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Neural processing faces three rather different, and perniciously tied, communication problems. First, compu-
tation is radically distributed, yet point-to-point interconnections are limited. Second, the bulk of these
connections are semantically uniform, lacking differentiation at their targets that could tag particular sorts
of information. Third, the brain’s structure is relatively fixed, and yet different sorts of input, forms of process-
ing, and rules for determining the output are appropriate under different, and possibly rapidly changing,
conditions. Neuromodulators address these problems by their multifarious and broad distribution, by enjoy-
ing specialized receptor types in partially specific anatomical arrangements, and by their ability to mold the
activity and sensitivity of neurons and the strength and plasticity of their synapses. Here, I offer a computa-
tionally focused review of algorithmic and implementational motifs associated with neuromodulators, using
decision making in the face of uncertainty as a running example.
Introduction
Who talks to whom, what they are allowed to say, and how the

answers to these questions can change, are central to the design

and operation of distributed computing systems. Brains adopt

distributed computation to a prodigious degree and thus face

critical issues with each of them. The problem with ‘‘who talks

to whom’’ is that some sorts of information need to be broadcast

rather widely, since they can affect many aspects of ongoing

computations. However, the number of synapses made is

severely limited compared with the number of possible targets.

Unlike networks such as the internet, there is of course no oppor-

tunity for packets of information to be routed indirectly.

The problem with ‘‘what they are allowed to say’’ is that the

preponderant forms of synaptic communication are severely

restricted. For instance, short of architectural specializations or

complex neural activity codes, postsynaptic cells cannot distin-

guish separate sorts of presynaptic activation or inhibition, even

though different sorts of information need to have radically

different effects. Equivalently, different inputs lack intrinsic tags

to their sources. This is particularly important for signals that

are broadcast in order to address the problems of distribution.

Of course, there are many architectural specializations but this

does not preclude other, more direct, solutions.

The issue raised by the question of ‘‘how the answers. can

change,’’ is that anatomy is relatively stable, and yet different

conditions can require dynamics or information integration that

may need to change in characteristic ways to short order. For

instance, the collective behavior of neurons comprising central

pattern generators involved in creating rhythmic motion needs

to alter in the light of different environmental challenges; equally,

the strengths of different sources of data bearing on a sensory

processing problem should optimally adjust with the relative reli-

abilities of those data. How can structurally fixed networks be

endowed with the substantial degree of context dependence

that seems to be required?
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The organization and effects of neuromodulators, at least

under a suitably catholic construal (including monoamines, ace-

tylcholine, peptides, steroids, hormones, gases such as nitric

oxide, and even conventional neurotransmitters such as gluta-

mate in some of their modes of operation), appear to offer solu-

tions to all these concerns.

Neuromodulators can be broadly distributed via the blood-

stream, via volume transmission and diffusion from widespread

release sites such as synaptic varicosities (Agnati et al., 2006),

and via massive axonal arborizations having huge numbers of

release sites. There are also more selective indirect pathways.

Furthermore, neuromodulators luxuriate in a lush variety of

targets. For the issues here, key to their effects are membrane-

bound receptors. Such receptors can be highly specific for

different neuromodulators, providing the ‘‘tagging’’ discussed

above. As we will see, architectural and neuromodulatory spe-

cializations are frequently integrated. These observations jointly

address the questions of ‘‘who talks to whom’’ and ‘‘what they

are allowed to say.’’

Second, in terms of their effects, neuromodulators canmanip-

ulate neural processing over short and long timescales in many

ways. The medium of modulation includes directly hyperpolariz-

ing or depolarizing neurons, changing their responsivity to input,

altering the strengths of synapses, and shaping the plasticity of

those synapses. When integrated across a network of neurons,

this can lead to dramatically different dynamics and input-output

behavior. The influences can also interact—for instance, in Heb-

bian forms of long term potentiation and depression, plasticity is

partly determined by activity and can be affected by neuromodu-

lators both directly and indirectly through their effects on that

activity. Neuromodulatory effects are remarkably strong—as evi-

denced by the actions of drugs on the global dynamics and

processing of the brain. These are all ways bywhich neuromodu-

lators realize context dependence and so address the issues of

‘‘how answers... can change.’’
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Table 1. Twenty-Five Lessons from Computational

Neuromodulation, in Two Broad Categories

Organization

# Content

A Neuromodulatory systems can report selective information.

B This report can be over a very quick timescale.

C This report can also be over multiple timescales, particularly

tonic and phasic.

D Via different affinities and time courses, different receptor types

can respond selectively to separate characteristics of the signal.

E Different receptor types can be localized on anatomically

different pathways.

G Autoreceptors play an important regulatory role.

H Interactions among different neuromodulators are very

widespread.

I Of these interactions, opponency is especially prevalent.

J Opponency is rarely simple or symmetric; but rather competition

and cooperation aremixed and effects are frequently asymmetric.

K There is a complex tapestry of structural heterogeneity

within each system.

P There are structured loops involving sensory and frontal

cortical areas and neuromodulatory nuclei.

Q There are limits to the structural and functional specificity

of the neuromodulators.

R Partially independent of the spiking of neuromodulatory neurons,

there is local, presumably glutamatergic, control over release.

X Neuromodulatory neurons can corelease other

neurotransmitters, notably glutamate.

Y Neuromodulators are vasoactive, affecting the interpretation

of results from fMRI.

Effects

# Content

F Neuromodulatory signals can be multiplexed—the same

information turned to different uses.

L Neuromodulators play a key role in regulating internally-

directed computations such as gated working memory.

M Neuromodulators can influence the course of activity by

regulating which of a number of gross pathways determine

the activity of neurons.

N Neuromodulators regulate the nature and structure

of oscillations.

O Neuromodulators affect plasticity over many time scales.

S Neuromodulators are involved in the regulation of energy

utilization in the brain and body.

T Many neuromodulators exhibit an inverted U-shaped (or Yerkes-

Dodson) curve relating concentration or release to effect.

U It takes significant time for changes in neuromodulatory activity

to be reported to target sites, potentially limiting their effects.

V Failures of neuromodulatory systems are tied to debilitating

neurological and psychiatric diseases; they are also major

therapeutic targets.

W Individual differences in neuromodulatory receptors or

transporters have observable effects on decision-making

behavior.
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Neuromodulation is a vast field to which it is impossible to do

full justice in a short paper, and there are many excellent reviews

of numerous of its facets. In order to scrutinize how neuromodu-

lators solve the communication problems posed at the outset,

a single class of computations associated with decision making

in the face of uncertainty will be the focus. Neuromodulators are

deeply and revealingly involved in decision making, albeit with

many contentious issues remaining. I use decision making as

a backdrop to highlight twenty-five general lessons from compu-

tational neuromodulation, as promised in the title (see Table 1).

Two main conceptual components of decision making are

utility and uncertainty. Subjects should make choices by en-

gaging in a form of planning to assess the expected long-run

utility of possible actions based on a characterization of the

current circumstance and then choose accordingly (note the

term ‘‘circumstance’’ is used to refer to the detailed aspects of

the current and past sensory environment that suffice to deter-

mine as best as possible the future effects of the subject’s

current choice). However, uncertainty permeates both the deter-

mination of the current circumstance, for instance because of

sensory noise, and the evaluation of the utility of actions, for

instance because of ignorance stemming from incomplete

learning. As we will see, multiple, partially independent, systems

are involved in the overall processes of choice and are thus tied

up with utility and uncertainty, and all the systems are influenced

by neuromodulators.

Our restriction to decision making leads to a concentration on

the four major ascending neuromodulators: acetylcholine (ACh),

dopamine (DA), norepinephrine (NE), and serotonin (5-HT). Even

just for these four, there is not the space to discuss many of their

operations or to provide the mathematical details of the models

that underlie the analysis (as described in detail in the cited

papers). The focus will be on data from rodents and primates,

although there is substantial commonality of neuromodulator

effects (if not always their identities) in invertebrates (Katz,

2011). This analysis is influenced by Doya (2002) and the contri-

butions in Doya et al. (2002). It is important to note that almost

none of the computationally richer cases discussed is yet univer-

sally accepted.

