
The abilities of animals to make predictions about the af­
fective nature of their environments and to exert control in 
order to maximize rewards and minimize threats to homeo­
stasis are critical to their longevity. Decision theory is a for­
mal framework that allows us to describe and pose quantita­
tive questions about optimal and approximately optimal 
behavior in such environments (e.g., Bellman, 1957; Berger, 
1985; Berry & Fristedt, 1985; Bertsekas, 2007; Bertsekas 
& Tsitsiklis, 1996; Gittins, 1989; Glimcher, 2004; Gold & 
Shadlen, 2002, 2007; Green & Swets, 1966; Körding, 2007; 
Mangel & Clark, 1989; McNamara & Houston, 1980; Mon­
tague, 2006; Puterman, 2005; Sutton & Barto, 1998; Wald, 
1947; Yuille & Bülthoff, 1996) and is, therefore, a critical 
tool for modeling, understanding, and predicting psycho­
logical data and their neural underpinnings.

Figure 1 illustrates three paradigmatic tasks that have 
been used to probe this competence. Figure 1A shows a 
case of prediction learning (Seymour et al., 2004). Here, 
human volunteers are wired up to a device that deliv­
ers variable strength electric shocks. The delivery of the 
shocks is preceded by visual cues (Cue A through Cue D) 
in a sequence. Cue A occurs on 50% of the trials; it is fol­
lowed by Cue B and then a larger shock 80% of the time or 

by Cue D and then a smaller shock 20% of the time. The 
converse is true for Cue C. Subjects can, therefore, in gen­
eral expect a large shock when they get Cue A, but this ex­
pectation can occasionally be reversed. How can they learn 
to predict their future shocks? An answer to this question 
is provided in the Markov Decision Problem section; as 
described there, these functions are thought to involve the 
striatum and various neuromodulators. Such predictions 
can be useful for guiding decisions that can have deferred 
consequences; formally, this situation can be character­
ized as a Markov decision problem (MDP) as studied in 
the fields of dynamic programming (Bellman, 1957) and 
reinforcement learning (Sutton & Barto, 1998).

Figure 1B depicts a decision task that is closely related 
to signal detection theory (Green & Swets, 1966) and has 
been particularly illuminating about the link between neu­
ral activity and perception (Britten, Newsome, Shadlen, 
Celebrini, & Movshon, 1996; Britten, Shadlen, Newsome, 
& Movshon, 1992; Gold & Shadlen, 2001, 2002, 2007; 
Shadlen, Britten, Newsome, & Movshon, 1996; Shadlen & 
Newsome, 1996). In the classical version of this task, mon­
keys watch a screen that shows moving dots. A proportion 
of the dots is moving in one direction; the rest are moving in 
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of the method for solving the problems, and discuss these 
particular cases and their near relatives in some detail. A 
wealth of problems and solutions that has arisen in different 
areas of psychology and neurobiology is thereby integrated, 
and common solution mechanisms are identified. In particu­
lar, viewing these problems as different specializations of a 
common task involving both sensory inference and learning 

random directions. The monkeys have to report the coher­
ent direction by making a suitable eye movement. By vary­
ing the fraction of the dots that moves coherently (called 
the coherence), the task can be made easier or harder. The 
visual system of the monkey reports evidence about the 
direction of motion; how should the subject use this infor­
mation to make a decision? In some versions of the task, the 
monkey can also choose when to emit its response; how can 
it decide whether to respond or to continue collecting in­
formation? These topics are addressed in the Signal Detec­
tion Theory and Temporal State Uncertainty sections, along 
with the roles of two visual cortical areas (MT and lateral 
intraparietal area [LIP]). The simpler version can be seen as 
a standard signal detection theory task; the more complex 
one has been analyzed by Gold and Shadlen (2001, 2007) 
as an optimal-stopping problem. This, in turn, is a form of 
partially observable MDP (POMDP) related to the sequen­
tial probability ratio test (SPRT; Ratcliff & Rouder, 1998; 
Shadlen, Hanks, Churchland, Kiani, & Yang, 2007; Smith 
& Ratcliff, 2004; Wald, 1947).

Finally, Figure 1C shows a further decision-theoretic 
wrinkle in the form of an experiment on the trade-off 
between exploration and exploitation (Daw, O’Doherty, 
Dayan, Seymour, & Dolan, 2006). Here, human subjects 
have to choose between four one-armed bandit machines 
whose payoffs are changing over time (shown by the curves 
inside each). The subjects can find out about the current 
value of a machine only by choosing it and, so, have to 
balance picking the machine that is currently believed 
best against choosing a machine that has not recently 
been sampled, in case its value has increased. Problems 
of this sort are surprisingly computationally intractable 
(Berry & Fristedt, 1985; Gittins, 1989); the section of the 
present article on Exploration and Exploitation discusses 
the issues and approximate solutions, including one that, 
evidence suggests, implicates the fronto-polar cortex.

Despite the apparent differences between these tasks, 
they actually share some deep underlying commonalities. In 
this review, we provide a straightforward formal framework 
that shows the links, give a computationally minded view 
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Figure 1. Paradigmatic tasks. (A) Subjects can predict the magnitude of future pain from partially informa-
tive visual cues that follow a Markov chain (Seymour et al., 2004; see the Markov Decision Problem section). 
(B) Monkeys have to report the direction of predominant motion in a random-dot kinematogram by making an 
eye movement (Britten, Shadlen, Newsome, & Movshon, 1992); see the Signal Detection Theory section. In some 
experiments, the monkeys have the additional choice of whether to act or collect more information (Gold & Shad
len, 2007); see the Temporal State Uncertainty section. (C) Subjects have to choose between four evolving, noisy 
bandit machines (whose payments are shown in the insets) and, so, must balance exploration and exploitation 
(Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006); see the Exploration and Exploitation section.
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Figure 2. An abstract decision-theoretic task. Subjects normally 
start in state x3 or x4, signaled by cues c3 or c4. They have three op-
tions (L, R, or C): The former two lead to rewards or punishments 
such as r3(L); the latter lead via stochastic transitions (probabili-
ties such as p31) to states x1 or x2, which are themselves signaled 
by cues c1 and c2, and license rewarded or punished choices L and 
R. Subjects can be (partially) ignorant about their states if the 
cues are confusable (e.g., if x3 “looks like” x4), and/or about the 
rules of the task (the rewards and probabilities). In some cases, 
the subjects might start in x1 or x2. Different options generate a 
wide family of popular decision-theoretic problems.
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In terms of knowledge, the subjects might be ignorant 
of their precise state in the problem (i.e., which xi they cur­
rently occupy), and/or the rules of the task (i.e., the transi­
tion probabilities and rewards contingent on particular ac­
tions in states). If they know both in the standard version of 
the task, which requires L at x3 and x1 and R at x4 and x2, 
with C being costly, and they know that they are at x3, say, 
they should choose L. However, if they know the rules and 
know that they are at either x3 or x4, but do not know which 
for sure (perhaps because the cues c3 and c4 are similar or 
identical), it might be worth the cost of choosing C in order 
to collect information from c1 and c2 (if these are more dis­
tinct), the better to work out which action is then best.

The problems of balancing such costs and benefits get 
much harder if the subjects might not even completely 
know the rules of the task. This is necessarily the case at 
the outset of animal experiments and is also more persis­
tently true when, as is common in experiments, the rules 
are changed over time. In these cases, subjects will have 
to learn the rules from experience. However, experience 
will normally only partly specify the rules, leaving some 
ignorance and uncertainty, and it will often be important 
to take proper account of this.

Second, in terms of their ambition, the subjects might 
have the modest goal of exploitation—that is, trying to 
make the reward for the current trial as valuable as pos­
sible, given whatever they currently know about the task. 
In the case in which the subjects start at x3 or x4, this in­
volves comparing rewards available for the immediate 
choice of L or R with the integrated cost of C and the 
subsequent reward from L or R at x1 or x2. How to trade 
off immediate and deferred reward optimally depends on 
subjects’ preferences with respect to temporal discounting 
(e.g., Ainslie, 2001; Kable & Glimcher, 2007; McClure, 
Laibson, Loewenstein, & Cohen, 2004).

More ambitious subjects might seek to combine explo­
ration and exploitation. That is, they might look to make 
every single choice correctly in the light of the fact that 
not only might it lead to a good outcome on this trial, but 
also it could provide information that will lead the subject 
to be more proficient at getting better outcomes in the 
future. This goal—choosing so as to maximize the inte­
grated rewards obtained over many trials throughout the 
course of learning, trading off the immediate benefits of 
exploitation and the deferred benefits of exploration—is 
sometimes called lifetime optimality. Again, how these are 
balanced depends on temporal discounting.

Note that these two computational dimensions are not 
wholly independent; for instance, given complete knowl­
edge of rules and state, exploration is moot.

Algorithmic Issues
Different points along the combined computational di­

mensions lead to a wide variety of different problems. Some 
of these are formally tractable—that is, have algorithms that 
require only moderate amounts of memory space or time to 
compute optimal solutions. Other points, particularly those 
involving incomplete knowledge or lifetime optimality, are 
much more challenging and typically require approxima­
tions, even for nonneurobiological systems.

components gives strong clues as to how sensory systems 
and computational mechanisms involved in the signal detec­
tion tasks—such as areas MT and LIP—are likely to interact 
with the basal ganglia and neuromodulatory systems that are 
implicated in the reinforcement learning tasks.

We tie the problems together by inventing a new, slightly 
more abstract assignment (shown in Figure 2). Particular 
specializations of this abstraction are then isomorphic to 
the tasks associated with Figure 1. The case of Figure 2 is 
an apparently simple maze-like choice task that we might 
present to animal or human subjects, who have to make 
decisions (here, choices between actions L, R, and C) in 
order to optimize their outcomes (r). Optimal choices in­
volve balancing current and future rewards and costs and 
handling different forms of uncertainty about the rules of 
the task and the state within it.

Two critical dimensions that emerge from a consider­
ation of Figure 2 concern what the subjects know and what 
they are trying to accomplish. The prediction task shown 
in Figure 1A arises when subjects are ignorant of the rules 
of the task but know their state or situation within it. Con­
versely, the psychophysical discrimination tasks shown in 
Figure 1B originate in a case in which subjects know the 
rules of the task but are only incompletely certain about 
the state. The exploration/exploitation trade-off shown in 
Figure 1C can be seen as combining both of these in a case 
in which subjects are ambitious about behaving optimally 
in the face of whatever uncertainty they have. Critically, 
through the medium of the task shown in Figure 2, all 
these problems can be characterized as requiring common 
computations. Realizing the computations leads to algo­
rithmic issues having to do with different ways in which 
information from past and present trials can be accumu­
lated and, thence, to implementational issues in terms of 
the neural structures involved in the solutions.

Foundational Issues

The task shown in Figure 2 involves only four choice 
points or states (x1, x2, x3, and x4) signaled, perhaps imper­
fectly (i.e., leaving some uncertainty, in a way we will for­
mulate precisely later), by cues (c1, c2, c3, and c4). Three 
actions are possible (L, R, and C) at the states, and it is the 
choices between these that the subjects must make. The 
choices lead to rewards or punishments (with values or 
utilities r, which depend on the states and actions), and/or 
to transitions from one state to the next (x3 to x1 or x2, etc.). 
We consider that single trials end when an actual outcome 
is achieved; the subjects then start again. In general, sub­
jects’ choices may be only probabilistically related to the 
outcomes. In the standard case for this review, we will 
have the rewards being biggest for L at x3 and x1 and for R 
at x4 and x2, with C being costly. The subjects may not 
know these payoffs at the outset.

