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Axon guidance by molecular gradients plays a crucial role in wiring
up the nervous system. However, the mechanisms axons use to
detect gradients are largely unknown. We first develop a Bayesian
‘‘ideal observer’’ analysis of gradient detection by axons, based on
the hypothesis that a principal constraint on gradient detection is
intrinsic receptor binding noise. Second, from this model, we
derive an equation predicting how the degree of response of an
axon to a gradient should vary with gradient steepness and
absolute concentration. Third, we confirm this prediction quanti-
tatively by performing the first systematic experimental analysis of
how axonal response varies with both these quantities. These
experiments demonstrate a degree of sensitivity much higher than
previously reported for any chemotacting system. Together, these
results reveal both the quantitative constraints that must be
satisfied for effective axonal guidance and the computational
principles that may be used by the underlying signal transduction
pathways, and allow predictions for the degree of response of
axons to gradients in a wide variety of in vivo and in vitro settings.

axon guidance � chemotaxis � growth cone � nerve growth factor �
nerve regeneration

Endogenous chemical gradients are a key source of informa-
tion used by developing axons when wiring up the nervous

system. Furthermore, artificially generated gradients are a po-
tential therapy for restoring connectivity after neural injury.
Many of the molecular gradients that direct axons in the
developing nervous system have recently been identified, to-
gether with some of the signaling pathways through which they
operate (1–8). However, our understanding of the mechanisms
by which axons actually detect gradients remains qualitative.
This limits our ability to predict both the response of axons when
gradients are perturbed and the optimal parameters for promot-
ing regrowth after injury.

To be guided by a gradient, axons must be able to detect small
spatial variations in receptor binding. This requires integrating
signals from spatially distributed receptors to make a decision as
to the direction of the gradient. Resources within the growth
cone can then be marshaled appropriately by this information,
for instance, via the production of steep gradients of intracellular
signaling molecules (8). Although there is evidence for a role for
gradients of molecules such as Ca2� in this latter step (9, 10), very
little is known about the computations required to accurately
make the initial decision.

What constrains the ability of an axon to make a decision
regarding gradient direction? Both experimental and computa-
tional work addressing chemotaxis in related systems such as
bacteria, leukocytes, and Dictyostelium has identified the fun-
damental role of noise in limiting gradient perception. Noise can
arise from low numbers of ligand molecules, from the stochastic
nature of receptor binding, and from intracellular signaling
pathways (11–16). Such constraints must also apply to axonal
gradient sensing (17, 18), but the implications of this for under-

standing axonal responses both in vivo and in vitro have not been
systematically explored.

Noise in gradient sensing is a form of uncertainty in sensory
information processing. In recent years, a ‘‘normative’’ (usually
Bayesian) approach has proved to be a powerful technique for
understanding how biological nervous systems deal with sensory
uncertainty (19–22). This approach dissects the computational
logic of complex behaviors by comparing actual, observed perfor-
mance with the best performance possible given the information
that is available to this system. However, barring a few exceptions
(e.g., refs. 23, 24, and 25), such an approach has been applied
predominantly at the systems, rather than molecular, level.

In the first part of this article, we develop a Bayesian model for
the optimal determination of gradient direction based on combin-
ing measurements from noisy, spatially distributed receptors. This
model allows us to predict analytically the proportion of correct
decisions an axon should make about gradient direction as a
function of gradient steepness and absolute concentration. In the
second part of this article, we directly test this prediction. In
particular, we perform the first large-scale experimental investiga-
tion of the dependence of the response of rat early postnatal dorsal
root ganglion (DRG) axons on the steepness and concentration of
gradients of nerve growth factor (NGF). We examine the strength
of response of DRG axons for 4 different NGF gradient steep-
nesses, each over several orders of magnitude of NGF concentra-
tion (38 different combinations of steepness and concentration in
total), by using an assay we recently introduced that allows precise
control over these parameters (26, 27). This provides by far the
largest dataset yet presented for how axonal response to gradients
varies with gradient parameters. Remarkably, these data fit well
with our Bayesian model, thus directly validating our analytical
prediction for chemotactic performance.