Utility
Utility or affective value is a central piece of information that influ-

ences behavior. In terms of reinforcement learning (RL; Sutton

and Barto, 1998), predictions about future values are made

based on the current circumstance to determine choice and

action; and, at least when disconfirmed, command learning.

Utility should be influenced by aspects of a subject’s motiva-

tional state—the prospect of food is more valuable to a hungry

than a thirsty animal. When choices can (perhaps also) avoid

punishments, it is net utility that counts—it may not be worth

stopping to collect either outcome in the face of mortal threat.

Utility also plays roles other than determining the suitability of

discrete choices. For instance, one can argue (Niv et al., 2007)

that the average rate of (positive) utility quantifies the effective

cost of the passage of time, in that the larger the expected

rate, themore costly it is to deny oneself that much utility through

failing to act for a given length of time. This can energize behavior

(Guitart-Masip et al., 2011).
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Utility is of fundamental importance to a wide swath of infor-

mation processing and raises all three communication problems

discussed above: very many areas of the brain need to know

about the utility of outcomes and predicted outcomes; the utili-

ties are affected by a variety of different factors for which segre-

gated informational channels would be ideal; and utilities can

have immediate effects on structurally fixed networks. We will

see that the involvement of neuromodulation in computations

to do with utility illuminates all these issues and also highlights

a number of other general properties.

One important complexity about utility is the parallel involve-

ment of two different instrumental systems and also Pavlovian

influences. These systems are subject to neuromodulation in

partially different ways, and so are discussed individually below.

The goal-directed, ormodel-based, instrumental system (Dickin-

son and Balleine, 2002), which involves frontal regions and the

dorsomedial striatum (Balleine, 2005; Valentin et al., 2007), is

believed to construct a model of the task and to use that model

prospectively to predict outcomes consequent on choices (Tol-

man, 1948). One central mark of goal-directed control is its

sensitivity to motivational state—predicted outcomes are evalu-

ated under current (or possibly predicted; Raby et al., 2007)

motivational states. The second instrumental control system is

habitual, or model free (Dickinson and Balleine, 2002), and is

more closely associated with a different set of regions that in-

cludes the dorsolateral striatum (Balleine, 2005; Tricomi et al.,

2009). This learns what to do from direct experience of past

actions and reward and so plans retrospectively (Thorndike,

1911). That planning is retrospective implies that it is the motiva-

tional state that pertained during learning that is important, and

so model-free actions may be inappropriate for the current moti-

vational state.

Finally, for instrumental systems, choices are ultimately con-

tingent on the delivery of suitable outcomes. Conversely, under

Pavlovian control, elicitation of preparatory and consummatory

actions associated with predictions of, or the actual presence

of, biologically significant reinforcers, appears to be automatic.

Evidence for this is that the actions are still elicited even if they

have deleterious consequences in terms of actually getting or

preventing good or bad outcomes (Williams and Williams,

1969; Hershberger, 1986; Dayan et al., 2006). One interpretation

is that Pavlovian actions are the result of evolutionary preprog-

ramming, providing heuristic choices that are typically, though

not always, appropriate. The predictions underlying Pavlovian

control may be made in model-based or model-free ways.

Appetitive and aversive utilities act in rather distinct ways,

a fact that is better understood for model-free control. Thus,

reward and punishment are considered separately in the latter.

Reward in Model-Free Instrumental and Pavlovian
Control
Dopamine is a key ascending neuromodulator. There is ample

evidence that the phasic activity of DA neurons and the phasic

release of DA in macaques (Bayer and Glimcher, 2005; Schultz

et al., 1997; Morris et al., 2006; Satoh et al., 2003; Nakahara

et al., 2004), rodents (Hyland et al., 2002; Roesch et al., 2007;

Garris et al., 1999; Gan et al., 2010), and even humans (Zaghloul

et al., 2009; Kishida et al., 2011) report a particular form of
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so-called temporal difference prediction error (Sutton, 1988)

for long run future reward (Montague et al., 1996; Schultz

et al., 1997; Barto, 1995). Note that ‘‘reward’’ here is defined

as the sort of appetitive reinforcement that is objectively realized

in terms of causing actions leading to it to be repeated (Thorn-

dike, 1911) (i.e., ‘‘wanting,’’ as distinct from ‘‘liking’’ [Berridge,

2004], which is more opioid than dopaminergically sensitive [Pe-

ciña et al., 2006]). The prediction error arises whenever there is

an unexpected change in future reward, both positively (when

either a reward arrives that was not expected or a stimulus

arrives that was itself not expected but that predicts a future

reward) and negatively (e.g., when an expected reward is with-

held). The predictions are based on all aspects of the circum-

stances of the subject at the time they are made, but pertain to

sequences of future reward. Usually, distal rewards are dis-

counted, or downweighted in importance, compared with prox-

imal ones.

At least three roles have been postulated for this dopaminergi-

cally encoded prediction error. First, it should inspire learning to

make accurate predictions based on the current circumstance

and, depending on the precise interpretation, learning to choose

actions in that circumstance that lead to greater reward (Sutton

and Barto, 1998) or to avoid actions that lead to smaller reward.

Many regions of the brain are involved inmaking predictions; and

indeed DA can influence synaptic plasticity in various ways (see

Tritsch and Sabatini, 2012, this issue of Neuron).

The striatum is a particularly important target for dopaminergic

neuromodulation. One major anatomical feature of this structure

is the existence of separated direct and indirect pathways,

defined by their output targets. Neurons in the direct or ‘‘go’’

pathway are influenced largely by D1 dopamine receptors and

are involved in the initiation and inspiration of action. D1 recep-

tors have been suggested as being sensitive to phasic increases

in the concentration of dopamine consequence on bursts and

so boosting the future propensity to perform actions found to

have surprisingly good outcomes (Frank, 2005; Frank et al.,

2004; Frank and O’Reilly, 2006; Cohen and Frank, 2009; Kravitz

et al., 2012).

Conversely, neurons in the indirect or ‘‘no-go’’ pathway are

subject to D2 dopamine receptors and influence the inhibition

of action (Gerfen et al., 1990; Smith et al., 1998). Dopamine nor-

mally suppresses the indirect pathway via D2 receptors; D2

receptors are more sensitive to dopamine than D1 receptors

and so are more greatly affected by dips below baseline caused

when reward are worse than expected. Activity-controlled plas-

ticity would thus lead to a more intense or likely rejection of the

disadvantageous action (Frank, 2005; Frank et al., 2004; Frank

and O’Reilly, 2006; Cohen and Frank, 2009; Kravitz et al., 2012).

Temporal difference learning has the effect of transferring

phasic activity from the time of occurrence of an unexpected

reward to the time of occurrence of the earliest reliable predictor

of that reward, without changing its magnitude. Thus, the long

run average rate of the prediction error (which would be reflected

in more tonic concentrations of dopamine) is just the long run

average reward rate, which we argued above acts as an oppor-

tunity cost for the passage of time and determines measures of

the vigor of responding (Niv et al., 2007). A role for dopamine in

vigor is consistent with the effect of dopaminergic lesions on
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effort costs (Salamone et al., 2009), the willingness of patients

with Parkinson’s disease (characterized by the loss of dopamine

cells) to engage in effortful actions (Mazzoni et al., 2007), and

even theway that dopamine levels in various parts of the striatum

track changes in vigor induced by satiety (Ostlund et al., 2011). It

is known, though, that the phasic and tonic activity of dopamine

cells are at least partly separable (Grace, 1991; Goto and Grace,

2005), suggesting greater complexities in the relationship.

The third role for the phasic dopaminergic prediction error

signal that arises when a predictor of future reward is presented

is to liberate (or perhaps invigorate) Pavlovian responses associ-

ated with the prospect of reward (Panksepp, 1998; Ikemoto and

Panksepp, 1999). Such predictors lead to Pavlovian boosting of

instrumental responses (Satoh et al., 2003; Estes, 1943; Dickin-

son and Balleine, 2002; Nakamura and Hikosaka, 2006; Talmi

et al., 2008), a process believed to involve the action of dopa-

mine in the nucleus accumbens (Murschall and Hauber, 2006),

potentially via D1 receptors (Frank, 2005; Surmeier et al., 2007,

2010). The phasic dopamine signal consequent on predictive

cues provides a formal underpinning for the theory of incentive

salience (McClure et al., 2003; Berridge and Robinson, 1998),

which is concerned with motivational influences over the atten-

tion garnered by such stimuli.