Computational Issues
As has been mentioned, there are two main dimensions 

defining the problem for the subjects: one having to do 
with what they are assumed to know about the task, the 
other defining the nature of their ambition.
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and refined state abstraction on which these theories rely 
and the rich, multifarious, and ambiguous sensory world 
actually facing an organism.

Conversely, model-based methods for state estimation 
from noisy sensory input have been extensively investi­
gated in a rather different set of psychophysical tasks (Brit­
ten et al., 1996; Britten et al., 1992; Gold & Shadlen, 2007; 
Parker & Newsome, 1998; Platt & Glimcher, 1999), exem­
plified by Figure 1B, focusing on the mapping of input in­
formation coded in sensory regions into decision-theoretic 
quantities coded in more motor-associated regions of the 
cortex. However, this work has generally confined itself to 
fairly rudimentary and limited forms of learning.

The aim of the remainder of this article is to situate 
both learning and state estimation mechanisms in a single 
framework.

We will use the examples shown in Figure 1, rendered 
in the abstract forms shown in Figure 2, to illustrate the 
key general principles established above. The examples 
cover neural reinforcement learning (Montague et al., 
1996; Schultz et al., 1997), Bayesian psychophysics (Brit­
ten et al., 1992; Shadlen & Newsome, 1996), information 
gathering and optimal stopping (Gold & Shadlen, 2001, 
2007), and the exploration/exploitation trade-off (Daw, 
O’Doherty, et al., 2006). The first example develops basic 
reinforcement learning methods for tasks in which the 
state is known; the rest exemplify how these can be ex­
tended, with belief states as the formal replacement for 
uncertain true states.

In each section, we first will describe the formal com­
putational notions and ideas, then the relevant algorithmic 
methods associated with the computations, and finally the 
psychological and neurobiological tasks and mechanisms 
that are implicated.

The Markov Decision Problem

The central problem in the prediction task shown in Fig­
ure 1A is that until the subject observes Cue A or C at the 
start of a trial, he or she does not know whether he or she 
will receive a shock at the end of the trial; the cue makes 
the outcome more predictable. In Markov problems—that 
is, domains in which only the current state matters, and not 
the previous history—there turns out to be a computation­
ally precise way of defining the goal for predicting future 
reinforcers. When a choice of actions is available, the goal 
also provides a formalization of optimal selection. There 
is also a variety of algorithmic methods for acquiring pre­
dictions and using the predictions for control.

The Computational Problem
Consider the case shown in Figure 3A, in which the cues 

unambiguously identify the state (c1 for x1, and so on). We 
will first consider decision making when the rules are given 
and then move onto the standard reinforcement learning 
problem in which the rules of the task are unknown and the 
subject must discover how best to behave by trial and error.

Given the rules, the task for the subject is simply to 
work out the best policy, p*

i (the asterisk identifying it as 
being best), which specifies an assignment of an action 

Algorithms differ in how they draw on experience to es­
timate quantities relevant to the decision and in how they 
render these into choices. The most important algorithmic 
dimension is that distinguishing model-based and model-
free methods (Sutton & Barto, 1998). Crudely speaking, 
model-based methods make explicit use of the actual, or 
learned, rules of the task to make choices. Importantly, 
even when the rules are fully known, it takes some compu­
tation to derive the optimal decision for a particular state 
from these more basic quantities.

Model-free methods eschew the rules of the task and, in­
stead, use and/or learn putatively simpler quantities that are 
sufficient to permit optimal choices. For instance, in Fig­
ure 2, given complete knowledge of the state, it clearly is 
enough just to know four letters—namely, the best choices 
at x1 . . . x4. This is an example of a policy. Obtaining it in the 
face of ignorance of the rules lies at the heart of reinforce­
ment learning methods. Policies can be learned directly or 
can be derived from other information, such as the expected 
future utilities (values) that will accrue from different ac­
tions or states. Policies can also be derived (in model-based 
methods) from the rules of the task. Indeed, one of the most 
important products of the field of reinforcement learning 
(Sutton & Barto, 1998) is a range of model-free algorithms 
for solving the exploitation problem.

When the observations or cues do not precisely pin 
down the state, a policy mapping states to actions is obvi­
ously of little use. Given a model of the rules, including 
those relating states such as x3 to cues such as c3, the be­
liefs about the current state (called the belief state) can 
be calculated on the basis of the observations. The belief 
state can then, in a formal sense, stand in for the true state, 
so the policy becomes a function of this instead. This sub­
stitution of belief state for state is a recurring theme in the 
solution to the tasks discussed below.

Implementational Issues
It has long been suggested that there is a rather direct 

mapping of model-free reinforcement learning algorithms 
onto the brain, with the neuromodulator dopamine serving 
as a teaching signal to train values or policies by control­
ling synaptic plasticity at targets such as the ventral and 
dorsolateral striatum (Barto, 1995; Daw, Niv, & Dayan, 
2005; Friston, Tononi, Reeke, Sporns, & Edelman, 1994; 
Joel, Niv, & Ruppin, 2002; Montague, Dayan, & Sej­
nowski, 1996; Schultz, Dayan, & Montague, 1997; Suri 
& Schultz, 1998; Wickens, 1990). For aversive outcomes 
such as the shocks shown in Figure 1A, there is much less 
evidence about the overall neural substrate. More recently, 
it has been suggested that the brain also employs model-
based methods for planning under uncertainty about the 
rules, in a different set of circuits involving the prefrontal 
cortex and the dorsomedial striatum (Balleine, Delgado, 
& Hikosaka, 2007; Daw et al., 2005; Dickinson & Bal­
leine, 2002; Everitt & Robbins, 2005).

Most of this work has focused on rule, value, or policy 
learning, ignoring the issue of state uncertainty; indeed, 
arguably, the primary obstacle toward employing either 
the model-based or the model-free methods in a real-
world context is the gulf between the highly constrained 
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the value of each action Q*
1(a), defined as the expected 

return for performing that action, is

	 Q*
1(a) 5 r1(a),	 (1)

and a best action (i.e., one that maximizes this expected 
return) is

	 p*
1 5 argmaxa∈{L,R} [Q*

1(a)] 5 L,	 (2A)

and similarly

	 p*
2 5 argmaxa∈{L,R} [Q*

2(a)] 5 R. 	 (2B)

a ∈{L, R, C} to each state xi. The probabilities pij 5 pij(C) 
indicate the probabilities of going from state xi to xj under 
action C, whose cost is ri(C); actions L and R have de­
terministic consequences. Exactly how the “best” policy 
is defined depends on the particular goal. For now, we 
will assume that the rewards and costs earned across each 
whole single trial are simply summed, and it is this sum 
that has to be predicted and optimized.

First, consider the case in which the goal is exploitation 
within a single trial, to maximize the average, or expected, 
reward. If we consider state x1, the task is straightforward; 
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Figure 3. Markov decision problem (MDP). (A) The version of the basic task rendered as a simple MDP. Each state xi has a distinct 
cue ci, and the rewards and transition probabilities are as shown (the case for C at x4 is symmetric with respect to x3). The solution to 
MDP involves optimal state-action values Q*

i(a), state values V*
i, and thence the optimal policy p*

i (shown in the boxes) first for states 
x1 and x2 (B), and then for x3 and x4 (C). The calculation for x3 and x4 depends only on V*

1 and V*
2 and not on the manner by which the 

reward from x1 or x2 is achieved.
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can be discounted exponentially, as if by an interest rate), 
and that the problem is Markovian, so future transitions 
and rewards depend only on the current state, and not on 
the path the subject took to achieve the current state. The 
constraint that the state satisfy this Markov property is 
critical to all the analysis above and, concomitantly, is a 
major hurdle in connecting this abstract formalism with 
more realistic situations in which the cues do not deter­
mine the state. This issue is central to the remaining ex­
amples in the article.

We have so far assumed that the subjects know the rules 
of the task. In the Exploration and Exploitation section, 
we will consider the (much more involved) computational 
problem that arises in the case in which the subjects do 
not know the rules and have the ambition of optimally 
balancing exploration to find them out and exploitation 
of what they already know. However, there is an impor­
tant intermediate case in which the subjects do not know 
the rules and, so, have to learn them from experience, 
but in which their only ambition is exploitation—that is, 
doing as well as possible in the current trial, ignoring the 
future. The standard way to conceive of experience here 
is in terms of sampling states, transitions, and rewards—
for instance, starting at a state (x3), choosing an action 
(C), experiencing a transition (probabilistically to x1 or 
x2), and receiving a reward (r3(C), which in general could 
also be stochastic). Learning about the task from such 
samples is, of course, an example of a very general sta­
tistical estimation problem on which we can only touch. 
The critical consequence that we will consider, though, 
is that given only limited numbers of samples, subjects 
will be making choices in the face of uncertainty about 
the task. Even without considering exploration to reduce 
the uncertainty, exploitation can be significantly affected 
by it.

Algorithmic Approaches
The theory of dynamic programming (Bellman, 1957; 

Ross, 1983) specifies various algorithms for calculating 
the optimal policy—notably, policy and value iteration 
(Bertsekas, 2007; Puterman, 2005; Sutton & Barto, 1998). 
The key observation is that Equation 4, which is one of 
a number of forms of the so-called Bellman equation, 
specifies a consistency condition between the optimal Q* 
values at one state (x3) and those at other states (x1 and 
x2), via relationships such as Equations 3A and 3B. The 
different algorithms find optimal values by attacking any 
inconsistencies, but do so in different ways.

Standard dynamic programming algorithms are model 
based, in the sense that they solve the equations by mak­
ing explicit use of the quantities ri(a) and pij(C), follow­
ing just the sort of reasoning described above. However, 
in the case of learning from experience in an unknown 
task, it is first necessary to acquire estimates of these 
from the samples. This can be relatively straightforward. 
For instance, consider the case in which the subject per­
forms action C at state x3 a total of M times, getting to 
states xj1 . . . xj M, for j1, . . . , jM ∈{1,2} sampled from p31; 
p32, and experiencing rewards r1 . . . rM, sampled from 

All these quantities are shown in Figure 3B (the best ac­
tions are boxed).

The case for x3 and x4 is more complicated, since if 
C is chosen, it would seem that one should consider not 
only the action there, but also the subsequent action at x1 
or x2, since the rewards associated with each action are to 
be summed. Critically, the task has a Markov structure, 
meaning that how the subject gets to x1, for instance, does 
not bear at all on the choice to be made at that point and 
the rewards that will subsequently accrue (the Markovian 
mantra is that “the future is independent of the past, given 
the present state”). The theory of dynamic programming 
(Bellman, 1957; Bertsekas, 2007; Ross, 1983) fashions 
this observation into computational and algorithmic meth­
ods, which themselves underlie reinforcement learning. 
The idea is that states x1 and x2 also get values V *

i under 
the optimal policies there, defined as the best possible ex­
pected return starting there

	 V *
1 5 maxa∈{L,R} [Q*

1(a)] 5 2	 (3A)

and similarly at x2

	 V *
2 5 maxa∈{L,R} [Q*

2(a)] 5 2,	 (3B)

which are shown in Figure 3B. These values will be avail­
able, provided the subjects choose correctly (i.e., accord­
ing to p*

i if they get to those states), and thus can act as 
surrogate rewards for reaching the respective states, hid­
ing all the complexity of how those rewards are achieved. 
Then, we can write the value of choosing C at x3 as

	 Q r p V r p V p Vj j
j

3 3 3 3 31 1 32 2
* * * *( ) ( ) ( ) ,C C C= + = + +∑ 	 (4)

since the reward for the first action (at state x3; r3(C)) is 
added to that for the second action (at state x1 or x2). The 
probabilities p31 and p32 arise because the value of the 
action is the expected value of doing the action. These 
quantities determine the probabilities of the transitions to 
States 1 and 2, and multiply the values V *

1 and V *
2, which 

indicate the rewards that can be achieved starting from 
those states, given appropriate actions there.