Results
Bayesian Model of Spatial Gradient Sensing. A fundamental con-
straint on the performance of any chemotaxing system is random
fluctuations in the pattern of receptors that are bound at any
instant (11, 16). This means that, even if there were no thermal
noise in the number of ligand molecules available for binding, it
is still possible that the instantaneous pattern of binding will not
accurately reflect the external gradient conditions. It is therefore
important to consider how, given this fundamental uncertainty,
a chemotacting system such as an axon could best make a
decision about gradient direction.
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Inspired by its success in other biological domains, we
therefore developed a Bayesian ‘‘ideal observer’’ model (22) to
determine the optimal strategy by which any gradient-sensing
device can most reliably extract directional information from
a set of intrinsically noisy receptors distributed across its
spatial extent (Fig. 1A). The model is described in more detail
in the supporting information (SI) Text and Fig. S1. Brief ly, we
considered a 1-dimensional growth cone* with N randomly
distributed receptors, exposed to a ligand gradient such that �
is the relative change in concentration across its spatial extent,
and � is the concentration at the center of the growth cone

relative to KD. We calculated the likelihood function giving the
probability of each pattern of receptor binding in terms of �
and �. Using Bayes’ theorem, we then inverted this function to
give the posterior probability of � given the pattern of binding,
assuming that the prior probability for � is symmetric and
concentrated near zero. The gradient direction is then esti-
mated by comparing the posterior probabilities that the gra-
dient points in one direction versus the other.

There are many obvious possibilities for how to combine
information from spatially distributed receptors to determine
gradient direction, perhaps the simplest being to add up the total
amount of receptor binding on one side of the growth cone and
compare it with the total amount of receptor binding on other
side. However, the use of the Bayesian approach allowed us to
determine the optimal strategy, i.e., the one that gives the most
reliable estimate of gradient direction. We found that this
optimal strategy is to calculate the sum of the positions of bound
receptors, i.e., weighted by their distances from the center of the
growth cone. That is, receptor binding at the extremities of the
growth cone contributes more weight to the decision than
receptor binding near the center. In Discussion, we consider
several possible biological implementations for this optimal
computation.

Predicting Performance as Gradient Parameters Are Varied. Varia-
tions in receptor binding statistics over the spatial extent of the
growth cone are determined by the gradient steepness and the
absolute concentration. We therefore asked how the perfor-
mance of our Bayes-optimal growth cone should vary with these
parameters. Our readout of performance in the model is the
probability that the growth cone estimates the direction of the
gradient correctly for given gradient conditions. We were able to
show analytically (see SI Text) that this proportion of correct
decisions given steepness � and concentration � is

Pcorrect��,�� �
1
2

� � N
24�

�� �

�1 � ��3

Thus, the model predicts that axonal response should be deter-
mined by a scaling constant times ���/(1 � �)3. We refer to this
quantity as the signal-to-noise ratio (SNR). This SNR is plotted
against absolute concentration for the same gradient steepnesses
we subsequently used experimentally (Fig. 1B), using the value
of the dissociation constant KD we determined as described
below. Our analysis does not depend on how the decision
regarding gradient direction influences growth cone behavior,
which could be, for instance, a turn or a change in growth rate.
In SI Text, we also discuss the relative performance of alternative
strategies for weighting receptor binding measurements.

Experimental Analysis of the Dependence of Axonal Response on
Gradient Conditions. Testing the above theoretical prediction for
performance requires assaying the degree of response of axons
to a range of different gradient steepnesses and concentrations.
As a robust model system, we therefore examined the response
of early postnatal rat DRG explants to gradients of NGF (28)
after 2 days in collagen gels (see refs. 26, 29, and 30). Gradients
were generated by using a more refined version of the technology
described in ref. 26 (see Materials and Methods and Movie S1).
In particular, by printing precisely controlled concentrations of
ligand at precisely defined locations on the surface of a collagen
gel, we created gradients in the gel for which, at particular
positions, both the gradient steepness and absolute concentra-
tion remained relatively stable for periods of days (26, 27). We
printed exponential gradients of ligand of steepnesses 0.12, 0.18,
0.24, and 0.3% per 10 micrometers, and for each steepness varied
absolute concentration in steps of half log10 units from � 0.001

*For simplicity we phrase our discussion in terms of making comparisons across the extent
of only the growth cone. However, our arguments are not affected by whether the
comparison takes place over a longer spatial range, for instance including part of the axon
shaft.