A first group of the twenty-five general lessons about neuro-

modulation emerges from this focus on dopamine (Table 1, A–

Y). Perhaps the most important are that (A) neuromodulatory

neurons can report very selective information (i.e., reward pre-

diction errors for dopamine) on a (B) very quick timescale. To

put it another way, there is no reason why anatomical breadth

should automatically be coupled with either semantic or tem-

poral breadth. Nevertheless (C), neuromodulators can also

signal over more than one timescale, with at least partially sepa-

rable tonic and phasic activity, and different receptor types may

be sensitive to the different timescales; additionally (D) by having

different affinities (as do D1 and D2 receptors), different types

can respond selectively to separate characteristics of the signal

(Frank, 2005). Along with their different properties (E), different

receptor types can be localized on different pathways, and these

pathways are also potentially subject to modulation from a

variety of other systems, such as the local, tonically active inter-

neurons in the striatum that release ACh (Aosaki et al., 1994; Ao-

saki et al., 1995; Kaneko et al., 2000; Higley et al., 2009).

In addition (F), observe the multiplexing inherent in having a

neuromodulator report a signal (here a reward prediction error)

that has a variety of important, but distinct, functions, we will

see some further putative functions of this phasic dopamine

signal below. This can make interpretation very complicated—

particularly for experiments which manipulate dopamine or its

receptors systemically.

It is also known (G) that a key role is played by autoreceptors

that are typically inhibitory to the release of the neuromodulator

concerned, e.g., dopamine receptors on dopamine neurons

and their terminals. An obvious role for these is feedback con-

trol. However, this can pose a problem for interpretation—the

semantics of vigorous activity of dopamine in terms of a predic-

tion error would become contingent on the nature of the current

set point; it is also a confound for pharmacological investigation

and treatment. Autoinhibition is a way for tonic signaling to set
a baseline for phasic signaling, an issue whose computational

implications have been explored a little both for reward (Daw

et al., 2002; Boureau and Dayan, 2011) and, as we discuss later,

uncertainty (Aston-Jones and Cohen, 2005). There are other

forms of short term plasticity in the release of dopamine in

response to bursts, including facilitation as well as inhibition

(Montague et al., 2004).

The dopaminergic prediction error is generally considered to

be part of habitual and model-free Pavlovian systems, involved

in retrospective control. Onemight think that dopamine signaling

would therefore be insensitive to motivational state. However,

there are various ways in which sensitivity can be imported. First,

if the information about state forms part of the representation

of the stimulus, so state can be treated also as circumstance,

then regular learning that maps circumstances to predictions

will endow dopamine activity with state dependence. Second,

dopamine neurons themselves have receptors for neuromodula-

tors such as orexins (or hypocretins) (Siegel, 2004; Aston-Jones

et al., 2010). This would allow their activity to be directly sensitive

to motivational state. Indeed (H), interneuromodulatory interac-

tions, such as the influence of one set of neuromodulators on

others are very widespread (Briand et al., 2007). Third, structures

that drive dopamine activity might themselves be directly sensi-

tive to motivational state—for instance, it has been suggested

that the amygdala’s sensitivity to the neuromodulator oxytocin

will change its responding in the face of social threats or oppor-

tunities (De Dreu, 2012), and this could affect dopamine re-

sponding.

Punishment in Model-free Instrumental and Pavlovian
Control
Avoiding or minimizing punishment and threats is also of critical

importance, and the same considerations as for appetitive

outcomes might lead one to expect neuromodulators to play

a central role in learning in aversive conditions. One important

complexity is that animals have a very extensive repertoire of

species-specific defensive consummatory behaviors appro-

priate to the nature and imminence of frank threats, at least partly

realized in the sophisticated structure of areas such as the peri-

acqueductal gray (Bolles, 1970; McNaughton and Corr, 2004;

Keay and Bandler, 2001). This makes it hard to understand the

interplay between such inbuilt responses, Pavlovian preparatory

responses such as behavioral inhibition that are tied via predic-

tion (whose neuromodulatory basis is debated; McNally et al.,

2011) to initially neutral stimuli, and fully-fledged instrumental

responses in the light of aversion.

One long-standing and critical division is between passive and

active avoidance (Konorski, 1967). Although exact definitions

differ, passive avoidance involves not doing actions that lead

to punishment, whereas active avoidance requires emitting

specific responses to avoid deleterious outcomes. The absti-

nence in passive avoidance can be specific to particular, prob-

lematical, choices, or it can be general, as in behavioral inhibition

or certain forms of freezing. Conversely active avoidance in-

volves the emission of specific responses to obviate potential

punishment. A key idea here is so-called two-factor learning

(Mowrer, 1947) and safety signaling. This involves learning that

circumstances which could be associated with punishment
Neuron 76, October 4, 2012 ª2012 Elsevier Inc. 243
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have low values, and that the change in circumstance associated

with removing the threat is appetitive. It can therefore reinforce

the action concerned, just as in the previous section.

To the extent that unexpected punishments are coded in the

inhibition of phasic dopamine responses below baseline (Ung-

less et al., 2004; Cohen et al., 2012), just like non-delivery of

expected reward (Schultz et al., 1997), the indirect pathway

through the striatum which is tonically inhibited by dopamine

via D2 receptors is well-placed to realize specific passive avoid-

ance (Frank et al., 2004). Indeed, selectively activating neurons in

just this pathway has recently been shown to lead to place and

action avoidance in spatial and operant paradigms (Kravitz

et al., 2012), exactly opposite to the effect of activating neurons

in the direct pathway.

However, suppression of phasic dopamine activity is not

the whole story for passive avoidance, since serotonergic neuro-

modulation has also been implicated in behavioral inhibition

(Gray and McNaughton, 2003; Crockett et al., 2009, 2012),

including in the face of punishment. Apparently more problem-

atic is the fact that dopamine neurons have been reported to

be phasically excited by punishments (Mirenowicz and Schultz,

1996; Bromberg-Martin et al., 2010), albeit with evidence of the

particular involvement of those neurons whose cell bodies lie

in just one part of the dopamine system, the so-called mesocort-

ical region of the ventral tegmental area (VTA) which projects

to (pre)frontal cortex (Brischoux et al., 2009; Lammel et al.,

2008, 2011). Consideration of safety signaling in active avoid-

ance suggests a rationale for this activation, as arising from the

temporal difference prediction error signal that we discussed in

the context of reward. This error signal is based on differences

in the predicted values of successive circumstances (Johnson

et al., 2001; Moutoussis et al., 2008; Maia, 2010). Thus, dopa-

mine would be phasically activated by the incompletely ex-

pected attainment of safety, or the prediction of the prospects

of this. This would enable it to control learning of the appropriate

avoidance response, for instance in the direct pathway of the

striatum.

One might expect such predictions about future safety to be

sensitive to the controllability of the punishment. Unfortunately,

dopamine release (as measured by microdialysis) provides

a somewhat mixed picture. It is known that the release of dopa-

mine to aversive outcomes does not always persist in the face of

uncontrollable (and thus unavoidable) contingencies (Cabib and

Puglisi-Allegra, 2012; Cabib and Puglisi-Allegra, 1994; Puglisi-

Allegra et al., 1991); although this may differ in different target

regions (Bland et al., 2003a, 2003b), in particular with reports

of inescapable, but not escapable, shock increasing dopamine

levels in mPFC, at least during the provision of the punishment

(Bland et al., 2003a). Further, whereas rats from a strain favoring

active coping strategies show an increase in dopamine in medial

prefrontal cortex (mPFC) in the face of stress, rats fromadifferent

strain that engages in more reactive or passive strategies, do not

(Giorgi et al., 2003). These finer grain details at least militate

against the suggestion based on the activation of dopamine

in both appetitive and aversive circumstances that it codes

primarily for salience (Redgrave et al., 1999; Horvitz, 2000),

although it has been suggested that this is true for some selected

groups of dopamine neurons (Lammel et al., 2011).
244 Neuron 76, October 4, 2012 ª2012 Elsevier Inc.
The next question becomes the mechanism for learning the

prediction about the possible future punishment that is ultimately

responsible for the safety signal. There is evidence that this does

not depend only on dopamine—for instance blocking D2 dopa-

mine receptors leaves learning about aversive contingencies

intact, only impairing the learning of the avoidance actions (Be-

ninger, 1983). One possibility is that one part of the system of

serotonergic neuromodulation plays the role of an opponent to

dopamine, being associated with aversive rather than appetitive

outcomes (Deakin, 1983). This claim is subject to a range of com-

plexities and contention (discussed at length in Cools et al.,

2011; Boureau and Dayan, 2011).