The values of L and R at x3 are just Q*
3(L) 5 r3(L) and 

Q*
3(R) 5 r3(R), and so the optimal policy at x3 is, as in 

Equations 2A and 2B,

	 p*
3 5 argmaxa∈{L,R,C} [Q*

3(a)] 5 C	 (5A)

and similarly

	 p*
4 5 argmaxa∈{L,R,C} [Q*

4(a)] 5 C.	 (5B)

That is, in the example in Figures 3A–3C, it is optimal to 
take action C at x3 (and x4), since 1.5 5 r3(C) 1 r1(L) . 
r3(L) 5 1. That this is true, of course, depends on the pre­
cise values of the rewards.

Although we showed only the computations underly­
ing the simplest dynamic programming problem, solving 
more realistic cases that, nevertheless, retain the struc­
ture of our task is a straightforward extension (see, e.g., 
Bertsekas, 2007; Sutton & Barto, 1998). The central re­
quirements are that the states and rules are known, that 
rewards are additive over time (although future rewards 
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use stochastic policies (to allow sampling of the various op­
tions), which are parameterized, and adjust the parameters 
using learning rules that perform a form of stochastic gradi­
ent ascent or hill-climbing on the overall expected reward. 
For instance, consider the case of state x1. We can represent 
a stochastic parameterized policy there as

where

	

P a w w w

w
w

1 1 1 1 1

1

1

=( ) = ( ) = ( )

( ) =
+ −( ) 

L;

exp

π σ

σ

,

	

(8)

is the standard logistic sigmoid function. Naturally, P1(a 5 
R; w1) 5 1 2 p1(w1) 5 σ (2w1). Here, the greater w1, the 
more likely the subject is to choose L at state x1. The aver­
age reward based on this policy is

	 r w r w r
w1 1 1 1 1

1

= ( ) ( ) + −( ) ( )σ σL R . 	

If the subject employs this policy, choosing action ak 
and getting reward rk on trial k, and w1 is changed accord­
ing to a particular Hebbian correlation between the reward 
rk and the probability of choice,

where

	

w w w

w r P a a w

k

k k k

1 1 1

1 1 11

⇒ + ∆

∆ = − =( )





ε ,

; , 	

(9)

then it can be shown that the average change in w1 is pro­
portional to the gradient of the expected reward:

	 ∆ ∝w
r

w
k

k

w

1

1

1

1

∂

∂
;

and so the latter quantity should increase on the average, 
at least provided that the learning rate ε, which governs 
how fast w1 changes, is sufficiently small. Indeed, tight 
theorems delineate circumstances under which this rule 
leads in the end to the optimal policy p*

1.
Rules of this sort are an outgrowth of some of the earliest 

ideas in animal behavioral learning—crudely suggesting that 
actions that are followed by rewards should be favored. As 
advertised, they work directly in terms of policies, not em­
ploying any sort of value as an intermediate quantity. They 
just require adapting so that they can, for instance, increase 
the probability of doing action C at state x1 on the basis of 
the reward r3(L) that is available only at a later point.

Psychology and Neuroscience
There is a wealth of work in both psychology and 

neuroscience on tasks that can be considered to be Markov 
decision problems, and the exploitation problem has been 
a key focus. Importantly, the theory views predicting 
summed reinforcement as a key subproblem for decision 
making, and so much work has been concerned with pre­
dicting reinforcement in tasks without decisions.

Perhaps the best developed connection between these 
ideas and neural data is through prediction errors for 
model-free reinforcement learning, as in Equation 7. Ver­

r3(C). Then, one might estimate r3(C) and p31 using the 
sample mean estimates

	 r̂
M

rk

k

M

3
1

1
(C) =

=
∑ 	 (6A)

and

	 p̂
M

x xjk
k

M

31 1
1

1= ( )
=

∑c , ,	 (6B)

where c is the characteristic function, meaning that the 
second sum just counts the number of times the transition 
was to x1. Note that since the transitions are random (and 
the rewards, in general, might also be), these estimates 
involve sampling error. Bayesian estimates of the rules 
would quantify this error as uncertainty, a remark to which 
we will return when we consider exploration. For the pur­
pose of exploitation, it is conventional simply to compute 
the optimal policy under the so-called certainty-equivalent 
assumption that the current estimates are correct.

By contrast with the model-based methods, whose cal­
culations depend explicitly on the rules, there are vari­
ous reinforcement learning algorithms that are model free 
and estimate values or policies directly using individual 
samples of rewards and state transitions in place of es­
timated average rewards or state transition probabilities. 
One family of methods, called temporal difference al-
gorithms (Sutton, 1988), estimates values by computing 
a prediction error signal measuring the extent to which 
successively predicted values and sampled rewards fail to 
satisfy the consistency prescribed by Equation 4. A typi­
cal prediction error, derived from the difference between 
right- and left-hand sides of Equation 4, is

	 δ k
jkr V Q= + −3 3(C) (C)* * 	 (7)

for trial k, in which the transition went from state x3 to 
state xj k. Such errors can be used to update value estimates 
(in this case of Q*

3(C)) to reduce inconsistencies. These 
algorithms are guaranteed to converge to optimal value 
functions (which determine optimal policies) in the limit 
of indefinite sampling (Jaakkola, Jordan, & Singh, 1994; 
Bertsekas & Tsitsiklis, 1996; Watkins, 1989). However, 
given only finite experience, the value estimates will again 
be subject to sampling noise, and decisions derived from 
them may, therefore, be incorrect. Model-free methods 
of this sort are sometimes called bootstrapping methods, 
since they change estimates (here, of Q*

3(C)) on the basis 
of other estimates (V*

j k). This makes them statistically in­
efficient, since early on, estimates such as V*

j k are inaccu­
rate themselves and, so, can support only poor learning.

Although these algorithms are model free (i.e., not mak­
ing explicit use of terms such as p31), they are value based, 
since they work by estimating quantities such as Q*

i(a) and 
V*

i, which are values of states and actions or of states, in 
terms of the summed reward that is expected to accrue across 
the whole rest of the trial. Apart from these value-based re­
inforcement learning algorithms, there is also a range of 
model-free methods that learn policies directly, without 
using the values as intermediate quantities. These policy-
based methods (Baxter & Bartlett, 2001; Williams, 1992) 
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report quantities akin to the temporal difference predic­
tion error in Equation 7. This comes on top of a huge body 
of results on the involvement of dopamine and its striatal 
projection in appetitive learning and appetitively motivated 
choice behavior (for some recent highlights, see Costa, 
2007; Hyman, Malenka, & Nestler, 2006; Joel et al., 2002; 
Wickens, Horvitz, Costa, & Killcross, 2007). The pro­
posal that this operates according to the rules of reinforce­
ment learning (Balleine et al., 2007; Barto, 1995; Daw & 
Doya, 2006; Haruno et al., 2004; Joel et al., 2002; Mon­
tague et al., 1996; O’Doherty, Dayan, Friston, Critchley, & 
Dolan, 2003; O’Doherty et al., 2004; Schultz et al., 1997; 
Suri & Schultz, 1998), in a way that ties together the at least 
equally extensive data on the psychology of instrumental 
choice with these neural data, has extensive, although not 
universal, support (e.g., Berridge, 2007; Redgrave, Gurney, 
& Reynolds, 2008).

However, behaviorally sophisticated experiments (re­
viewed in Balleine et al., 2007; Dickinson & Balleine, 
2002) show that this is nothing like the whole story. These 
experiments study the effects of changing the desirabil­
ity of rewards just before animals are allowed to exploit 
their learning. Model-based methods of control can use 
their explicit representation of the rules to modify their 
choices immediately in the light of such changes, whereas 
model-free methods, whose values change only through 
prediction errors (such as Equation 7), require further ex­
perience to do so (Daw et al., 2005). There is evidence for 
both sorts of control, with model-based choices (called 
goal-directed actions) dominating for abbreviated expe­
rience, certain sorts of complex tasks, and actions close 
to final outcomes. Model-free choices (called habits) are 
evident after more extensive experience, in simple tasks, 
and for actions further from outcomes. Furthermore, these 
two forms of control can be differentially suppressed by 
selective lesions of parts of the medial prefrontal cortex 
in rats (Killcross & Coutureau, 2003). Daw et al. (2005) 
argued that the trade-off between goal-directed actions 
and habits is computationally grounded in the differential 
uncertainties of model-based and model-free control in 
the light of limited sampling experience.

sions of these have long played an important role in theo­
ries of behavioral conditioning—most famously, that of 
Rescorla and Wagner (1972). More recently, neural corre­
lates of such error signals have been detected in a number 
of tasks and species.

Consider the experiment shown in Figure 1A. The task 
was designed to induce higher order prediction errors—
that is, those arising from changes in expectations about 
future reinforcement, rather than from the immediate 
receipt (or nonreceipt) of a primary reinforcer. Such er­
rors are characteristic of the bootstrapping strategy of 
temporal-difference algorithms, which take the changes 
in expectations (e.g., the difference between V*

j k and Q*
3 in 

Equation 7) as signs of inconsistencies or errors in value 
predictions. Figure 4A highlights brain regions, notably in 
the ventral putamen (lateral striatum), where the measured 
BOLD signal was found to correlate over the task with a 
prediction error time series generated from a temporal-
difference model.

For instance, Figure 4B shows the average BOLD signal 
from the right putamen on trials in which the subjects see 
Cue C followed by Cue B. In this case, the first cue indi­
cates that a large shock is unlikely, but the later cue signals 
that it is certain. The change in expectation occasioned 
by the second cue induces a prediction error, reflected 
in increased BOLD activity. Conversely, Cue D follow­
ing Cue A signals that a large shock previously thought 
to be likely will not occur; this is a negative prediction 
error (and a relative decrease in BOLD; see Figure 4C). 
Figure 4D illustrates how we can extend the same logic 
a further step back, just as in the dynamic programming 
analysis of MDPs. Here, since Cue A indicates that Cue B 
(and thence the large shock) is likely, it also induces a 
positive prediction error when it appears, signaling an end 
to the relatively safe period between trials.

Seymour et al.’s (2004) study was in the aversive domain. 
For appetitive outcomes, there is ample evidence that the 
phasic activity of dopamine cells in the ventral tegmental 
area and substantia nigra pars compacta in monkeys (e.g., 
Schultz, 2002), and the release of dopamine at striatal tar­
gets in rats (Day, Roitman, Wightman, & Carelli, 2007) 
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Figure 4. BOLD signals correlating with higher order prediction error in the aversive conditioning task shown in Figure 1A. (A) Regions 
of the bilateral ventral putamen (put; also the right anterior insula: ins) where the BOLD signal significantly correlated with predic-
tion error. (B–D) BOLD time courses from the right putamen. (B) Positive prediction error: Cue B (contrasted against Cue D) following 
Cue C. (C) Negative prediction error: Cue D (contrasted against Cue B) following Cue A. (D) Biphasic prediction error: Cue A followed by 
Cue D, contrasted against Cue C followed by Cue B. From “Temporal Difference Models Describe Higher-Order Learning in Humans” 
by B. Seymour et al., 2004, Nature, 429, pp. 665, 666. Copyright 2004 by Nature Publishing Group. Adapted with permission.
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identity is at least partially hidden from the subjects. The 
subjective problem is illustrated in Figure 5B.