Fig. 1. Bayesian model of spatial gradient detection. (A) Model growth cone
(for more detail see Fig. S1). Receptors on the surface bind ligand molecules
probabilistically according to standard Michaelis–Menten kinetics. Signals
from the bound receptors are then combined in the growth cone to optimally
decide the most consistent gradient direction for that pattern of ligand
binding. Although there are several intuitively obvious decision rules the
growth cone could employ, determining the provably optimal strategy is
nontrivial. We show that the optimal rule is to weight the signal from each
bound receptor by its distance from the center of the growth cone (see SI Text).
The sizes of the growth cones in the bubble represent the degree of belief of
the growth cone in the 2 hypotheses for gradient direction based on that
particular pattern of receptor binding. (B) Chemotactic sensitivity curves
calculated analytically for the optimal decision rule for the gradient param-
eters used experimentally. The percentages refer to the fractional change in
concentration across 10 �m. We set KD � 0.3 nM based on the best fit between
the model and the data (see Fig. 3).
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to 100 nM at the position in the gel at which explants were placed
(see SI Text and Fig. S2. This resulted in 38 conditions in total
with an average n � 66 explants per condition (for complete n
values see Table S1). This is by far the most complete dataset of
axonal responses to gradients yet measured.

Fig. 2A shows example explants displaying a range of
different responses to the gradients. Asymmetry in neurite
outgrowth from the explants was measured by using the
‘‘guidance ratio’’ (26), which compares the number of pixels
representing neurites on the up-gradient versus the down-
gradient side of the explant. Although simple, such a pixel-
counting metric is fairly robust to image noise, and similar
approaches have been used to quantify explant responses in
related assays (e.g., ref. 31). Fig. 2B shows a higher-power
image of a typical subfield of neurites. There is no obvious
interaction between individual neurites, nor is there any
obvious pattern of neurite turning. The latter suggests that the
way the decision regarding gradient direction is read out by

these neurites may not be by turning but rather by, for instance,
a change in growth rate depending on whether they are
growing up or down the gradient. This issue remains to be
addressed in more detail. Fig. 2C summarizes the guidance
ratios of all explants as a function of gradient steepness and
absolute concentration. For each steepness, the guidance ratio
peaked at �0.3 nM NGF, and the height of the peak response
tended to increase with gradient steepness (Table S2). Each
peak was asymmetric (on a log scale), showing a more rapid
decline in response for higher concentrations than for lower
concentrations (see SI Text). Statistical comparisons of each
condition with an NGF plateau control condition are given in
Table S1. Overall, it can be seen that responses vary system-
atically with gradient conditions and that this variation at least
qualitatively resembles the variation predicted by the model
(Fig. 1B). We return shortly to a more quantitative comparison
with the theoretical model.

Trophic Versus Tropic Effects and Neurite Guidance Versus Neurite
Initiation. It is conceivable that the explant asymmetry we ob-
served in our gradients could be simply due to differential
responses to absolute levels of NGF between the 2 sides of the
explant rather than chemotactic guidance of axons by the
gradient. However, several different lines of evidence discussed
in SI Text support the argument that this is not the case (see also
Fig. S3). It is also conceivable that the asymmetry in final
outgrowth we observed could be due to an effect of the gradient
on the direction of neurite initiation rather than guidance of
neurites as they extend away from the cell body. We provided
evidence that this was not an important effect by showing that
the degree of guidance was not significantly degraded by printing
the gradient up to 18 h after the explants were first embedded
in the collagen (see SI Text and Fig. S4).

Axonal Response Shows Extreme Sensitivity. For the 0.24% and
0.3% gradients, measurable explant asymmetry was still present
at an absolute concentration of �2 pM NGF. A 0.3% change
over 10 �m at 2 pM corresponds to an absolute change of � 1
molecule per millimeter per 1,000 �m3 (approximately the
volume of a growth cone), an astonishingly high level of sensi-
tivity. These results reduce by 2 orders of magnitude a previous
estimate (26) for the minimum concentration change across a
growth cone that (when averaged over 2 days for a large number
of axons) produces a measurable chemotactic response. This far
exceeds the chemotactic sensitivity so far measured for any other
biological or physical device.

