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The elastic net, which has been used to produce accounts of the forma- 
tion of topology-preserving maps and ocular dominance stripes (OD), 
embodies a nearest neighbor topology. A Hebbian account of OD is not 
so restricted-and indeed makes the prediction that the width of the 
stripes depends on the nature of the (more general) neighborhood re- 
lations. Elastic and Hebbian accounts have recently been unified, rais- 
ing a question mark about their different determiners of stripe widths. 
This paper considers this issue, and demonstrates theoretically that it 
is possible to use more general topologies in the elastic net, including 
those effectively adopted in the Hebbian model. 

1 Introduction 

Durbin and Willshaw’s (1987) elastic net algorithm for solving the trav- 
eling salesperson problem (TSP) is based on a method for developing 
topology-preserving maps between the eye and brain (or lateral genicu- 
late nucleus and cortex) due to von der Malsburg and Willshaw (1977) 
and Willshaw and von der Malsburg (1979). The elastic algorithm in- 
spired a host of similar ones aimed at different optimization tasks, one of 
which is this topology problem, augmented by two associates-forming 
ocular dominance stripes and orientation selective cells (Goodhill and 
Willshaw GW 1990; Durbin and Mitchison 1990). 

SimiL. (1990, 1991) and Yuille (1990) looked at the relationship be- 
tween elastic algorithms and Hebbian inspired ones (Hopfield and Tank 
19851, showing that both mechanisms could be viewed as optimizing 
the same functions, albeit implementing differently the constraints (for 
the TSP, that each city should be visited exactly once). More recently, 
Yuille, Kolodny, and Lee (YKL 1991) repeated the feat and aligned elastic 
and Hebbian (Miller, Keller, and Stryker, MKS 1989) accounts of ocular 
dominance. 

The elastic net for the TSP consists of a set of points on a compu- 
tational rubber band, pulled by forces toward the cities that have to be 
visited and by tension. The energy in a stretched rubber band is pro- 
portional to the square of its extension, which is incorrect for modeling 
the length of a tour (proportional just to the extension, in this model), 
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but Durbin (cited as a personal communication in Yuille 1990) suggests 
that changing the elastic net to use the absolute distance rather than its 
square is infelicitous. Hopfield and Tank’s (1985) model does in fact use 
the actual distances, and so, as they lucidly discuss, SimiC‘s and Yuille’s 
match between the elastic and Hebbian algorithms is not perfect. 

The nature of the topologies is even more mysterious in the match 
between Hebbian and elastic algorithms for ocular dominance. Topology 
enters MKS’ model through a cortical interaction function, which involves 
more than just the nearest neighbors. Conversely, these are the natural 
topology for the elastic version. This is one factor leading to an apparent 
difference between the predictions of MKS and GW. MKS suggested that 
the width of ocular dominance stripes is governed by the width of the 
cortical interaction function, whereas GW predicted that it is dependent 
on the relative correlations within and between the two eyes. 

This paper considers the issue by examining the two models of ocular 
dominance. The next section reviews YKLs analysis, and Section 3 looks 
at generalizing the nearest neighbor topology, testing the generalization 
in a onedimensional version of ocular dominance. 

2 Yuille, Kolodny, and Lee’s Analysis 

YKL un* the two models through the medium of a single cost function, 
which defines a generalized deformable model:’ 

E [VL,  V R ,  Y] 

where V$ and V: are the variables matching the ith unit in the left and 
right eyes (more correctly lateral geniculate nucleus layers), respectively, 
to the ath unit in the cortex, xf and x; are the retinal “positions” of the 
ith unit in the left and right eyes, ya is the “position” of the ath unit in the 
cortex, and Y I {yo}. As GW and YKL say, these “positions” are defined 
somewhat abstractly; however, they are intended to capture something 
like the correlations between the firings of the retinal and cortical units. 
u is a constant that governs the relative weighting of the first term, which 
measures how close, correlationally, matching cells are, and the second 
term, which measures how close neighboring cortical cells are. This cost 
function owes its power of unification to having both matching V and 
continuous Y variables. 

The constraint on both retinal and cortical fields on a solution-that 
each cell should have a unique partner-is effectively duplicated in these 

‘For convenience, this paper will look at the onedimensional versions of the vari- 
ous tasks. Extensions to the second dimension are straightforward, but messy, Also, 
YKL separate out the retinotopy dimension-whereas it is incorporated here into the 
continuous variables x and Y. MKS arbor functions are also neglected. 



394 Peter Dayan 

two sets of variables.* Minimizing E subject to these constraints leads 
to the optimal map. Hebbian and elastic methods are effectively differ- 
ent ways of minimizing this function, imposing different constraints in 
different manners on the way to deriving a solution. Both use Hopfield 
and Tank's key insight for the TSP that the constraints need not all hold 
throughout the optimization process, so long as they are guaranteed to 
be satisfied by the time the algorithm terminates. 