To formalize this task, it is necessary to specify the cou­
pling between cues and states. The natural model of this 
involves the conditional distributions over the possible 
observations (the cues) given the states

	 p c c x x p c x1 1 1 1α α α= =( ) ≡ ( )| | 	

and

	 p c c x x p c x2 2 2 2α α α= =( ) ≡ ( )| | ,	

which, in signal detection theory, are often assumed to 
be Gaussian, with means µ1 and µ2 (say, with µ1 . µ2) 
and variances σ 2

1 and σ 2
2. These distributions are shown 

in miniature in Figures 5A and 5B.
If the subject observes a particular cα, then, given these 

distributions, what should it do? It needs a decision rule— 
a mapping, sometimes called a test—from its observation 
cα to a choice of action, L or R.

There are four possibilities for executing one of these 
actions at one of the two states. Standard signal detection 
theory privileges one of the actions (say, L) and, thus, one 
of the states (here, x1) and defines the four possibilities 
shown inside Table 1. Note that we could just as well have 
privileged R at x2. Signal detection theory stresses the 
trade-off between pairs of these outcomes. For instance, 
subjects could promiscuously choose L despite evidence 
from cα that x2 is more likely. This would reduce misses, 
at the expense of introducing more false alarms.

Under Bayesian decision theory, subjects should maxi­
mize their expected reward, given the information they 
have received. The first step is to use the observation cα to 
calculate the subjective belief state—that is, the posterior 
distribution over being in x1 or x2, given the data

	

P x x c P x c
p c x P x

p cα α α
α

α
=( ) ≡ ( ) =

( ) ( )
( )

=

1 1
1 1 1

1

1
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|
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( )
( )

1 2

1l c

P x

P xα

,	 (10)

Although more comprehensive, even this synthesis 
has an extremely limited scope. As was hinted above, the 
question of most relevance to the present review is how 
internally to create or infer a state space from just a boom­
ing, baffling confusion of poorly segmentable cues. That 
is, how to extract the equivalent of x1 . . . x4, the underlying 
governors of the transitions and rewards, automatically 
from experience in an environment. The simplest versions 
of this issue are related to topics much more heavily stud­
ied in sensory neuroscience and psychophysics, and we 
now will turn to these.

Signal Detection Theory

The task shown in Figure 1B, in the version in which the 
subject cannot influence the length of time that the dots are 
shown, is one of sensory discrimination. Here, noisy and, 
therefore, unreliable evidence provided by motion-processing 
areas in the visual system has to be used to make as good a 
decision as possible to maximize reward. It maps onto the 
basic task in the case in which the rules are known, but the ci 
inputs associated with the states are only partially informa­
tive about the states (because of the effects of noise).

Variants of this task—notably, ones involving the detec­
tion of a very weak sensory signal in the face of noise in 
the processing of input—are among the most intensively 
studied quantitative psychophysical tasks; it was because 
of this that they came to be used to elucidate the neural 
underpinnings of decision making.

The Computational Problem
Figure 5A shows the variant of the basic abstract prob­

lem that is a form of a classic signal discrimination task 
(Green & Swets, 1966). Here, the subject always starts in 
state x1 or x2, and the rules are assumed to be known, so 
that it is optimal to execute L in x1 and R in x2. However, 
the cues c1 and c2 are partly confusable; in other words, the 
subject observes cα, which does not completely distinguish 
x1 and x2, and so it is uncertain which of the two states it oc­
cupies. This problem is sometimes called partially observ-
able, or involving a hidden state, since the subject occupies 
a true state in the world that we write as xα ∈{x1,x2}, but its 
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rc (L) = {0,1}α rc (R) = {0,1}α

p(c |xi)α

Figure 5. Signal detection theory task. Subjects start in xα  ∈{x1,x2}, but the cue cα  is confus-
ing between these two possibilities, according to the distributions shown inside the states. (A) The 
objective state in the environment shows the consequence of choosing L or R at either of the two 
states. (B) The subjective state of the subject shows the confusion between the two possibilities; in 
particular (overloading the notation), the reward rcα

(L) might be either r2(L) 5 0 or r1(L) 5 1. The 
distributions show pi(cα | xi) (for the simple, equal-variance Gaussian case). Here, x1, which requires 
L, is associated with slightly higher values of cα than is x2, which requires R.
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These value expressions are functions of the cue cα only 
through the belief state, which in this sense serves as a 
sufficient statistic for the cue in computing them. An­
other way of saying this is that the belief state satisfies the 
Markov independence property on which our reinforce­
ment learning analysis relies: Given it, the future reward 
expectation is independent of the past (here, the cue). By 
determining the value expectations for each action, the 
belief state plays the role of the state from the previous 
section, which is unobservable here.

Given these values, then, as in Equations 2A and 2B, we 
can choose an optimal policy,

	 π
α αc a cQ* *= 



∈argmax ( ) ,{L,R} a 	 (14)

which, by direct calculation, turns out to just take the form 
of a threshold on the belief state or, equivalently, on the 
likelihood ratio l(cα), and can be written as
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where 3 implies that either L or R should be chosen with 
equal probability.

Given our assumption that r1(L) . r1(R), the Bayes-
optimal threshold θ B is determined by the rewards and 
priors according to
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which comes from the point at which the values of the two 
actions are equal—that is,

	 Q Qc cα α

* * .L R( ) = ( ) 	

where
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|

|
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is the so-called likelihood ratio, which indicates the rela­
tive chance that the observation cα would have originated 
from x1, versus x2, and P(x1) 5 1 2 P(x2) is the prior prob­
ability of starting in x1. Figure 6A shows the logarithm 
of the likelihood ratio in the case in which the Gaussians 
have the same variance σ1 5 σ 2, and Figure 6B shows the 
resulting posterior probabilities as a function of cα [for 
P(x1) 5 .5]. Errors occur where the posterior is uncertain, 
near P(x1 | cα) 5 .5. The steeper the posterior, the lower the 
chance of error; in turn, this happens when the likelihood 
distributions are well separated.

Next, we can write down the equivalent of the Q* values 
from Equation 1 as the expected returns for each action, 
given the observation cα (rather than the state x1 or x2):

	

Q r c P x c r

P x c

c cα α α α

α

* L L L( ) = ( )



 = ( ) ( )

+

 | |

|

1 1

2(( ) ( )r2 L 	 (12)

and
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Figure 6. Signal detection theory for the Gaussian case. (A) The log likelihood ratio indicates how the observation cα favors one 
or the other state xi. For the equal-variance Gaussian case, this is linear in the observation cα. Standard decision-theoretic tests 
are based on thresholding the likelihood ratio (or its logarithm, since this is a monotonic transform). (B) Bayesian decision theory 
is based on the posterior probabilities P(xi| cα), which combine the likelihood ratio and any prior information. Given the reward 
structure in Figure 5 and equal priors, these are also the Q* values for the choices L and R. (C) The receiver-operating character-
istic (ROC) plots the two independent quantities size (false alarm rate) and power (hit rate) of the test against each other. The area 
under the curve is related to the discriminability d ′

 
and is a measure of the quality of the cue cα for distinguishing x1 from x2. (D) If 

σ1 ≠ σ 2, the log likelihood ratio need not be monotonic in cα, and so implementing a single threshold on log [l(cα)] can require more 
than one threshold on cα.

Table 1 
Signal Detection Contingencies

Action

 Actual State  L  R  

x1 hit miss
 x2  false alarm correct rejection  
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Similarly, the nature of the dependence of values such as 
Q*cα(L) on cα is determined by quantities to which model-
free methods have no direct access. One general solu­
tion is to use a flexible and general form for representing 
functions—for instance, writing

	 Q f c wc k k
k

α α
* .L L( ) = ( ) ( )∑ 	 (18)

Here, fk(cα) are so-called basis functions of cα, and wk 
are parameters or weights whose settings determine the 
function. Depending on properties of Q*cα(L) such as 
smoothness, a close approximation to it can result from 
relatively small numbers of basis functions. Furthermore, 
the model-free methods described in the previous section 
can be used to learn the weights.

Similarly, model-free and value-free policy gradient 
methods can be used to learn weights that parameterize 
a policy p*cα directly. As is frequently the case, the policy 
( just one, or sometimes more, thresholds) may be much 
simpler than the values (a form of sigmoid function), mak­
ing it potentially easier to learn appropriate weights.

Psychology and Neuroscience
The ample studies of human and animal psychophysics 

provide rich proof that subjects are sophisticated signal 
detectors and deciders in the terms established above. Be­
havior is exquisitely sensitive to alterations in the payoffs 
for different options (Stocker & Simoncelli, 2006) and 
changes in the observations (Körding & Wolpert, 2004); 
subjects even appear to have a good idea about the noise 
associated with their own sensations (Whiteley & Sahani, 
2008) and actions (Trommershäuser, Landy, & Maloney, 
2006; Trommershäuser, Maloney, & Landy, 2003a, 2003b) 
and can cope with even more sophisticated cases in which 
cues are two-dimensional (visual, cv

α; auditory, ca
α) and are 

conditionally independent given the state (Battaglia, Ja­
cobs, & Aslin, 2003; Ernst & Banks, 2002; Jacobs, 1999; 
Yuille & Bülthoff, 1996).

There is also a range of influential neurophysiological in­
vestigations into the neural basis of these sorts of decisions. 
One set, prefigured in Figure 1B and executed by Britten 
et al. (1996; Britten et al., 1992) and Shadlen and Newsome 
(1996) and their colleagues, has focused on the processing 
of visual motion in area V5/MT in monkeys. Monkeys ob­
serve random-dot kinematograms, in which small dots ap­
pear and jump in various directions (Figure 7A). A propor­
tion of the dots moves coherently, in the same direction, and 
the remainder moves at random; the job of the monkey is to 
report which direction the coherently moving dots favor on 
the basis of 2 sec worth of observing the motion. Typically, 
the monkeys have only two choices, 180º apart—that is, up 
and down in the figure. The filled-in circles in Figure 7B 
show the average performance of the monkey at this task as 
a function of the coherence level; for well-trained animals, 
performance is near perfect at a level of around 10%–15%. 
This is often called a psychometric curve.

Figure 7C shows example histograms of the firing rates 
of an MT neuron over the relevant period when faced with 
these stimuli, as a function of the coherence of the stimu­
lus (i.e., the percentage of the random dots moving in a co­

To summarize, Bayesian decision theory in the case of 
state uncertainty is formally just the same as that in the 
case of complete knowledge of the state, except that the 
state is redefined to be the belief state, P(xα 5 x1 | cα). 
Given this, the same ideas as those in the previous section 
apply in terms of maximizing the expected return.

In standard decision theory, there is an important result 
called the Neyman–Pearson lemma, which implies that 
decisions should again be based on thresholds associated 
with the likelihood ratio l(cα). However, unlike the Bayes­
ian analysis that defines a single policy maximizing ex­
pected reward, misses and false alarms are not traded off 
against each other directly in standard decision theory, and 
so there is just a whole, one-dimensional family of opti­
mal tests created by varying the threshold θ . The trade-off 
is depicted in the famous receiver-operating characteris­
tic (ROC) curve, illustrated in Figure 6C, which plots the 
probability of a hit against that for a false alarm, across the 
whole range of thresholds. The area under the ROC curve 
is a measure of the quality of the cue cα for discriminating 
x1 and x2, which itself is determined by the separation of 
the two likelihood distributions shown in Figure 5B. It is 
also related to other signal detection quantities, such as the 
discriminability, d ′ (Green & Swets, 1966).