In the scheme of safety signaling, the idea would be that

predictions of future aversion (‘‘unwanting’’ rather than subjec-

tive ‘‘disliking’’; Berridge, 2004) associated with environmental

circumstances would arise through, and have temporal differ-

ence prediction errors represented by, the activity of selected

5-HT neurons (Schweimer and Ungless, 2010). Then, as circum-

stances change when actions stave off the prospect of punish-

ment, this would lead to an appetitive temporal difference

prediction error (reported by the phasic activity of dopamine

neurons) that would reinforce the avoidance action (Johnson

et al., 2001; Moutoussis et al., 2008; Maia, 2010). Similarly, the

tonic activity of dopamine neurons would include the average

achievement of safety along with the average delivery of reward,

and thus be able to inspire suitably vigorous avoidance actions

(Dayan, 2012b).

Equally, the behavioral inhibition mentioned above as the

Pavlovian response to predictions of punishment would be

mediated by serotonin, which has indeed been implicated in

this function (Gray and McNaughton, 2003; Crockett et al.,

2009, 2012). This would complement the role of dips below

baseline in the activity of dopamine neurons that we also

described previously. Serotonin plays a rich role in various forms

of inhibition, not only for punishments as mentioned above, but

also being involvedwhen animals have to wait for a period before

being allowed to act to get a reward (Fletcher, 1995; Miyazaki

et al., 2011, 2012). This suggests that the interactions among

multiple timescales that we noted above for the dopamine

systemwill be even richer for serotonin; but there is unfortunately

as yet rather little evidence. The serotonin system is notably

more diverse than the dopamine system, with a particularly large

set of receptors with different properties, and only one part may

be involved in aversion.

According to this opponency view, low levels of 5-HT are

associated with impulsivity because of serotonin’s association

with inhibiting behavior.We should note an alternative idea about

serotonin’s role that starts from impulsivity, suggesting that this

comes from a decrease in the importance of distant affective

outcomes compared with proximal ones, i.e., a change in

a discount rate (Doya, 2000). If 5-HT is responsible for setting

this rate, then impulsivity would indeed arise from low levels

of this neuromodulator, with subjects being tempted by small

immediate reward, ignoring large punishments (or delays) that

might subsequently ensue (Cardinal, 2006; Schweighofer et al.,

2008; Mobini et al., 2000). Although it is not a ubiquitous behav-

ioral finding, neural signals associated with discounted values

are indeed affected by 5-HT levels (Tanaka et al., 2007).
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These accounts remain rather speculative; however, they

again teach some general lessons about neuromodulation. First

(I), forms of opponency between different neuromodulators are

a common motif, both in the central nervous system and indeed

in the periphery. However (J), this opponency is rarely simple or

symmetric: for instance, although it appears as if the dominant

influence of 5-HT on behaviors associated with dopamine in

practice is inhibitory (Alex and Pehek, 2007; Hervé et al., 1979;

Fletcher et al., 1999; Grottick et al., 2000), there are many types

of serotonin receptor that have an excitatory net effect on dopa-

mine (Alex and Pehek, 2007; Boureau and Dayan, 2011). In fact,

an excitatory effect would actually be appropriate in some

circumstances if the account about safety signaling is correct,

as dopamine should respond to the prospect of future safety

engendered by the serotonergic report of possible aversion.

Distinctions such as this may provide a route for helping under-

stand part of themultiplicity of serotonin receptors (Cooper et al.,

2002; Hoyer et al., 2002). As mentioned, whether the safety is

achievable depends on the degree of controllability of the envi-

ronment (Maier and Watkins, 2005; Huys and Dayan, 2009);

how controllability is represented is not clear. In terms of the

asymmetry, dopamine appears not to exert nearly such strong

effects on 5-HT as vice-versa. Finally (K), a complex tapestry

of heterogeneity is revealed, particularly within the serotonin

system. We have also noted substructure in the dopamine sys-

tem such as themesocortical dopamine neurons that are excited

rather than inhibited by punishment (Brischoux et al., 2009; Lam-

mel et al., 2011).

Goal-Directed Control, WorkingMemory, and Prefrontal
Cortex
Neuromodulatory representations of utility appear to play a cen-

tral role in habitual control, not the least by controlling learning

directly. Since goal-directed control is based more on predic-

tions of specific outcomes, one might expect different neuromo-

dulatory issues to arise. Indeed, there is direct evidence that

dopamine plays little role in evaluation in the goal-directed

system (Dickinson et al., 2000). Nevertheless, it can still influence

the vigor of the execution of the responses which it mandates

(Palmiter, 2008).

We noted that goal-directed (Dickinson and Balleine, 2002;

Balleine, 2005) or model-based (Daw et al., 2005; Doya, 2002)

control exhibits fuller flexibility in the face of factors such as

changes in motivational state. This requires that the utility of pre-

dicted outcomes can be assessed under the current motiva-

tional state. In turn, this suggests a role for direct and/or indirect

neuromodulatory influences over neural structures such as

gustatory insular cortex or possibly the basolateral nucleus of

the amygdala involved in such evaluation (Balleine, 2005, 2011)

as providing information about that state. However, although

we may be able to predict the values of some outcomes under

expected future motivational states, there appear to be definite

limits to such predictions (Loewenstein and O’Donoghue,

2004), perhaps because of constraints on the subjunctive deter-

mination of neuromodulatory state. This would limit any such

prospective somatic marker (Damasio, 1994).

For goal-directed control to make predictions about the

current (or future) values of future outcomes, it would seem
that these predictions must be made in the moment, or ‘‘on-

line.’’ One obvious way to do this is to enumerate possible future

outcomes explicitly, and sum or average their motivational state-

sensitive utilities. There is some more or less direct evidence for

this (Fermin et al., 2010; Daw et al., 2011; Wunderlich et al.,

2012a; Huys et al., 2012). However, if one views enumeration

as depending on a set of internal actions that control mecha-

nisms such as working memory (Hazy et al., 2006), one might

expect them to be learned using, and influenced by, the

same neuromodulatory machinery as externally directed actions

(Dayan, 2012a). It has been suggested, for instance, that the

Pavlovian mechanisms that lead to approach or withdrawal to

external appetitive and aversive outcomes and predictors might

influence the way that enumeration works. States associated

with reward could be more likely to be enumerated than those

with punishments, under the influence of dopamine (Smith

et al., 2006) and serotonin (Dayan and Huys, 2008; Huys et al.,

2012). If the process of enumeration is influenced by value,

then its predictions will be biased, typically in an optimistic direc-

tion if possible aversive outcomes are suppressed but appetitive

ones boosted.

Much of the mechanics of enumeration is wrapped up with the

adaptive use of working memory. In fact, working memory is

a much more general concern, even for habitual control. This is

because the habit system takes a representation of the current

circumstance and either predicts its value or that of actions

that can be performed, or reports which action is preferred.

In many cases, there is insufficient information in the current

sensory input to determine these quantities, but if selected

aspects of past input can be stored, then it will collectively

suffice (Peshkin et al., 2001; Todd et al., 2009; Kaelbling et al.,

1998; Nakahara et al., 2004). Control over working memory

can have both instrumental and Pavlovian components. From

an instrumental perspective, the basal ganglia could acquire

policies that control the gating of information into working

memory using reinforcement learning (O’Reilly and Frank,

2006). From a Pavlovian perspective, rather as we argued for

enumeration, the phasic release of dopamine associated with

a stimulus that predicts future reward or future safety, could

directly influence the storage of this stimulus in working memory

(Cohen and Servan-Schreiber, 1993; Durstewitz et al., 2000;

O’Reilly et al., 2002), via dopamine’s known effects in prefrontal

cortex (Williams and Goldman-Rakic, 1995).