The reduction to an elastic net comes from eliminating the V L  and V R  
variables using a Gibbs trick. The probability of a particular assignment 
of V and Y is declared to be proportional to e-f lEIVL~VR~~,  and these terms 
are summed over the set of V R  and V L  that satisfy the partial constraint 
that each cell in the cortex maps to a unit in either the left or the right 
eye, but not both. The resulting elastic energy function is3 

v + 5 c IYrl - Ya+*12 
a 

(2.2) 

Note that the topology term survives this reduction intact, since it does 
not depend on the V .  

The alternative to eliminating the V variables is to eliminate the Y. 
YKL do this by regarding E[VL,VR,Y] as a quadratic form in Y, which 
has a minimum at Y,[VL, VR]. Imposing the normalization constraint (see 
MKS) that each cortical cell receives a constant weight from the retina: 

gives 

where X L  = {#} and X R  = {xf}, and 

21n terms of these variables: for each a, one of the collection over i of { V i ,  V j }  should 
be 1 and al l  the vt 0, and for each i the same should be true of the collection,over a. 
Also, for each a, ya should be the same as one # or .;", and for each i, there should be 
different 111 and a2 such that yal = # and y, = .;". 

3Here and throughout, boundary conditions are avoided by assuming toroids and 
using modulo arithmetic. 
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embodies the toroidal nearest neighbor topology. Therefore, at the mini- 
mum 

YT = (2 + q - 1  (ULXLT + URXR’ 1 
where the inverse exists for v > 0. Substituting back into equation 2.1, 
imposing the constraints in equation 2.3, and ignoring terms that do not 
depend on the U, gives 

MKS’ Hebbian system regards the output oa of cortical cell a as coming 
partly from the input from the two eyes iL and iR through the connection 
matrix, [ULiL + URiR],, and partly from the other cortical cells [Dola (MKS 
call C = (Z - D)-’ the cortical interaction function): 

o = VLiL +uRiR +DO 
= (1 - D)-’ (W + uRiR) (2.5) 

Hebbian learning changes U$ proportional to (oaik), where the angle 
brackets represent an averaging process. Defining 

YKL show that the U are moving down the gradient of 

Djk LL - - ( i j  4. i k ) ,  *L qt = (iFi;), and DF = (iii,”) 

1 R RDRR + - D), vai’bj ij 

+ 2(Z- D)ab vaivbj ij (2.6) 
Compare equations 2.4 and 2.6. YKL argue that for the intent of com- 
paring minima, one can identify K - lxf - x ~ I ’  with D f  and similarly 
for and Df“,  for some constant K. Therefore, if -23 = v7 ,  these 
two expressions will have the same interesting minima-so, provided 
that the constraints are properly satisfied during learning, they should 
lead to the same ultimate solution: Note that this can make the effective 
correlations negative at some distance, which, as MKS discuss, allows 
correlation width to determine stripe width in their model. 

The cortical interaction function calculated from 7 (using v = 3/41 
is shown in Figure 1. Although YKL show that this is enough to pro- 

1 L RDLR } 

4YKL actually derive a different condition for matching-that (‘T = (Z - D)-I for 
some constant <. The truth of this would appear to depend on Caij ViV:lx; - xfl’, and 
the similar expressions for V R V R  and VRVL, being constant over the V that satisfy the 
partial constraints. 



396 Peter Dayan 

a 

b 

-0.1 L Distance 

I 

Figure 1: Cortical interaction functions. (a) Elastic topologies. (b) MKS topolo- 
gies. 

duce interesting ocular dominance stripes, it is clearly not the same as 
MKS cortical interaction function, which' is shown in the same figure. 
One reason why elastic and Hebbian models make different predictions 
about the factors determining stripe widths is also obvious-the cortical 
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interaction function corresponding to the elastic topology is immutable. 
The next section considers alternatives. 

3 Generalizing Elastic Topologies 

The shape of the interaction function comes from the term Ca lya - ya+1l2 
in equation 2.1. A more general quadratic form for this is 

For instance, if S = 7, then this reduces to exactly the same expression 
as in equation 2.1. Note also that this formulation is sufficiently general 
as to model the case of two-dimensional retinas and cortex, although it 
does not extend to nonquadratic cases such as the length rather than the 
square of the length for the TSP. 

Such a change has little effect on the elastic energy function from 
equation 2.2, which becomes 

However, differentiating E as a quadratic form to eliminate the Y leads 
to 

(2 + .S)Y,T = VLXLT + PXRT 

assuming that S is symmetric. If S also has a similarity property such 
that x b ( 2 +  ~43);' does not depend on u: then substituting back in gives 
the energy function 

As above, setting D = -US to unify the elastic and Hebbian energy 
functions allows Hebbian modeling of arbitrary elastic topologies and 
vice versa. 