Algorithmic Approaches
Here, we assume that subjects have knowledge of the 

rules (the conditional distributions, priors, and rewards) 
and must determine or learn the optimal policy. Model-
based Bayesian methods are algorithmically simple, given 
this knowledge; they correspond literally to the derivation 
of the optimal policy outlined above. Model-free methods 
act to learn values such as Q*cα(L) or, more directly, the 
best policy p*cα, without explicit reference to the distri­
butions and priors; they must, instead, learn, as before, 
by bootstrapping from sampled experience. Under the 
same assumptions about exploitation as above—that is, 
that we are not trying to solve the exploration/exploitation 
problem—it is again sensible to consider the same learn­
ing rules.

The main issue that makes this different is that values 
and policies are functions of the continuous, real-valued 
quantity cα—or of the continuous one-dimensional belief 
state that summarizes it—rather than of a discrete quan­
tity like x1 in the fully observable MDP. Furthermore, 
although the policy dependency actually takes a simple 
form—a single threshold θ—in terms of the belief state, 
model-free methods cannot directly compute the belief 
state and, so, face a more complicated problem. For in­
stance, in the case in which σ1 5 σ2, the optimal decision 
can also be described by a threshold in the observable 
quantity cα. However, if σ1  σ2, then, as is illustrated 
in Figure 6D, the likelihood ratio l(cα) is not monotonic 
in cα, and therefore two thresholds θ l and θu are neces­
sary, with
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The open circles in Figure 7B show the remarkable con­
clusion of this part of the study. These report the result of 
the Bayesian decision-theoretic analysis described above, 
applied to the neural activity data of the neuron shown in 
Figure 7C. This so-called neurometric curve shows the 
probability that an ideal observer knowing the firing rate 
distributions of a single cell and making optimal decisions 
would get the answer right. This single cell would already 
support decisions of the same quality as those made by the 

herent direction), for both of the two directions of motion. 
Mapping this onto our problem, the firing rate is the cue cα 
(from the perspective of neurons upstream), the state is 
the actual direction of motion of the stimulus, and the 
histograms in the figure are the conditional distributions 
p1(cα | x1) (hashed) and p2(cα | x2) (solid). It is apparent that 
these distributions are well separated for high-coherence 
trials—thus supporting low error discrimination—and 
less well for low-coherence ones.

Figure 7. Britten, Shadlen, Newsome, and Movshon’s (1992) experiment on primate signal detection. (A) Ma-
caque monkeys observed random-dot motion displays made from a mixture of coherent dots interpreted as mov-
ing in one direction and incoherent dots moving at random. For these dots, the task was to tell whether the coherent 
collection was moving up or down. The percentage of coherently moving dots determined difficulty. (B) The filled 
points show the psychometric curve—that is, the discrimination performance as a function of the percentage of 
coherent dots. The open points show the quality of performance that would be optimally supported by a recorded 
neuron. (C) The graphs show histograms of the activity of a single MT neuron at three coherence levels over a 2-sec 
period, when the coherent motion was in its preferred direction (hashed) or opposite to this (solid). The larger the 
coherence, the larger the discriminability d ′, and the more easily an ideal observer counting the spikes just of this 
neuron would be able to judge the direction. From “The Analysis of Visual Motion: A Comparison of Neuronal and 
Psychophysical Performance,” by K. H. Britten, M. N. Shadlen, W. T. Newsome, and J. A. Movshon, 1992, Journal 
of Neuroscience, 12, pp. 4746, 4751, 4752, copyright 1992 by the Society for Neuroscience, and Theoretical Neuro-
science: Computational and Mathematical Modeling of Neural Systems (pp. 89, 90), by P. Dayan and L. F. Abbott, 
2005, Cambridge, MA: MIT Press, copyright 2005 by MIT. Adapted with permission.
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tection Theory section. Here, subjects start at xβ ∈{x3,x4} 
and again see a cue (referred to as cβ) that only partially 
distinguishes these states. They could choose L (which is 
correct at x3), R (correct at x4), or C, which incurs a small 
penalty (20.1), but delivers them to xα ∈{x1,x2}. Choos­
ing C might be wise, if the cue available there cα (assumed 
to be suitably independent of cβ) better resolves their state 
uncertainty (i.e., making them more sure about which of x1 
or x2 they occupy than they were between x3 and x4), and, 
thus, more certain to get the reward for choosing L or R 
according to their beliefs. The choice of C is called probing 
and can be considered to be a form of exploration.

The Bayesian decision-theoretic ideas articulated in the 
Markov Decision Problem section extend smoothly to this 
case, just taking into account the idea that the subject’s 
state should actually be its subjective belief state, given 
its observations. We first will consider the evolution of 
the belief state and then will see how this is employed 
to make optimal decisions. The graphs in Figure 9 refer 
to the Gaussian likelihood distributions used above and 
shown in Figure 8.

The case for x3 and x4 here is just the same as that for x1 
and x2 in the Signal Detection Theory section. Given cβ, 
the posterior probability P(x3 | cβ) of being in x3 is given 
by Bayes’ rule, just as in Equation 10, proportional to the 
prior P(x3) and the likelihood p3(cβ| x3).

Now by choosing C at the first stage, the subject will ob­
serve cα at xα ∈{x1,x2}; given this observation, it is again 

whole monkey. Of course, the monkey’s problem is to pick 
out the cells of this caliber (and particularly, collections of 
cells whose activity is as independent as possible, given 
the motion direction; Shadlen et al., 1996), integrate their 
activity over the duration of the trial, and limit the ability of 
noise to affect their actual decisions. The difficulty of doing 
these things should mitigate our surprise that the overall 
performance of the monkey is not substantially better than 
that of a single, somewhat randomly recorded neuron.

Temporal State Uncertainty

The examples of the last two sections can be combined 
to show how belief state estimation and reinforcement 
learning can be combined to find optimally exploitative 
decisions in POMDPs. This is exemplified by the other 
version of the task shown in Figure 1B, in which mon­
keys have to choose not only the direction of the motion, 
but also when they are sufficiently confident to make 
this choice. Here, they must balance the benefits of mak­
ing their decision early—namely, avoiding the costs of 
waiting—against the change of making the wrong deci­
sion and getting no reward at all.

The Computational Problem
Figures 8A and 8B show a version of the task that com­

bines some of the MDP aspects of the Markov Decision 
Problem section with the state uncertainty of the Signal De­
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Figure 8. Information integration and probing. Subjects start at xβ ∈{x3,x4}, but with uncertainty 
due to an aliased cue cβ, and can either act (perform L or R) immediately or perform action C, 
which incurs a small cost rcβ 5 

20.1, but takes them to xα ∈{x1,x2}, where a new, independent ob-
servation cα can help resolve the uncertainty as to which of L or R would be better. As in Figure 5, 
panel A shows the objective state and outcomes; panel B shows similar quantities from a subjective 
viewpoint. The distributions show how the cues are related to the states. This is a simple task, since 
the transitions are deterministic p31 5 p42 5 1.
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To calculate the optimal policy, we now will proceed ex­
actly as in the Markov Decision Problem section, backward 
from the second state to the first. If the subject gets to x1 or 
x2, it will be able to make a choice on the basis of the ob­
servation cα. Given the rewards shown in Figure 8, it will 
choose L if P(x1 | cα,cβ) . P(x2 | cα,cβ), and R otherwise. 
Thus, the value of being at xα is

	 V P x c c P x c cc cα α β α βα β, , max , , ,* .= ( ) ( ){ }1 2| | 	 (20)

This is shown in Figure 9C. The value is high (white) 
when cα and cβ are such that the subject can be rather sure 
whether xα 5 x1 or xα 5 x2—that is, when it can be sure 
which action to perform. If, instead, the cues are incon­
sistent, the value is closer to .5, which is that of random 
guessing.

However, the subject has to decide whether it is worth 
choosing C at state xβ before observing cα. Thus, to work 
out the value of doing so, it has to average over what cα 
might be, which in turn depends on the probability ac­
corded to ending up in state x1 before seeing cα. Figure 9D 
shows the conditional distribution p(cα | cβ); note, for in­
stance, that if cβ strongly favors x3, the subsequent state is 
likely to be x1, so the distribution is close to p1(c1 | x1).

Averaging over this distribution, we get the mean value

		
(21)

	

V V

P x c

c p c c c c

c

α α

β

β α β α β

α

, | , ,
* *= 





= ( )
( )

∫



3 | VV p c x dc

P x c V p

c c

c c c

α α α

β α

α β

α α β

, ,

, ,

*

*

|

|

1

4

( )
+ ( ) ∫ cc x dcα α| 2( ) ,	 (22)

straightforward to compute a new belief state P(x1 | cβ,cα) 
using the previous belief state together with the the transi­
tion and cue probabilities. Because the successive obser­
vations are independent, and since the only way to get to 
x1 is from x3, the update takes a particularly simple form 
as the product of the previous belief state with the new 
observation probability:

	

P x c c p c x P x c

p c x p c

1 1 1 3

1 1 3

| | |

|

β α α β

α β

,( ) ∝ ( ) ( )
= ( ) || x P x3 3( ) ( ) . 	 (19)

In short, the simple form of the problem means that incor­
porating each new cue into the belief state just involves 
multiplying the likelihood terms associated with the new 
observations (and renormalizing to make the sum of the 
beliefs equal to 1).

Note that the belief state after the second step depends 
on both cues, but it depends on the first cue only by way 
of the previous belief state P(x3 | cβ). Similarly, as it turns 
out, the expected future rewards will depend on both cues, 
but only through the belief state. This is an instance of a 
general and important fact about multistep problems with 
a hidden state. In general, cues like cα will not suffice to 
determine future expected reward, because the entire pre­
vious history (in this case, just cβ) may still be relevant. 
However, in POMDPs, the current belief state is always a 
sufficient statistic for the entire cue history; that is, unlike 
any individual cue, it satisfies the Markov independence 
property. This is why it can always be used in place of an 
observable state for reinforcement learning.
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state xβ is just as in Figure 6C. (B) The log likelihood ratios just add, to give the posterior dis-
tribution P(x1 | cα,cβ). (C) The value of state xα depends on cα,cβ according to the maximum 
max{P(x1 | cα,cβ), P(x2 | cα,cβ)}, since the subject will choose L or R according to these prob-
abilities. (D) At xβ, the subject has to use cβ to work out the chance of seeing cα at xα. (E) Av-
eraging the value in panel C over the distribution in panel D, and including the cost rcβ

(C) 5 
20.1, gives the value Q*β,cβ

(C) of probing (solid line). This is greater than the value of choosing 
the better of L and R (dashed line) for values of cβ that create the least certainty about xβ.
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tory grows over time (the number of steps in the prob­
lem might be much larger than the two here) and so the 
dimensionality of the optimization problem grows also. 
It also poses severe demands on short-term memory. In 
general, it is not possible to represent optimal value func­
tions and policies with only a few basis functions, as in 
Equation 18.

The alternative representation, which we have stressed, 
is to note that, given a model, the full history of ob­
servations can be summarized in a single belief state, 
P(xτ| {c1, . . . , cτ}), which can then be updated recursively 
at each step. This has the advantage of not changing di­
mension over time and, thus, also not placing such an 
obvious load on working memory. However, like the cue 
history (but unlike the states of an observable MDP), this 
probability distribution is still a multidimensional, con­
tinuous object, which makes learning values and policies 
as functions of it still difficult in general.

