼ 270% above baseline, but only ∼ 55% below baseline. 6

We modelled this by scaling negative values of δ(t) by a factor of d = 1/6 (see caption) prior to
summation of the simulated PSTHs. Down-scaling negative δ(t) will clearly make the average
£ring rate at the time of the reward positive, as in £gure 1a. However, £gures 1b and 1d show
that when using the simple tapped-delay-line representation of time between the stimulus and
the reward commonly adopted in TD models,4, 5 together with a £xed learning rate, a ramp in the
activity emerges just as in the experimental data. Since the task involves inherently unpredictable
rewards, non-zero prediction errors δ(t) still occur at the time of reward delivery or non-delivery,
even after substantial training. The ramp is due to these prediction errors propagating backward
asymmetrically toward the predictive stimulus, as TD learning continues.7

Analytically deriving the average response at the time of the reward in trial T from the TD learning
rule, we get:

< δ[T ] >= pr − (1− (1− α)T−1)(p2

r + dpr(1− pr)) −−−−→
T→∞

pr(1− pr)(1− d) (1)

where d is the scaling factor for negative errors. This response is proportional to the variance of the
rewards, and so, in keeping with the data, is maximal at pr = 0.5. Though the ramps are indeed
related to uncertainty in FTS’ setting, this may not be true more generally, and, in any case, occurs
because of , rather than instead of , their coding of δ(t). There is, however, a key difference between
the uncertainty and TD accounts of the ramps. According to the former, ramps are within-trial
phenomena, coding uncertainty; by contrast, the latter suggests they arise only through averag-
ing across multiple trials. Under the TD account, the non-stationarity engendered by constant
learning from errors makes the PSTH traces potentially misleading, as averaging proceeds over
different trial histories.

FTS,6 as well as Morris, Arkadir, Nevet, Vaadia and Bergman (personal communication), also
tried trace conditioning with uncertain rewards, in which the stimulus is not present throughout
the delay and so cannot directly constrain the time of the reward. The positive response at the time
of reward was comparable to that in delay conditioning; however the ramping activity was found
to be reduced or absent, although a similar uncertainty in rewards exists. The TD model of DA
readily explains these data by noting that the breadth of the ramp is determined by the learning
rate α (£gure 1e). Trace conditioning is notoriously slow, suggesting a low learning rate, and thus
a lower ramp.
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Figure 1: (a) DA response in trials with different reward probabilities, reproduced from Fiorillo
et al.6 Population peri-stimulus time histograms (PSTHs) show the summed spiking activity of
several DA neurons over many trials, for each pr (pooling over rewarded and unrewarded cases).
Activities are shown time-locked to the stimulus and reward. The predictive stimulus was present
throughout the 2-second delay until the delivery (or non-delivery) of reward. (b) TD prediction
error with asymmetric scaling. In the simulated task, one of £ve stimuli was randomly chosen
and displayed at time t= 5. A reward was then given at t= 25 with a probability of pr speci£ed
by the stimulus, and the trial ended at t = 30. A different set of neurons was used to represent
each stimulus across time, using a tapped-delay-line representation. The TD error was δ(t) =
r(t) + w(t− 1) · x(t)−w(t− 1) · x(t− 1), where r(t) is the reward at time t, and x(t) and w(t) are
the state and weight vectors for the neurons at this time. The neuron’s weights were learned via
the standard online TD learning rule with a £xed learning rate w(t) = w(t − 1) + αδ(t)x(t − 1),
so each weight represented an expected future reward value. With FTS, we depict the prediction
error δ(t) over many trials, after the task has been learned. To account for asymmetric £ring rates
about the base rate, negative values of δ(t) have been scaled by 1/6 prior to summation of the
simulated PSTH, though learning proceeds normally. Finally, to account for the small positive
responses at the time of the stimulus for pr =0 and at the time of the (predicted) reward for pr =1
seen in (a), we assumed throughout the simulation a small (8%) chance that a predictive stimulus
is misidenti£ed as a randomly chosen alternative stimulus. (c) DA response in pr = 0.5 trials,
separated into rewarded (left) and unrewarded (right) trials. (d) TD Model of (c). (e) Ramping is
ordered by learning rate.
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In sum, we have shown that the ramping effect is a straightforward result of TD learning of uncer-
tain rewards, given a neural substrate with an asymmetric representation of positive and negative
prediction errors. TD also accounts well for the other aspects of the activity evident in FTS’ data.
Most importantly, our analysis suggests that uncertainty is playing no explicit part in determining
DA activity. Of course, we are not claiming that the ramp cannot have downstream in¤uences,
let alone that animals do not learn about and represent uncertainty. Indeed, there is substantial
evidence for the sophisticated processing of different aspects of uncertainty by other neuromodu-
lators.8
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