One way of generating elastic topologies is to consider them in terms 
of an estimation problem. Say that X b E a b Y b  is an estimate of ya. Then, 
the total square estimate error is 

2 c Iya - c 6 y b l  = c[(I - E)T(z - E)]abyTyb 

5This holds if the topology is the same over the whole cortex. 

b ab 
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Comparing this with equation 3.1 shows that S = (2-&)T(I-&). 7 can be 
generated this way, by making &,,(,,+I) = 1 and the remaining components 
0. Another example comes from estimating y,, as the average of both its 
neighbors, that is, setting 

1 1 b = a + l , b = a - l  
= 2 0 otherwise 

6 b = a  

l l  0 otherwise 
(3.2) -4 b = a + l ,  b = a - l  

1 b = a + 2 ,  b = a - 2  

{ 
;I S,,b = 4 

whose associated cortical interaction function more closely resembles the 
MKS Mexican hats (see Fig. 1). Note that although for any & there is a 
unique associated S and therefore C ,  the same is not true the other way 
around. Symmetric S will only have a square root if all its eigenvalues 
are positive, and it is easy to generate seemingly plausible C for which 
this is not the case. 

MKS generated their C as 

(3.3) 

where K = 1/7.5 and D = 7 was the width of their arbor function (the 
number of cortical cells to which a retinal cell would connect). Changing 
D changes the length scale of the cortical interaction, and so changes the 
optimal stripe width. Figure 1 shows graphs of the elastic net cortical 
interaction function, the Mexican hat one from equation 3.2, and two 
generated from M f f i n e  with D = 7 and one with D = 14. 

One way to test the generalized topology terms is to use them in the 
cost function of equation 2.1 and to consider the optimal stripe width for 
the ocular dominance maps this defines? It is convenient to study the 
one-dimensional case, since the interesting optima are just “ Z  folds, as in 
the left-hand side of Figure 2 (after GW). Maps inspired by the sideways 
” U  shape on the right-hand side of the figure will, in many cases, have 
lower costs than these-however, they are ruled out as the cortex does 
not traverse the retinas appropriately. Given particular spatial locations 
of the retinal cells, it is straightforward to calculate the cost per unit 
length of Z-folds of varying widths-the width that minimizes this is the 
one both Hebbian and elastic algorithms should find. 

GW show that the optimal width of a stripe for the basic elastic topol- 
ogy is 21/d, where I is the separation of the two retinas and d is the dis- 
tance between two cells within a retina. simulations verified this, using 
the elastic net topology 7. Note that increasing I increases 1.: - xfI2 in 
the third term of equation 2.4, leaving the other distance terms unaltered. 

61f the appropriate constraints are satisfied, one of the equivalent equations such 
as 2.4 can also be used. 
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Cortex 

Left retina - d Left retina 

Figure 2: One-dimensional ocular dominance maps. (a) "Z-fold stripes. 
(b) Optimal map. 

For the MKS topology, the optimal width should increase with D, 
the length scale of the cortical interaction function. The analysis above 
suggests that it should also increase with I ,  given the common energy 
function. Both of these are demonstrated in Figure 3, which shows how 
the optimal Z-fold stripe width w varies with both I and D. With the 
exception of the patch for low I and high D, this is monotonic in both 
variables. 

Note that as D increases, the matrix C becomes increasingly singular, 
which forces implausible constraints on the cortical connectivity. Also 
small stripes are favored for large D and small I ,  since they benefit more 
from the negative contributions from the influences of widely separated 
cells than they lose through the cost of switching between the retinas. In 
fact the cost function becomes at least trimodal in the width of the stripes 
in this regime; one optimum is at the minimum stipe width, another is 
at the sideways " U  of Figure 2, and the third is at the width that would 
preserve monotonicity in Figure 3. 

4 Discussion 

It is natural to wish to incorporate more extensive topologies into the 
elastic net than the nearest neighbor one with which it is presently en- 
dowed. One particular motivation for this comes from the apparent con- 
flict between the predictions of stripe width from the elastic and Hebbian 
theories of the development of ocular dominance. However it is impor- 
tant in other cases such as graph matching in von der Malsburg's (1981) 
correlation theory of brain function. In this, fine scale temporal correla- 
tions in the firing of cells in a field are determined by the topology of the 
object being represented on that field, and inference consists of matching 
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Figure 3: Optimal Z-fold stripe width w versus length scale D of the cortical 
interaction function and distance I between the retinas. The cost function values 
E were calculated from equation 2.4, replacing (Z+u7)-' with C generated using 
equation 3.3. 

this graph with an isomorphic one on another field. If the fine scale tem- 
poral correlations embody more than nearest neighbor correlations (and 
inference will be faster if they do), then describing this process in elastic 
terms will require a more general topology too. 

This paper has used the formalism of generalized deformable models 
to consider how general topologies fit into an elastic net framework. It 
demonstrates that this is effective by showing how the optimal stripe 
widths theoretically change with changing cortical length scales. How- 
ever, it does remain to be seen which of the alternatives lead to stable 
elastic algorithms. Designer topologies are as simple to specify as de- 
signer error functions, and it will be interesting to see if there is an 
equivalent wealth of well-motivated examples. 
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