Since belief states of this sort are computed by infer­
ence using a model, model-free methods cannot create 
them and, therefore, generally have to work with the 
history-based representation. However, the Markov suffi­
ciency of the belief state immediately suggests an appeal­
ing hybrid of model-free and model-based approaches, 
whereby a model might be used only to infer the current 
belief state and then model-free methods are used to learn 
values or policies on the basis of it (Chrisman, 1992; Daw, 
Courville, & Touretzky, 2006). This view separates the 
problem of state representation from that of policy learn­
ing: The use of a model for state inference addresses the 
insufficiency of the immediate cues c. Having done so, it 
may nevertheless be advantageous to use computation­
ally simple model-free methods (rather than laborious 
model-based dynamic programming) to obtain values or 
policies.

When belief states are used, algorithmic issues also 
arise in updating them using Equation 19. Notably, it may 
be simpler to represent the belief state by its logarithm, in 
which case the multiplication to integrate each new ob­
servation becomes just a sum. The idea of manipulating 
probabilities in the log domain is ubiquitous in models 
of the neural basis of this sort of reasoning (Ma, Beck, 
Latham, & Pouget, 2006; Rao, 2004), including the one 
discussed next. However, it is important to note that in 
general, belief updates involve not just multiplication, as 
above, but also addition, which means that the expression 
is no longer simplified by a logarithm. For instance, if it 
were possible to get to state x1 from both x3 and x4, Equa­
tion 19 would sum over both possibilities:
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Purely additive accumulation is therefore limited to a class 
of problems with constrained transition matrices and inde­
pendent observations. Also, it is only in a two-alternative 
case that the normalization may, in general, be eliminated 
by tracking the ratio, or log ratio, of the probability of the 
states, as in Equation 11.

since the transitions can occur only from x3   x1 or 
x4  x2. This is the exact equivalent of Equations 3A and 
3B, except that taking an expectation over the belief state 
requires an integral (because it is continuous) rather than 
a discrete sum.

The last step is to work out the values of executing each 
action at xβ. For action C, from Equation 4 and the transi­
tion probabilities:

	 Q r V Vc c c cβ α αβ β β β, , ,C C* * *. .( ) = ( ) + = − +0 1 	 (23)

This value is shown as the solid line in Figure 9E. It is 
high when the subject can expect to be relatively certain 
about the identity of xα and low when this is not likely. 
The maximum value is 1 1 rcβ(C) 5 0.9, given the cost 
20.1 of probing.

The expected values to the subject of performing L or 
R at xβ are

	 Q P x c Q P x cc cβ β β ββ β, ,L R ,* *( ) = ( ) ( ) = ( )3 4| | 	 (24)

which are the exact analogues of the Q*cα(a) terms in Equa­
tion 12. The dashed line in Figure 9E shows the value of 
the better of L and R. This is near 0.5 for intermediate val­
ues of cβ, where the subject will be very unsure between 
x3 and x4 and, thus, between the actions. In this region, 
action C is preferable because the additional observation 
cα is likely to provide additional certainty and a better 
choice at the next step, even weighed against the 20.1 
cost of C.

Combining the equations above, the subject should 
choose C if
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that is, if the benefit of the added certainty about being in 
x1 or x2 outweighs the cost 20.1 of sampling.

The two points at which the two curves in Figure 9E 
cross are thresholds cl and ch in cβ, such that probing is 
preferred when cl , cβ , ch. We will see that this sort 
of test is quite general for problems with this character, 
although the thresholds are normally applied to the belief 
states associated with the observations, rather than to the 
observations themselves.

Algorithmic Issues
The case of temporally extended choices in the face of 

incomplete knowledge is known to pose severe computa­
tional complications as the number of states grows larger 
than that for the simple problem described here. The dif­
ficulties have to do with the definition of the state of the 
subject. There are actually two ways to look at this, both 
of which are problematic. One way is to see the state as 
a summary of the entire history (and, for planning, the 
future) of the observations (say, cβ, cα, . . .) of the agent. 
Indeed, we indexed value functions such as V *α,cα,cβ

 by this 
history. The trouble with this representation is that the his­
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ratios of all the pieces of evidence cT 5 {c1, . . . , cT} given 
the two state possibilities, which can be written
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Finally, in discussing partially observable situations, we 
have so far assumed that the model is known. In general, 
of course, this might also be learned from experience. In 
the observable MDP, this simply requires counting state 
transitions (Equation 6B); however, when states are not 
directly observable, their transitions obviously cannot be 
counted. One family of algorithms for learning a model 
in the face of hidden states involves so-called expecta­
tion maximization methods (Dempster, Laird, & Rubin, 
1977). The algorithm takes a starting guess at a model and 
improves it, using two steps. In the first, the expectation 
phase, the model is assumed to be correct, and the infer­
ence algorithms we have already discussed are used to 
infer which (hidden) state trajectory was responsible for 
observed cues. In the second, maximization phase, these 
beliefs about the hidden trajectory are treated as being cor­
rect, and then the best model to account for them is inferred 
using a counting process analogous to Equations 6A and 
6B. These phases are repeatedly alternated, and it can be 
shown that each iteration improves the model, in the sense 
of making the observed data more likely under it (Neal & 
Hinton, 1998). In actuality, these model-learning methods 
require substantial data, are difficult to extend to practical 
online learning from an ongoing sequence of experience, 
and are prone to getting stuck at suboptimal models that 
occupy local maxima of the hill-climbing update.

Psychology and Neuroscience:  
Drift Diffusion Decision Making

In the original studies described in Figure 1B and Fig­
ure 7, which linked the activity of MT neurons to choice 
behavior, the monkeys observed the random dot motion 
displays for a fixed period of 2 sec before making their 
choice as to its direction of motion. The other version of 
the task, in which the the subjects are free to choose when 
to make their decision, has been the topic here. It is a ver­
sion of one of the most important developments in decision 
theory—namely, the SPRT (Gold & Shadlen, 2001, 2007; 
Ratcliff & Rouder, 1998; Shadlen et al., 2007; Smith & 
Ratcliff, 2004; Wald, 1947), which is a highly active area 
of investigation in both psychology and neuroscience.

The SPRT is designed for the circumstance in which 
subjects receive a stream of observations (like cβ, cα, but 
continuing potentially indefinitely: . . . , cτ, . . .), pertain­
ing to a binary discrimination (in our case, between x3, x1, 
both of which require one choice, and x4, x2, which require 
a different choice). We will call all the states that require 
L xL, and all those that require R xR. Subjects can choose 
at any time (picking L or R), or they can wait (C) and 
sample more information. In our framework, we would 
seek Bayesian optimal choices in the light of the costs; the 
SPRT is derived from the slightly different goal of mini­
mizing the average decision time for a given probability 
of getting the answer correct.

As in all of our examples, the critical observation is that 
the subjective state of the subject at stage T, which com­
prises the information required to calculate the current pos­
terior over the choices at that stage, depends only on the 
belief state or something equivalent to it. For the SPRT, this 
is normally represented as the accumulated log likelihood 
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Figure 10. Evidence accumulation in the lateral intraparietal 
area (LIP). This figure is taken from Gold and Shadlen (2007) 
and is based on data from Britten, Shadlen, Newsome, and 
Movshon (1992) and Roitman and Shadlen (2002) and shows the 
putative integration of opponent evidence from MT to construct 
a net log likelihood ratio associated with an SPRT-like threshold-
based decision. (A) Monkeys discriminate the direction of mo-
tion and respond by making saccades either into (Tin) or away 
from (Tout) the response field of LIP neurons. (B) The main plots 
show the average activity of LIP neurons as a function of mo-
tion strength or coherence, temporally triggered on the motion 
onset. Solid lines are Tin cases; dashed lines, Tout cases. Following 
a transient, the curves evolve in a manner roughly consistent with 
a putative log likelihood ratio. The inset plot shows the constancy 
of the activity of MT neurons, albeit from a different experiment. 
(C) These plots are triggered on the time of the saccade, to exam-
ine a threshold-like policy. From “The Neural Basis of Decision 
Making,” by J. I. Gold and M. N. Shadlen, 2007, Annual Review 
of Neuroscience, 30, p. 548. Copyright 2007 by Annual Reviews. 
Reprinted with permission.
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ences. The belief states rise more steeply when the motion 
is stronger. For 0% coherent motion, they rise only because 
it is the trials on which the monkey ultimately chooses the 
particular response field that are averaged, and so these 
should be the ones in which the evidence, by chance, ulti­
mately favors this direction.

Figure 10C shows the same conditions, but now trig­
gered on the saccades themselves. All the curves lie on 
top of each other, even for the 0% coherence case, coming 
near to a single point just before the saccade happens. This 
is exactly the behavior to be expected from the action of 
an upper threshold (like φh in Equation 27), which is ap­
plied directly to the firing rate, giving rise to a response 
(after a short delay). The same considerations as those 
in the Signal Detection Theory section make it reason­
able that the (trial-average) firing rate of single neurons 
could seemingly be directly associated with a response-
triggering threshold.

The dashed lines in these figures report the activity 
averaged over cases in which the monkeys chose the op-
posite direction (Tout). The simplest version of the idea 
is that the cells continue to report the accumulated belief 
state, which now tends to decrease rather than increase. 
However, responses are not triggered by crossing a lower 
threshold φ l; rather, there is an upper threshold φh for 
other neurons with response fields preferring the actual 
saccade location that is ultimately chosen.

The SPRT models cases in which information accumu­
lates over time from an external source. However, it and re­
lated models have been used by a wealth of very important 
studies (e.g., Ratcliff & McKoon, 2008; Smith & Ratcliff, 
2004) to characterize reaction times in cases such as search 
tasks, in which the external information is constant but in-
ternal processing associated with this information might 
unfold over time. There are also a number of influential 
connectionist (Usher & McClelland, 2001) and neural (Lo 
& Wang, 2006; Wang, 2002, 2006) models of this, together 
with mathematical theory about their interrelationship 
(Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006).

There is an active theoretical and experimental debate 
about the nature of coding and decision making associ­
ated with LIP in tasks that are more complicated than this, 
involving coherences that vary from trial to trial or differ­
ential rewards or priors for different options and noncon­
stant thresholds (e.g., Glimcher, 2004; Platt & Glimcher, 
1999; Yu, 2007). One trouble with the random-dot motion 
is that it is not clear what likelihood contributions to each 
direction of motion should arise from each segment of 
the stimulus; that is, the cues cτ from our idealization are 
internal to MT and, therefore, not well controlled experi­
mentally. A test of LIP’s report of an integration process 
with more discretely controlled cues showed promising 
but partial results (Yang & Shadlen, 2007), with extreme 
values of the summed log likelihood ratios failing to be 
quite correctly represented.

The SPRT is a seminal contribution to the theory of 
decision making, and indeed, there is a subfield study­
ing analytical methods rather different from the ones we 
have presented here for solving it (the basic results are 
beautifully reviewed in Shadlen et al., 2007). However, the 

given independent evidence and the trivial transition struc­
ture. Thus, a decision maker need only keep track of this 
running quantity, plus, at most, some function of the index 
of the current stage T. The SPRT is an extremely simple 
test that uses two thresholds, φ l and φh, and has
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or the equivalent for other representations of the belief state, 
which are typically monotonic in the log likelihood ratio.