In total, there is an intricate set of dopaminergically influenced

interactions between prefrontal regions and the striatum (Cools,

2011). It turns out that both phasic and tonic dopamine are

important. For example of the latter, there is a battle for

supremacy of control between goal-directed and habitual

systems, and perhaps contrary to naive expectation, suppress-

ing dopamine increases the influence of habits (de Wit et al.,

2012), and boosting dopamine decreases their influence (Hitch-

cott et al., 2007; Wunderlich et al., 2012b); there are also power-

ful Pavlovian effects (Guitart-Masip et al., 2012). These might

arise via dopamine’s hegemony over prefrontal-striatal interac-

tions, possibly through the medium of parts of the dopamine

system that are separable from those involved in functions

such as signaling reward prediction errors. It is certainly a general

notion that (L) neuromodulators can play an important role in
Neuron 76, October 4, 2012 ª2012 Elsevier Inc. 245
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regulating internally directed computations (Robbins and Arns-

ten, 2009; Cools et al., 2011), and working memory has been

a particular focus for this.

Serotonin also influences the activity of prefrontal neurons in

rather complicated ways (Puig and Gulledge, 2011), potentially

enabling it to influence executive operations such as working

memory. The relationship between this and other possible func-

tions of 5-HT such as predictions about punishment, is not yet

clear. It is known that serotonin in the orbitofrontal cortex is

important for rapid adaption of behavior in paradigms in which

inhibition of (possibly learned) prepotent responses is required

(Roberts, 2011); and this can also be considered to be part of

the regulation of internally directed computation. We discuss

further aspects of this below.

Synthesis
Utility is a poster child for theway that neuromodulators solve the

communication problems raised in the introduction. It also shows

well the scopeand forceof neuromodulation,which is verydeeply

embedded in the very structure of decision making. It is perhaps

the intricacy of the interacting systems of modulation that is

most conspicuous, with many of the general lessons reflecting

combinations of architectural and receptor specificity, and also

the substantial interdependence among the various parts.

Uncertainty
The representation, updating and use of uncertainty, have

become major foci of computational treatments of neural infor-

mation processing (Dayan et al., 2000; Doya et al., 2007; Ma

and Pouget, 2008; Deneve, 2008, Körding, 2007; Fiser et al.,

2010), with Bayesian analyses dominating. At a coarse time

scale, organisms suffer from ignorance about their environ-

ments, both because of limited opportunities to observe it, and

because it changes in partly unpredictable ways. At a finer time-

scale, organisms have to take noisy and partial observations

from multiple sensory systems to estimate their circumstance

in the world. This in turn influences the evaluation (and thus the

execution) of actions, as we have just discussed. All of these fac-

ets lead to uncertainty, which in turn places severe constraints

on what computations are normatively appropriate.

Strict Bayesians admit no qualitative distinction between

different sorts of uncertainty. However, strict Bayesian computa-

tions are usually radically intractable, and heuristics and approx-

imations are necessary. Based on the evidence described

below, it turns out to be appropriate to make the approximation

of separating issues of uncertainty into learning, which takes

place over a coarse timescale, and inference, which takes place

over two successively finer timescales. We also distinguish

between expected and unexpected uncertainty (Yu and Dayan,

2005b), with the former, often called risk in economics and

neuroeconomics (Glimcher, 2010), quantifying what is known

not to be known within the current conception of the organism’s

circumstance, and the latter capturing what lies outside these

bounds—crudely, radical, unpredicted, changes indicating sub-

stantial failings in this current conception, and sharing some

features with economics’ notion of ambiguity.

The original communication issues that neuromodulators

address also apply to uncertainty. For instance, it is clear that
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if unexpected uncertainty leads to the need for a dramatic revi-

sion of current computations, then many neural systems will

need to know this fact. Equally, as we will see, expected uncer-

tainty should control plasticity, and there are reasons to seek

a tag which might label the sort of uncertainty involved. Finally,

uncertainty regulates the way that different sources of informa-

tion should be combined; this is a form of systemic adaptation

of structurally fixed connections. There is evidence that the neu-

romodulators acetylcholine and norepinephrine play confined,

but critical roles in both forms of uncertainty; with phasic and

tonic delivery potentially distinguishing between inference and

learning (Bouret and Sara, 2005; Dayan and Yu, 2006).

Uncertainty will first be considered in the context of learning,

and then of inference. Most of the computational models are

Bayesian, or at least approximately Bayesian, in character.

Learning
The only reason to learn is because of ignorance. In (Bayesian)

statistical terms, ignorance is quantified by uncertainty, which

is why uncertainty should control aspects of the nature and

course of learning. Autoassociative memory provides a first

example; then conditioning, which involves richer forms of ex-

pected uncertainty; and finally issues of unexpected uncertainty

induced by change are discussed.

One case of the link between ignorance and learning arises in

the context of auto-associative memory models of the hippo-

campus (Hasselmo, 2006; Hasselmo and Bower, 1993). Here,

the idea is that an input should be assessed to see how familiar

it is. If it is deemed novel, (i.e., the subject is suitably ignorant

of it), it should be stored; if the input is familiar, then recall

processes should remove noise from it and/or recall relevant

context or associated information. Thus, on top of the assess-

ment of familiarity, there are two implementational requirements

for an input deemed to be novel: preventing attempts at recall

from corrupting it and plasticizing appropriate synapses to store

it. Within the particular connection patterns of the hippocampus,

with anatomically and functionally segregated pathways from

the main input structure, the entorhinal cortex, there is evidence

that cholinergic neuromodulation can exert both these effects

(Hasselmo, 2006). The notion is that in area CA3, synapses form-

ing the recurrent connection from other area CA3 pyramidal

cells, and the perforant path input from the entorhinal cortex

have their effective strengths reduced, but are rendered more

labile. The ability (M) of neuromodulators to control the course

of activity by regulating which of a number of gross pathways

determines the activity of neurons is a common scheme. There

are also other potential neuromodulatory routes for this

influence: for instance, ACh helps regulate oscillations ([N], a

critical dynamical effect of neuromodulators in many circum-

stances) that simultaneously affect multiple sub-regions of the

hippocampal formation (Buzsáki, 2002). It has been suggested

that different pathways between these regions are dominant

at different phases of theta (Hasselmo et al., 2002), providing

a route for neuromodulatory effects. ACh is also capable of influ-

encing shorter-term storage in working memory (Klink and

Alonso, 1997; Hasselmo, 2006). The (O) effects of neuromodula-

tors on various timescales of plasticity are among their most

influential.
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Another obvious issue for memory is whether or not an input

actually merits long term storage. One way to assess this is to

consider its affective consequences, bearing in mind that they

may only be evident after some time has passed. Given the

evidence adduced above, it should come as no surprise to find

that dopamine is implicated in the later phases of hippocampal

storage (Lisman et al., 2011), although this is a rather different

function from the plasticity engendered by dopaminergically

coded prediction errors that we discussed above as underpin-

ning the learning of appetitive predictions. The extended time-

scale over which such assessments might be relevant could

result in findings such as that patterns that are only incidentally

correlated with the delivery of unexpected reward are also

preferentially stored (Wittmann et al., 2005). Boosted storage

can perhaps be seen as an instance of internal, cognitive,

‘‘approach’’ to a stimulus based on the reward it predicts (Ad-

cock et al., 2006), matching the internal action of storage in

working memory to the externally directed engagement actions

that we mentioned above.

An informationally more complex case for neuromodulatory

influences on plasticity comes in the context of animal condi-

tioning experiments (Gallistel and Gibbon, 2000; Pearce and

Hall, 1980), which have particularly centered on the model-free

Pavlovian case. Psychological notions, such as that the associ-

ability of a stimulus varies with the degree of surprise with which

it is endowed (Pearce and Hall, 1980), can be translated into

computational terms as the relative learning rate of a stimulus

being determined by its predictive uncertainty (Dayan et al.,

2000), and then into neural constructs such as the operation of

cholinergic neuromodulation influenced by regions in the amyg-

dala, hippocampus, anterior cingulate cortex and beyond (Nas-

sar et al., 2010; Behrens et al., 2007; Yu and Dayan, 2005b;

Holland and Gallagher, 1999). Critical for the computational

treatments is that learning depends on the product of the predic-

tion error (putatively mediated by a dopaminergic signal, as dis-

cussed in the previous section on habitual control) and the

learning rate (mediated by ACh)—so it is again an example of in-

terneuromodulatory interactions. How this works biophysically is

not completely clear. Similarly, model-based predictions and

plans are dependent on learning about the structure of the

environment in terms of transitions between circumstances

and outcome contingencies. These should also be regulated

by predictive uncertainty.

Unlike the unfamiliarity of a whole input, uncertainties about

the relationship between conditioned and unconditioned stimuli

or indeed between circumstances and outcomes, are not simple

scalar quantities. They are computationally complex constructs

that depend on rich aspects of present and past circumstances

and the way that these are expected to change over time (Dayan

et al., 2000; Behrens et al., 2007; Nassar et al., 2010). Learning

can be characterized in Bayesian terms using exact or approxi-

mate forms of a Kalman filter. In particular, subjects can be

differentially uncertain about different parts of the relationship,

and this poses a key algorithmic problem for the representation

and manipulation of uncertainty.

Although (P) there is structure in the loops connecting cholin-

ergic nuclei to sensory processing and prefrontal cortices (Za-

borszky, 2002), as indeed with other loops between prefrontal
regions and neuromodulatory nuclei (Aston-Jones and Cohen,

2005; Robbins and Arnsten, 2009), there is only rather little

work (Yu and Dayan, 2005a) as to how the relatively general

forms of uncertainty that could be represented even by a wired

neuromodulatory system might interact with the much more

specific uncertainty that could be captured in, say, a cortical

population code (Zemel et al., 1998; Ma et al., 2006). Certainly

(Q), limits to the structural and functional specificity of neuromo-

dulators must be acknowledged, given the relative paucity of

neurons concerned, although it is worth noting that ACh and

5-HT appear to be rather more heterogeneous than DA and

NE. There may be many distinct cholinergic systems, including

the one mentioned above involving tonically active neurons in

the striatum, which might set the stage for plasticity (Aosaki

et al., 1994, 1995). There is (R) evidence for local, presumably

glutamatergic, control of the release of neuromodulators in the

cortex, independent of the spiking activity of the neuromodula-

tory neurons themselves (Marrocco et al., 1987), which could

allow for more specificity in their local effects, but the computa-

tional implications of this in practice are not clear.

These cases of learning fit comfortably into a scheme of ex-

pected uncertainty (Yu and Dayan, 2005b), in that the unfamil-

iarity and associability are assessed within a given framework

or, to adopt a term from the cognitive control literature, task

set (Koechlin and Summerfield, 2007). As we mentioned, in

some cases, the whole framework itself may be found to be

inadequate, implying that a new one needs to be inferred (Collins

and Koechlin, 2012). Such dramatic changes to the environment

are considered to be forms of unexpected uncertainty, mea-

sured for instance by forms of model mismatch. They pose a crit-

ical requirement (and opportunity) for acquiring new information

(Yu and Dayan, 2005b), and thus for exploration (Aston-Jones

and Cohen, 2005). They may also be times of significant threat.

When a whole framework proves inadequate, a very wide set

of neural systems might need to be adjusted, and so a neuromo-

dulatory report of the inadequacy seems ideal. Indeed, there is

evidence that tonic activity or levels of norepinephrine do indeed

increase with unpredictable reversals in a simple reaction time

task (Aston-Jones et al., 1991), and that boosting NE can speed

the course of reversal learning (Devauges and Sara, 1990).

Reversals, which are a popular way of inducing change, are nor-

mally signaled when actions or choices that used to be rewarded

become unproductive or less productive; and actions that were

formerly punished or nugatory become worthwhile. Thus, given

their putative roles in providing information about, and inspiring

actions associated with, reward and punishment, one might

expect dopamine and serotonin to be involved directly in the

assessment and realization of reversals. Rapid change is nor-

mally a feature of a model-based or goal-directed system,

however, complexities associated with the competition between

Pavlovian and instrumental control could ensue—the tendency

of the original affective values of the stimuli to cause the cogni-

tive equivalents of approach and withdrawal, would make it

hard for these stimuli to be rejected and embraced as appro-

priate to their new values. Indeed, along with norepinephrine,

the projections of serotonin and dopamine to the striatum and

prefrontal regions have been implicated in forms of behavioral

flexibility such as reversal learning and set shifting (Homberg,
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2012; Robbins and Arnsten, 2009; Kehagia et al., 2010; Clark

et al., 2004; Cools, 2011), with depletion or destruction leading

to detriments in performance. However, there are interesting

subtleties in this involvement—for instance reversal learning for

reward in marmosets is impaired by either dopamine depletion

in the caudate region of the striatum, or serotonin depletion in

the orbitofrontal cortex, but not vice-versa (Clarke et al., 2011).

Ignorance about the framework provides an opportunity if

there are rewards that could be exploited given suitable learning.

However, it may also pose an escapable threat, if dangers that

can be avoided could lurk. In both cases, ignorance is associ-

ated with expected uncertainty and hints that one might expect

profound links between NE and ACh, as another example of in-

terneuromodulatory interaction and also partial opponency (Yu

and Dayan, 2005b). For the case of opportunities, exploration

is mandated by the (initially unexpected) potential gain, and

thismay be treated as a form of appetitive prediction error known

as an exploration bonus. One, presumably model-free, realiza-

tion of such a bonus is phasic dopaminergic activity (Kakade

and Dayan, 2002). Strictly speaking, the potential gain arises

as a result of the expected uncertainty that follows from the

unexpected change; how dopamine is coupled to ACh and/or

NE in expressing this is not yet clear. The mechanism by which

exploration bonuses arise in model-based calculations is also

unknown.

In terms of potential threats, norepinephrine has long been

linked with anxiety (Bremner et al., 1996a, 1996b). Environments

associated with excessive unexpected uncertainty are highly

stressful, since they lack stable relationships and pose substan-

tial potential problems for safe exploitation. NE helps organize

a massive response to stress, notably in conjunction with

cortisol, a steroid hormone that acts as another neuromodulator

(Wolf, 2008). This involves everything from changing energy

storage and usage, via glucocorticoids (Nieuwenhuizen and Rut-

ters, 2008) (involvement [S] with energy regulation is itself a more

general principle of neuromodulation; Ellison, 1979; Tops et al.,

2009; Montague, 2006), to changing the actual style of informa-

tion processing. For instance, goal-directed or model-based

calculations, which are typically slow, could be suppressed in

favor of habitual or model-free ones, which are typically faster,

though possibly less accurate, especially in the face of the quick

changes associated with unexpected uncertainty. It has been

suggested that suppression arises via functional inhibition

wrought by two particular classes of NE receptor in the prefrontal

cortex (a1 and bb) whose affinities make them sensitive to high

levels of NE; Arnsten, 2011). This combines two previous general

principles—selective affinities of different receptors, and neuro-

modulatory manipulation of gross pathways.

Inference
Information about the circumstance an agent occupies in its

environment has to be combined from multiple sources of noisy

and partial information and integrated over time as it progres-

sively arises. The same turns out to be true for information stored

in working memory, since neural activity has to be communi-

cated to relevant targets progressively, through activity. It also

arises for reading information out of synapses, for which presyn-

aptic activity is necessary to extract their values, for instance
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using generic, background, activity (Mongillo et al., 2008). These

processes can all fruitfully be seen as involving statistical infer-

ence, based on partial and noisy information, and so are all

controlled or influenced by uncertainty (Fiser et al., 2010; Ma

and Pouget, 2008; Gold and Shadlen, 2002; Ratcliff and Smith,

2004).

In particular, again from a Bayesian viewpoint, uncertainty

determines just how modalities with low signal to noise ratios

should be downweighted against those that are more useful.