We saw, in discussing Figure 9E, that the test for per­
forming C for the problem in Figures 8A and 8B has ex­
actly this form too. The surprising fact about the SPRT, 
which follows from the Markov property together with a 
constraint that the cues at each stage be independent and 
identically distributed, is that the thresholds φ l and φh are 
independent of the stage or time.

Implementing tests such as the SPRT or other tests 
associated with the basic task would, therefore, require 
integration of the belief state associated with the observa­
tions, plus a decision rule that will look like a threshold 
on the belief state.

Figure 10 shows schematic results of an experiment 
(shown as a cartoon in panel A) in which animals had a free 
choice of decision time, reporting their decision by mak­
ing a saccade from a fixation point to one of two targets 
(Gold & Shadlen, 2001, 2007; Roitman & Shadlen, 2002). 
The main curves in Figures 10B and 10C show the average 
activity of neurons in the lateral intraparietal area (LIP), a 
site that may report the output of the putative integrator. 
Neurons in this area have eye movement response fields 
(the gray patches in Figure 10A); that is, they fire selec­
tively when subjects are planning saccades to targets in a 
space of the sort employed in this experiment. The curves 
in Figures 10B and 10C show the mean firing rates of such 
neurons under various conditions over the course of trials.

Consider first the bottom inset to Figure 10B, taken 
from data in Britten et al. (1992), which shows the activity 
of MT neurons to random-dot motion (albeit in the fixed 
duration task) over the course of trials, locked to the mo­
tion onset for trials of different coherences (colors) in two 
opposite directions (solid or dotted). This is effectively a 
different way of looking at the data in Figure 7 and shows 
that following a transient response to the onset, their firing 
rates are rather constant.

Next, consider the solid curves in the main part of Fig­
ure 10B. These show cases in which the response was to 
the target defined by the LIP neurons (Tin cases, as in 
Figure 10A), for three different coherence levels (motion 
strengths). For the most coherent motion (highest; gold), 
following a (different) transient, this rises steeply. For less 
coherent motion (middle; red), this rises less steeply; for 
incoherent motion (lowest; blue), it rises still less steeply. 
The idea is that the LIP neurons report belief states for the 
choice associated with their response fields, perhaps rep­
resented as a log likelihood ratio computed by integrating 
opponent activity from MT neurons with opposing prefer­
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rules, might improve the prospects for earning reward on 
subsequent trials. This is a difficult balance, but its elegant 
decision-theoretic solution follows directly from the anal­
ysis we have already developed. In particular, ignorance 
of the rules can be treated in exactly the same way that we 
treated ignorance of the state: by planning on the basis of 
beliefs, rather than directly on the basis of observations. In 
turn, the value of exploration can be quantified just as we 
have previously evaluated information-gathering ( prob-
ing) actions like C.

The Computational Issue
Consider the one-state (x1) example shown in Fig­

ure 11A, known in this context as a two-armed bandit. 
This time, the rewards are binary (0 or 1), and a choice of 
action L or R delivers reward 1 with probability pL or pR, 
respectively. The agent starts out ignorant of these prob­
abilities, has a limited number (N ) of trials (say, 50) in 
which to play the game, and aims to maximize the total 
obtained reward. The dotted lines emphasize the iterative 
nature of the task. The explore/exploit dilemma arises 
here because pL and pR remain the same throughout the 50 
trials; choices not only earn immediate rewards, but also 
help the subject to learn the values of these probabilities, 
potentially improving subsequent choices.

If the subject starts with the additional prior knowledge 
that pL and pR were each drawn uniformly and independently 
between 0 and 1, clearly the expected value of either is .5 per 
choice, and the expected cumulative reward of blindly choos­
ing either 50 times is 25. However, given two options whose 
payoffs were chosen in this manner, the expected value of 
the better one (whichever it is) is actually higher—namely, 
2/3. If, therefore, the subject was told which one is better, he 
or she could exploit it and expect to earn about 33 rewards. 
Without this knowledge, but choosing so as optimally to bal­
ance exploring to find it and exploiting it, the subject can 
expect still to obtain about 96% of that value.

SPRT is brittle, in that most changes to the task will break 
its guarantees. In fact, even the case of more than two op­
tions is surprisingly complicated. This is one reason why 
here, we have framed this problem in terms of a more gen­
eral model of decision making in the face of uncertainty, 
which gives a similar account of this particular task but 
readily accommodates a host of elaborations. However, 
as has already been mentioned, the solutions can be ex­
tremely hard to compute or even approximate.

Viewing the random-dots task as a partially observable 
reinforcement learning problem also suggests broadly 
how the brain might solve the policy-learning problem 
for it (Ahmadi & Latham, personal communication; Gold 
& Shadlen, 2002): by using general reinforcement learn­
ing techniques—such as those described in the Markov 
Decision Problem section and putatively implemented by 
systems such as midbrain dopamine—over a belief state 
representation (as described here for LIP). In other work, 
the idea that the dopamine system might learn by employ­
ing a belief state representation has also been used to ex­
plain how it might cope with partial observability arising 
from the unpredictable timing of cues and to explain some 
characteristics of dopaminergic responses in such situa­
tions (Daw, Courville, et al., 2006).

Exploration and Exploitation

So far, we have considered exploitation: choices that 
maximize the expected single-episode return, given what­
ever is known about the rules by the time of that episode. 
As we have already mentioned, a more ambitious subject 
might wish to maximize lifetime utility, earning as much 
reward as possible over a whole series of episodes. This is 
exactly the goal in the task shown in Figure 1C.

Doing so requires balancing exploitation against explo-
ration: taking choices that might not be expected to pay off 
as much immediately but, by improving knowledge of the 
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last choice (when rL 1 uL 1 rR 1 uR 5 N 2 1), the value 
of each action is just its chance of immediate reward, 
given by Equation 28. Here, the subject should simply 
exploit by choosing the option with the better immediate 
reward expectation.

In contrast, further from the end of the game, explora­
tion has value. To see why, consider a game in which pR is 
known to be exactly .5 and we focus only on learning pL. 
At the start of the game, the expected immediate payoff of 
.5 is the same for both L and R. However, the uncertainty 
surrounding this value for action L represents an oppor­
tunity: If the option’s true reward probability turns out to 
be more than .5, finding this out will allow the agent to 
choose it, earning more. On the other hand, if it turns out 
to be less, the agent can always just go back to choosing 
action R. Therefore, even though the immediate expected 
return for L is the same as that for R, the information 
gained by choosing it gives the uncertain option a higher 
expected future return. This can be seen by considering 
the future value terms V * in Equation 29: The future value 
V *〈1,0,0,0〉 after a win on L will involve another left choice 
now expected to pay off with probability 2/3 (from Equa­
tion 28 with rL 5 1, uL 5 0); but even after losing on L, 
the future value V *〈0,1,0,0〉 cannot be worse than that coming 
from the choice of the safe option R.

The extra future value from exploration means that it 
can be, on balance, worth choosing an option that is more 
uncertain, even if it has a lower immediate reward expec­
tancy than does the alternative. Figure 11B illustrates this 
point: It shows the total expected values (over N 5 50 
trials; normalized per trial) of the first choice of a range 
of uncertain options L with different expected means that 
were generated by giving the agent seven observations 
of L prior to the game, in different mixtures of wins and 
losses. The dotted line shows the value of choosing the 
known 50% reference R.

Figure 11C illustrates directly how the value of explora­
tion follows from uncertainty, by plotting how the value 
of choosing L increases monotonically as the uncertainty 
about its payoff probability increases, while holding the 
overall expected chance that it will pay off fixed at 50%. 
Here, the agent is given extra observations of equal num­
bers of wins and losses on L prior to starting the game; 
uncertainty is increased by reducing these numbers.

In short, exploration is valuable because it has the pos­
sibility of improving choices on future episodes, earning 
more reward in the long run. This is exactly the same rea­
son why probing to reduce state uncertainty was worth­
while in the example in the previous section. In principle, 
the same analysis extends directly to exploration in un­
known multistep decision processes such as those con­
sidered in the previous section, in which case the belief 
state includes beliefs about the transition probabilities, as 
well as the rewards. A different form of probing arises in 
this case, in that actions can be taken to reach areas of the 
state space that are poorly explored in order to learn about 
them. In practice, the exact solution to even the smallest 
such problems is intractable, due to the continuous nature 
or the high dimensionality of the belief state.

We can define this optimal balance, and compute its 
expected value, using dynamic programming in the space 
of belief states. This proceeds just as in the previous sec­
tions, except that the belief is over the rules ( pR and pL), 
rather than over the state xβ. What we arrive at is a form 
of master policy specifying which option to choose, given 
any current beliefs about the rules.

In this task, pR and pL can be estimated at any stage, 
using counts of the number of times each option was re­
warded and unrewarded (e.g., rL and uL for rewarded and 
unrewarded choices on the left). Since the prior distribu­
tion over pL is uniform, the posterior distribution (the 
equivalent of that in Equation 10) is known as a beta dis­
tribution, with parameters rL11 and uL11. Various prop­
erties flow straight from this, such as the posterior mean, 
which is one estimate for pL:
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Importantly, we can denote any belief state by a vector 
of counts, 〈rL, uL, rR, uR〉; together, these counts are suf­
ficient statistics for the entire history of the game.

Let us, then, consider the value Q〈0,0,0,0〉(L) of choos­
ing L at the start of the game. Either the choice is rewarded, 
in which case the new belief state will be 〈1,0,0,0〉, or it 
is not rewarded, in which case the belief state will be 
〈0,1,0,0〉. Crucially, we know the probability of attaining 
either result: It is just that given by Equation 28—that is, 
50%. That is, Equation 28 does not just give the subject’s 
best guess as to the rules: Since it arises from a correct 
inference, given a presumptively true prior about how the 
rules were generated, this is also the actual probability, 
over games, that a choice will be rewarded, conditional on 
what the subject has observed so far. Therefore, working 
toward the same sort of recursion as that in Equation 4 
by using the optimal values V *〈1,0,0,0〉,V *〈0,1,0,0〉 of the belief 
states consequent on either option, we can write

	 Q V V
0 0 0 0 1 0 0 0 1 0

0 5 1 0 5 0
, , , ,0, , , ,

L* *. .( ) = ⋅ +( ) + ⋅ +
,,0

*( )	(29)

or, more generally,

	

Q
r

r u
V

r u r u r u rL L R R L L R, , ,
L

L L
, , ,

L* ( ) =
+

+ +
⋅ + +

1

2
1

1 uu

r u r u

u

r u
V

R

L L R R

L

L L
, , ,

,

*

*

( )
+

+
+ +

⋅ +( )+
1

2
0

1
	

and similarly for the value of R.
Finally, just as in Equations 3A and 3B, the value V * of 

a belief state is just that of the better choice there,
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and we complete the recursive definition by defining the 
future values Q* and V * as zero at the end of the game, 
when no further choices remain.

Together, these equations quantify the explore/exploit 
trade-off. First, because of the boundary condition, at the 
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tors as the degree of randomness or the lucrativity of the 
uncertainty bonuses in order to perform well. Although 
finding the optimal exploratory policy is not normally 
considered a learning problem (since the goal, after all, 
is lifetime optimality), learning of a sort is implicated in 
tuning the parameters of the approximate approaches to 
improve their performance.

Psychology and Neuroscience
Outside the field of ethology (e.g., Mangel & Clark, 

1989; McNamara & Houston, 1980; Pyke, 1984) exempli­
fied by some early work on the exploration of birds (Krebs, 
Kacelnik, & Taylor, 1978), there is relatively little direct 
evidence as to how animals or humans explore. There are, 
however, a number of models. In this vein, Kakade and 
Dayan (2002) noted that dopamine neurons respond to 
novel but affectively neutral stimuli with a burst–pause re­
sponse; they suggested that this pattern could be explained 
if the neurons were reporting the effect on reward predic­
tion error of stimuli that were up-valued due to a novelty 
or uncertainty bonus.

Subsequently, in the task shown in Figure 1C, Daw, 
O’Doherty, et al. (2006) sought to test a similar idea more 
directly, in an fMRI study of humans making choices for 
money in a four-armed bandit task similar to the two-
armed bandit task analyzed above. Subjects had additional 
uncertainty and pressure to explore, because the bandits’ 
values were constantly changing. The authors sought 
to quantify the effect of this uncertainty on exploratory 
choices by fitting subjects’ trial-by-trial behavior with a 
reinforcement learning model incorporating uncertainty 
bonuses but found no such influence. Instead, the subjects’ 
exploration was best explained by a random exploration 
model, the so-called softmax, which, for two choices, in­
volves a variant on Equation 8 with

P a Q L Q R
r u r u r u r u1 =( ) = ( ) − ( )


L

L L R R L L R R, , , , , ,
σ β 


{ },

where β . 0 regulates the strength of competition—that 
is, the extent to which a small difference in expected val­
ues of the actions translates into a large difference in their 
probability of choice. This parameter is therefore another 
of the more primitive ways of trading off exploration and 
exploitation.

The neural data supported a similar conclusion. Bonus 
models such as that of Kakade and Dayan (2002) (or in­
deed, the optimal decision theoretic analysis) quantify the 
value of exploration and exploitation in terms of a single 
currency of expected future reward. They therefore predict 
that exploratory value should be reported just as is exploi­
tation—for instance, through dopaminergic spiking. Con­
trary to this expectation, Daw, O’Doherty, et al. (2006) 
found that although dopaminergic efferent areas such as 
the striatum were activated by predictions and prediction 
errors for money, they exhibited no additional activation 
that might reflect bonus values involved in exploration. 
Instead, separate areas—the frontal pole and, also, an area 
of the intraparietal cortex—were activated preferentially 
when subjects explored rather than exploited (Figure 12). 
Here, exploration was operationally defined as a choice 

Algorithmic Issues
So far, we have characterized the computational issues 

underlying exploration as concerning ambition—that is, 
optimizing reward accumulated across episodes, rather 
than myopically exploiting within each. In this respect, 
the problem can be seen to relate to issues of temporal 
discounting: An unambitious subject is like an impatient 
one, who discounts future reward sharply. In practice, 
however, even for minimally patient subjects, the limiting 
constraint on exploratory behavior is more likely to be the 
extreme complexity of decision-theoretically optimal ex­
ploration. Rather than differences in discount preferences 
or goals, different exploratory behaviors can arise from 
different algorithmic approaches to the decision problem. 
For instance, ignoring uncertainty about the rules is what 
enables many of the standard reinforcement learning algo­
rithms discussed in the Markov Decision Problem section 
to work; but this can just as easily be viewed as a simplify­
ing assumption that precludes optimal exploration, rather 
than as a myopic goal.

In fact, even though the decision-theoretic analysis of 
exploration is formally equivalent to that of partial observ­
ability—–indeed, leading to similar practical problems in 
actually solving for the optimal policy—researchers have 
developed a number of special purpose approaches to the 
exploration problem.

First, Gittins (1989) showed how a subset of explora­
tion problems could be simplified by computing an index, 
similar to a Q value, for each action separately in a smaller 
(although still nontrivial) subproblem. The approach 
takes advantage of a sort of independence between the 
actions arising from the problem structure. It works for 
multiarmed bandit problems of the sort described above, 
although only when the number of trials, N, is either in­
finite (and future reward is discounted exponentially) or 
unknown with a constant hazard function—that is, a con­
stant probability per trial of terminating.

However, most problems, including exploration in 
multistep decision problems, cannot be simplified this 
way. In reinforcement learning, heuristic approaches are, 
therefore, common, more or less qualitatively inspired 
by the optimal analysis above. Some approaches evalu­
ate actions according to their expected exploitative value 
plus an uncertainty bonus intended to capture the addi­
tional value of exploration (Dayan & Sejnowski, 1996; 
Dearden, Friedman, & Russell, 1998; Kaelbling, 1993; 
Sutton, 1990). Authors differ as to how uncertainty should 
be estimated (which is itself not simple in this context) 
and the exact form of bonus itself. One particularly sim­
ple variation is the novelty bonus (e.g., Ng, Harada, & 
Russell, 1999), which approximates an uncertainty bonus 
for unexplored options simply by initializing estimates 
of their values “optimistically” high, encouraging their 
exploration until their true value is discovered.

A more primitive alternative, which is less well grounded 
in the analysis above, is to encourage exploration more 
blindly by introducing some sort of randomness into the 
choice process.

One aspect of all of these approximate approaches is 
that they typically require careful adjustment of such fac­
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aminergic neurons are activated by novelty (although, of 
course, BOLD activations are far from direct measure­
ments of dopaminergic activity). One possibility, sug­
gested by the Kakade and Dayan (2002) model and also by 
a follow-up imaging study (Wittmann, Daw, Seymour, & 
Dolan, 2008), is that the brain approximates the value of 
exploration by assigning bonuses for novelty, rather than 
for uncertainty. Novelty bonuses are particularly easy to 
compute—they require only optimistic initialization—but 
they are only an imperfect proxy for uncertainty. For in­
stance, such bonuses would likely not be engaged by the 
task shown in Figure 1C and Figure 12, because the explo­
ration there was mandated by changing reward probabili­
ties in familiar bandits, rather than by explicit novelty.

Finally, if organisms indeed use some sort of random 
exploration, rather than exploration guided toward uncer­

of an option other than the one for which the subject was 
estimated to expect the most reward. Together with the 
behavioral results and other imaging findings suggesting 
the involvement of anterior prefrontal areas in process­
ing uncertainty (e.g., Yoshida & Ishii, 2006) and of the 
intraparietal cortex in belief states (as discussed above), 
this neural dissociation suggests that rather than being en­
couraged by a bonus reported in a common currency with 
exploitative value, exploration in this task somehow draws 
on distinct neural processes.

It is certainly possible that high-level regulation of the 
sort associated with the frontal pole overrides a prepotent 
drive to exploit; however, we should stress that it is not 
clear from these data what function, if any, these areas 
causally contribute to exploration. It is also unclear how 
to reconcile these findings with the observation that dop­
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for instance, restricting the number of basis functions 
in the representation of value functions, discretizing the 
belief state very coarsely, or restricting the length of the 
history of past observations used to create an effective 
state space. However, there are few broad results about 
the consequences of these approximations for the quality 
of control.

From a neural and psychological perspective, there are 
many open issues. One question under active debate in­
volves the way in which uncertain information, such as 
belief states, might be represented in the activity of popu­
lations of neurons and support the basic computations of 
Bayesian decision theory, such as belief updating (Equa­
tion 26) and the calculation of expected values (Equa­
tion 22) (Beck, Ma, Latham, & Pouget, 2007; Beck & 
Pouget, 2007; Deneve, 2008; Jazayeri & Movshon, 2006; 
Ma et al., 2006; Rao, 2004; Sahani & Dayan, 2003; Zemel, 
Dayan, & Pouget, 1998). Conversely, it is as yet unclear to 
what extent subjects can perform these operations in rich 
domains (for instance, with multimodal posterior distribu­
tions), let alone get near to an optimal balance between 
exploration and exploitation.

A second important point concerns the existence and 
interaction of different classes of mechanisms and sys­
tems involved in decision making. We have mentioned 
studies in rats suggesting that model-based mechanisms 
and goal-directed control (involving the medial prefron­
tal cortex and the dorsomedial striatum) and model-free 
mechanisms and habitual control (involving the dorso­
lateral striatum and dopaminergic neuromodulation) co­
exist and, indeed, compete to control choices (Balleine 
et al., 2007; Daw et al., 2005; Dickinson & Balleine, 2002; 
Killcross & Coutureau, 2003). As far as exploitation is 
concerned, these two mechanisms represent two ends of a 
spectrum trading off the statistical efficiency of learning 
(favoring model-based control over model-free control, 
which learns by bootstrapping) for the computational effi­
ciency of use (favoring model-free methods, which do not 
have to solve dynamic programming problems online). 
Other structures may also be involved—for instance, with 
the hippocampus contributing to control based on epi­
sodic memory (Lengyel & Dayan, 2008). The existence 
of discrete areas in exploration (Daw, O’Doherty, et al., 
2006) is less expected from the perspective of Bayesian 
decision theory, in which the benefits of exploration ap­
parent in Figure 9 are calculated of a piece with the ben­
efits of exploitation.

To summarize, decision theory is one of the few areas 
in which there is a tight and productive coupling between 
(1) normative theory from statistics, operations research, 
artif icial intelligence, economics, and engineering, 
(2) behavioral results in ethological and psychological 
paradigms, and (3) electrophysiological, pharmacologi­
cal, and even anatomical neural data. In a surprising set of 
cases, algorithmic ideas from the former disciplines have 
found relatively direct psychological and neural instantia­
tions in the latter ones, although this obviously need not be 
the case, particularly as the computations and algorithms 
get more complicated. The fruits of 50 years of analytical 

tainty, the dynamic regulation of the degree of random­
ness becomes particularly crucial. Although there is no 
direct evidence how this might be conducted, theoretical 
speculation has focused on the neuromodulator norepi­
nephrine as a potential substrate for such control (Cohen, 
McClure, & Yu, 2007; Doya, 2002; McClure, Gilzenrat, 
& Cohen, 2006).

Conclusions

We have reviewed some basic results in decision theory 
as they pertain to data in the psychology and neuroscience 
of choice. We considered the central computational issues 
surrounding the depths of the subjects’ ignorance about 
the rules of the tasks they face and their immediate state 
within the task, and also the heights of their ambition as 
to whether to try to optimize exploration and exploitation 
jointly. We also considered a number of different algo­
rithmic dimensions—most importantly, separating model-
based algorithms—which make direct, computationally 
expensive use of the (perhaps estimated) rules of the task 
to work out optimal actions—and value-or policy-based 
model-free algorithms that do away with these complexi­
ties, at the expense of being less statistically efficient at 
turning information from the world into good actions. We 
illustrated these issues with a number of paradigmatic 
special cases in which we could also report relevant psy­
chological and/or neural data.

A main focus of this review has been to highlight the 
commonalities among a large class of problems through 
the medium of Bayesian decision theory. Even though cer­
tain particular problems, such as the SPRT, admit particu­
larly simple solutions (which can be analyzed by special 
methods; Shadlen et al., 2007), apparently straightforward 
extensions take us back to the general case. Broader solu­
tions involve turning observations into beliefs about the 
state of the subject in the environment and handling se­
quential decision problems that involve optimization over 
multiple steps. We will end by considering some of the 
classes of question under current investigation.

From a computational perspective, the most interest­
ing and pressing direction for future studies concerns the 
construction of a relevant state space. We have stressed 
the notion of a belief state in the context of a probabilistic 
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research into decision making are being actively plucked 
in the form of biologically based models. Indeed, the high-
quality choices made by animals and humans in environ­
ments replete with extreme computational challenges 
coming from uncertainty about states and rules are poised 
to provide a whole new impetus toward the theory of ap­
propriate approximation.
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