Uncertainty also determines how new pieces of information

should be combined with data from the recent past, depending

on factors such as the rate of change in the environment. This

amounts to a form of selective attention. As for the case of explo-

ration bonuses in learning, the impact of uncertainty should be

governed by the utility associated with what can be discovered;

and indeed important links have been found between reward and

at least some forms of sensory attention (Gottlieb and Balan,

2010). We will consider two different timescales of the inferential

effects of uncertainty, one acting across the length of the many

trials that define a single task set; the other acting within the

typically second or subsecond duration of each single trial as

circumstances change.

Just as for conditioning, one might expect that much of the

inferential uncertainty should be highly specific to the circum-

stances of the task, and so outside the realm of relatively coarse

neuromodulatory systems. However, as also for conditioning,

there is evidence for the involvement of both ACh and NE in

controlling critical aspects of inference, at both the timescales

mentioned above. Rather as we saw for the case of learning,

a key phenomenon at the coarser time-scale appears to be

controlling the strength of stimulus-bound information (relayed

in this case by thalamocortical pathways), relative to that of

what one might think of as prior- or model-bound information

associated with the current task set (Hasselmo, 2006; Yu and

Dayan, 2005b; Hasselmo and Sarter, 2011).

Take the paradigm known as the endogenous cue version of

Posner’s attentional task (Posner et al., 1978). In this, subjects

have to respond according to a visual stimulus presented on

one side of a display. Prior to the stimulus, a cue is presented

at the center of the display indicating on which side the stimulus

might appear. The cue can be valid (i.e., pointing to the correct

side) or invalid. The percentage of trials on which the cue is valid

is called its validity. Subjects pay attention to the cue in amanner

that appears to be graded by its validity—the amount by which

they are faster and more accurate on validly than invalidly cued

trials scales with the cue’s validity. In our terms, the validity of

the cue determines its statistical quality. Subjects correctly

set their inferential strategy to reflect this quality, and this

underpins the effect of validity on behavior. There is evidence

in rodents (Phillips et al., 2000) and humans (Bentley et al.,

2004; Thiel and Fink, 2008) that ACh mediates this effect; a

potential substrate is the combined nicotinic and muscarinic

mechanism mentioned above by which thalamocortical path-

ways are boosted and intracortical pathways suppressed by

ACh (Gil et al., 1997; Kimura et al., 1999), although the musca-

rinic effect may be dominant in humans (Thiel and Fink, 2008).

Cholinergic influence over the interactions between bottom-up

and top-down processing are also evident from the effects of
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iontophoresing ACh or the muscarinic antagonist scolopamine

on boosting or suppressing attentional effects on firing rates of

neurons in area V1 of macaques while they perform a visually

demanding task (Herrero et al., 2008). Also, stimulating the basal

forebrain (where one population of ACh neurons lives) reduces

the correlation between visual neurons reporting on natural

scenes via a muscarinic mechanism (Goard and Dan, 2009).

Looking over a range of shorter timescales, cholinergic neuro-

modulation has also been implicated in aiding signal detection

in rodents in tasks soliciting forms of sustained attention

(McGaughy and Sarter, 1995; Parikh et al., 2007). For instance,

Parikh et al. (2007) used amperometry to measure changes in

the concentration of ACh in medial prefrontal (mPFC) cortex

over various timescales in a Pavlovian task. Here, a cue was

provided on each trial, predicting a reward after a delay of

around 2 s or 6 s; the mark of attentional engagement was

a cue-evoked shift in behavior, which then led to hastened

reward acquisition. Cue detection in the task was impaired by

removing cholinergic inputs from the mPFC, suggesting that

performance was sensitive to ACh. For normal animals, ACh

was substantially released over a short timescale on trials

on which animals successfully detected the cue (but not

when they failed); successful detection was associated with a

decreasing rather than an increasing trend in ACh over the

20 s preceding the cue; and higher tonic levels of ACh concen-

tration (measured over minutes) were tied to larger phasic ACh

signals associated with the cue, and faster (Pavlovian) actions.

The various interactions with the medium term (20 s) and

longer term (minutes) averages of the ACh concentration remind

us of complexities surrounding a commonly reported finding for

neuromodulators, (T) namely a inverted U-shaped curve of effi-

cacy (Yerkes and Dodson, 1908). An example finding is that

drugs that boost a neuromodulator such as dopamine have

a beneficial effect for subjects whose baseline levels are low,

but a harmful effect for subjects for whom these levels are high

(Kimberg et al., 1997; Cools et al., 2011; Floresco and Magyar,

2006). Alternatively, increasing the tonic activity of a neuromodu-

lator might have the same dual effects, as suggested for norepi-

nephrine (Aston-Jones and Cohen, 2005; Berridge, 2008; Arns-

ten, 2011). It is certainly the case that if a neuromodulator

represents a quantity such as expected uncertainty, then, for

any environment, there will be an optimal level (together with

optimal temporal modulation around this level) that leads to the

most effective inference and learning: levels that are larger or

smaller than this would produce computational inefficiencies.

Subjects whose baseline levels are closer to this optimum value,

perhaps because of their genetic endowments, past experience,

or the interaction between the two, would perform best; subjects

with too little or too much will be affected in obvious ways by

boosting or suppressing the signal.

At the fine, subsecond, timescale of presentation of the cues,

the phasic release of ACh is related to the expectation of a

change in circumstance associated with the upcoming reward

(which is when the phasic signal peaks; Parikh et al., 2007).

This would arise as the subject’s expectation about the possible

change in circumstance rises following detection of the cue.

Along these lines, (Sarter et al., 2009) measured ACh transients

in a more complex task in which subjects had to detect and
report a short signal whose delivery was designed to be highly

unpredictable, or else report that the signal was not present.

Given a cholinergic lesion, subjects were again more likely to

miss the signal. In this task, significant ACh release in the

mPFC on a trial only occurred if the subjects had both detected

a signal on that trial and reported a non-signal on the previous

trial. If one thinks of the signal circumstance in one trial as estab-

lishing a task set that lasts across subsequent trials (with a much

shorter inter-trial interval than Parikh et al., 2007), there would

therefore be little expected uncertainty when (detected) signal

follows (detected) signal, and so ACh release would not be ex-

pected (Sarter et al., 2009).

This ACh transient can be seen as a phasic version of the ex-

pected uncertainty tonic signal suggested for ACh in the context

of learning. Conversely, the phasic version of theNE signal would

be to mark an unexpected defeat of the current circumstance.

The inferential implication of such unexpected uncertainty or

model failure is that existing inferences are made unsound, so,

for instance, any ongoing integration of sensory information

over time should be cancelled and reset, and that the subject

should enjoy new, expected, uncertainty about its circumstance.

The phasic activity of norepinephrine neurons in the locus coeru-

leus during signal processing tasks (Aston-Jones et al., 1994,

1997; Clayton et al., 2004; Rajkowski et al., 2004; Bouret and

Sara, 2004), primarily in monkeys, has been interpreted as being

consistent with this notion (Yu and Dayan, 2005b; Bouret and

Sara, 2005). Along the same lines, NE plays a role in temporal

alerting, for instance in the Posner paradigm when information

is provided about when the target arrives rather than which

side it arrives upon (Witte and Marrocco, 1997), and in another

task called the stop-signal reaction time task (Bari et al., 2011)

that is a popular way of assessing temporal aspects of the defeat

of ongoing expectations.

The tasks used to examine phasic ACh (Parikh et al., 2007) and

NE (Aston-Jones et al., 1994; Clayton et al., 2004) have some key

points of similarity—notably relatively long and unpredictable

delays before important events occur. One difference is that

the tasks involving NE typically have rare targets (perhaps

boosting unexpectedness), whereas those involving ACh have

common targets. It would be interesting to record phasic NE

and ACh signals simultaneously (perhaps indirectly in human

subjects via pupil dilation; Gilzenrat et al., 2010)—one might

expect that NE would be released to the cue, as a temporal alert,

but that it is the phasic rise in ACh that prepares the ground for

the (now expected) reward to be delivered.

Particularly for the case of DA (Servan-Schreiber et al., 1990)

and NE (Brown et al., 2005), there has been work on how an

effect of these neuromodulators on the input-output gain of

neurons might influence overall network dynamics that imple-

ment inferences such as decision making. One of the simplest

decision making networks involves effective mutual inhibition

between two competing groups of neurons (Usher and McClel-

land, 2001), with action initiation occurring when the activity of

one group reaches a threshold (Bogacz et al., 2006; Gold and

Shadlen, 2002; Lo and Wang, 2006). Boosting the gain of the

neurons in such a network can make it unstable and therefore

allow whichever of the two groups currently has the greater

activity to reach the threshold promptly, with barely any further
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integration. This therefore controls a speed-accuracy tradeoff.

Brown et al. (2005) considered the problem of decision making

architectures in which one network determines the release of

NE, which then modulates another network that is more directly

responsible for initiating the decision. They pointed out what is

a general issue for phasic activity (U), namely that the time it

takes for the neuromodulator to be delivered to its site of action

(norepinephrine fibers are not myelinated) appears to be at the

margins of the period inwhich there is a chance to have a suitable

effect on the on-going computation.

Synthesis
Unlike utility, which seems a natural candidate for neuromodula-

tory realizations, uncertainty does not, because of the exquisite

selectivity that subjects should exhibit in their sensitivity to

uncertainty. Nevertheless, substantial evidence suggests the

involvement particularly of acetylcholine and norepinephrine in

representing and acting on uncertainty, and we have also seen

that there are rich links between these neuromodulators and

also with dopamine. Many of the general lessons that we learnt

for utility have been reiterated, and some new ones learned,

particularly concerning the overall architecture of influences.

Discussion
This review has considered general properties of neuromodula-

tors through the lens of effects on decision making. The latter is

a critical competence, and we have seen the rich involvement

of very many aspects of neuromodulation. Concomitantly, (V)

problems or manipulations of neuromodulatory systems are

tied to debilitating neurological and psychiatric diseases, such

as addiction and Parkinson’s disease, and they are also major

therapeutic targets, as in schizophrenia, depression, Alzheimer’s

disease, and beyond (computational issues are discussed in

Maia and Frank, 2011; Huys et al., 2011; Montague et al., 2012).

Further (W), individual (e.g., genetic) differences in factors such

as the properties of particular receptor types, or the efficacy of

transporters controlling the longevity of neuromodulators

following release, have been associated with differences in deci-

sion making behavior, such as the propensity to explore or to

learn frompositiveor negative feedback (Franket al., 2007, 2009).

We have seen many instances of the three communications

problems reviewed in the introduction. However, these problems

are rather generic, whereas the twenty five lessons discussed

throughout the review have shown some of the peculiarities of

the ways that neuromodulators help solve them. In Table 1,

they are grouped into two broad categories, addressing issues

of how neuromodulatory systems are organized and the conse-

quences they have for information processing. For the first, we

have seen common motifs such as heterogeneity in space (i.e.,

different receptor types with different affinities, some localized

on different systems) and heterogeneity in time (with phasic

and various scales of tonic release). There is a number of forms

of control, including self-regulation by autoreceptors, complex

forms of interneuromodulator interaction, and even the possi-

bility of local glutamatergic control over release. Other, systemic,

control mechanisms also exist, such as loops between prefrontal

areas and neuromodulatory nuclei which exert mutual influence

upon each other. These, and indeed other functions of the neuro-
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modulators, may be complicated (X) by corelease of other neuro-

transmitters and other neuromodulators through the same axons

(Stuber et al., 2010; Lavin et al., 2005).

Given the focus on decision making, the key neuromodulators

were dopamine, serotonin, acetylcholine, and norepinephrine,

which represent information about reward, punishments, and

expected and unexpected uncertainty. However, these cate-

gories are, of course, crude, contentious, and incomplete.

Even in the context of our discussion, issues such as the propen-

sity of phasic dopamine activity to report a temporally sophisti-

cated prediction error associated with the delivery of future

reward (Sutton, 1988; Barto, 1995; Montague et al., 1996) illus-

trates some of the complexities: this signal resembles a predic-

tion under certain circumstances rather than just a simple error;

further, given a safety signaling interpretation of avoidance

learning, it also represents predictions of the attainment of

safety, which is not a conventional reward; further, the cumula-

tive prediction error signal can report a measure of the long-

run rate of reward, which is a signal with its own computational

significance. Indeed, we have in general suggested ways of

linking phasic and tonic interpretations of neuromodulatory

activity, although theymay act as partly independent information

channels.

The second category of lessons in Table 1 concerns the

effects of neuromodulators on neural processing. The two

most important systemic effects are controlling plasticity

(perhaps via controlling activity, under a Hebbian view) and

controlling whole pathways, such as dopamine’s influence

over direct and indirect pathways through the striatum or over

gated working memory, and acetylcholine’s influence on thala-

mocortical versus intracortical interactions. In conjunction with

suitable heterogeneity, manipulating pathways as a whole is

perhaps of particular importance as a mechanism, influencing

both external actions such as Pavlovian behaviors and instru-

mental vigor, but also internal actions, controlling the deploy-

ment of working memory or the expansion of a tree of possible

future circumstances and actions that are being evaluated.

There are also dynamical effects, such as changing the gain of

competitive, decision making circuits, along with a substantial

impact on central pattern generators that is best understood

in invertebrate preparations (Harris-Warrick, 2011; Marder and

Thirumalai, 2002).

For the future, one of the most immediately pressing issues

concerns resolving the historical problems in recording from

neuromodulatory neurons, measuring their local concentrations

at target zones, and selectively manipulating their activity or that

of particular receptor types. For instance, nuclei such as the

ventral tegmental area or the dorsal raphe, which contain dopa-

mine and serotonin neurons, also contain other neuron classes,

and extracellular measures of facets such as spike shape are

imperfect discriminators (Ungless et al., 2004). Many of these

issues are on the cusp of being comprehensively addressed in

animal studies through the use of new tools, including new and

improved recording methods, molecular biology, and optoge-

netics. For instance, genetically encoded channelrhodopsin

can be used to provide a functional tag for extracellular record-

ings (Cohen et al., 2012). Unfortunately, these advances have yet

to provide help for work on humans. Although the new vogue for
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psychosurgery is providing opportunities for recording (Zaghloul

et al., 2009) and cyclic voltammetry (Kishida et al., 2011), the

most important workhorse is functional magnetic resonance

imaging (fMRI), perhaps combined with pharmacology (Honey

and Bullmore, 2004). However, not only do we know very little

about the coupling between activity and the blood oxygenation

level-dependent (BOLD) signal that is measured in fMRI in areas

such as the striatum that are the main targets of key neuromodu-

lators, but also (Y) these neuromodulators might be able to affect

local blood flow directly themselves (Peppiatt et al., 2006),

further muddying the interpretation.

From a computational perspective, there is much work to do

to understand the overall network and systems effects of the

changes that we know different neuromodulators lead to in

individual elements in those circuits. This may also help us

understand aspects of various sorts of heterogeneity—e.g.,

what is achieved by the subtle differences within families of

receptors, and also the rich intertwining of the neuromodulators.

It may even help us unravel issues to do with pharmacological

manipulation of the neuromodulators—for instance, helping

explain the well-known fact that selective serotonin reuptake

inhibitors have a rapid effect on serotonin transport but take

weeks to have a stable effect on mood (Blier, 2003), perhaps

partly because of effects on autoreceptors and negative feed-

back control mechanisms, and partly because any quick effect

on (aversive) emotional processing has to be embedded through

learning to affect dispositions (Harmer et al., 2009).

However, the most compelling computational issue is the one

that has appeared in various places in this review, namely the

relationship between specificity and generality and cortical

versus neuromodulatory contributions to representation and

processing. For utility, this issue centers on the interactions

between model-free and model-based systems, with the former

being substantially based on neuromodulators such as dopa-

mine and serotonin, whereas the latter depends on cortical pro-

cessing (albeit itself subject to modulation associated with

specific stimulus values). For uncertainty, the question is how

representations of uncertainty associated with cortical popula-

tion codes, with their exquisite stimulus discrimination, interact

with those associated with neuromodulators, with their apparent

coarseness.

In sum, I have discussed how neuromodulators solve key

problems associated with having a structurally languorous but

massively distributed information processing system such as

a brain. Neuromodulators both broadcast and narrowcast key

information about the current character of the organism and its

environment, and exert dramatic effects on processing by

changing the dynamical properties of neurons, and the strengths

and adaptability of selected of their synapses in both selected

and dissipated targets.
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