The surprising nature of these results can be illustrated by
some simple calculations. Consider for instance a simplified
growth cone of width 10 �m, with 1,000 receptors on one side
and 1,000 on the other, growing in a gradient of slope 0.3% at
three absolute concentrations: 0.003, 1, and 3 nM. Using our
estimated KD of 0.3 nM, at a concentration of 0.003 nM, we have
� � C/KD � 0.01 on the down-gradient side and � � 0.01003 on
the up-gradient side. The probability that each receptor is bound
is �/(1 � �), giving an expected number of bound receptors of
9.90 on the down-gradient side versus 9.93 on the up-gradient
side at each instant (where fluctuating bound and unbound
receptor states are assumed to be averaged over time to produce
a meaningful signal). In this case, we observed a guidance ratio
of �0.05. We observed almost the same guidance ratio at a
concentration of 1 nM, in which case � � 3 on the down-gradient
side and � 3.01 on the up-gradient side. The comparison is now
between �750 receptors and �750.6 bound receptors. In con-
trast, at a concentration of 3 nM we have � � 10, and now the
comparison is between 909.1 and 909.3 bound receptors. In this
case, no statistically significant guidance response was seen,
despite the similarity in the difference number of bound recep-

Fig. 2. Response of DRG explants to precisely controlled gradients of NGF.
(A) Representative explants illustrating different guidance ratios (gradient is
increasing upwards). (Scale bar, 400 �m.) (B) Higher-powered image of a
typical subfield of neurites growing across the gradient (increasing upwards).
(Scale bar, 250 �m.) (C) Explant asymmetry (guidance ratio) as a function of
absolute concentration and gradient steepness (see Methods; n and values
given in Table S1). Note that each curve peaked at approximately the same
concentration, response dropped off faster at higher concentrations than
lower concentrations, curve width increased with gradient steepness, and
peak height tended to increase with steepness. Error bars are SEMs.
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tors with the previous example. This illustrates that the observed
response depends nontrivially on concentration and gradient
steepness.

Experimental Data Are Predicted by the Bayesian Model. The above
calculations make it clear that the axonal response depends in a
nontrivial way on the gradient conditions. But is this quantita-
tively the dependence predicted by the Bayesian model? It is not
possible to predict the absolute level of asymmetry observed in
our experimental explants, because this depends on many un-
known biological details of how axons convert decisions about
gradient direction into directed motion. Rather, we can compare
the way the response varies with gradient parameters between
the model and the experiments. To do this quantitatively we
plotted the SNR value predicted by the model against the
experimentally measured guidance ratio for each of the 38
conditions in our experiment (Fig. 3). It can be seen that there
is a remarkably strong correlation between the 2 sets of values
(Pearson’s r � 0.90). The only free parameter in this fit is the
dissociation constant KD. The KD that maximized the correlation
between the predicted SNR and the guidance ratio was 0.3 nM,
which agrees well with the positions of the peaks in the guidance
and outgrowth curves of Fig. 2 and Fig. S3A (the dependence of
the correlation on KD is shown in Fig. S5B).

Discussion
Comparison with Data from Conventional Collagen Assays. Our
experimental data offer the first complete quantitative analysis
of the behavior of axonal growth cones in molecular gradients
and reveal sensitivity substantially more extreme than previously
reported (26). The response of explants to gradients has been
one of the key methods driving the field of axon guidance (5).
However, this is usually in the context of the more conventional
collagen gel coculture assay (31–34), where the gradient param-
eters are unknown and uncontrolled. Conventional collagen
assays also suffer from variations between dishes in variables
such as target size and thus the amount of factor released,
separation between the explant and the ligand source, and
transfection efficiency, all of which affect the molecular gradient
experienced by the growth cones (35, 36). In contrast, in our
more controlled assay we have shown that measurably different
degrees of outgrowth asymmetry can be observed for remark-
ably subtle changes in gradient parameters. These variations may
help explain some of the variability in the responses seen in
conventional collagen assays.

Fitting the Model to the Data. Our ideal-observer model repro-
duces the overall variation in axonal behavior with gradient
parameters by fitting only one parameter, the receptor-ligand
dissociation constant KD. The chemotropic response of growth
cones to NGF is mediated by TrkA and p75. Although it was
previously thought that both high- and low-affinity binding sites
exist for NGF binding to TrkA/p75 (37), recent Scatchard
analysis suggests that there is only 1 binding site with KD � 0.9 �
0.3 nM (38). This is consistent with our determination of a
similar value for KD by using quite different methods.

It is remarkable that our data can be fit so well with a model
that only considers the noise in the instantaneous receptor
binding pattern. Noise inherent in thermal fluctuations in ligand
numbers and in intracellular signaling pathways would be ex-
pected to provide additional constraints on performance, al-
though potentially offset by temporal averaging of receptor
binding measurements (11–15, 39). However, although reality is
undoubtedly more complex than the situation represented in our
model, this does not undermine the usefulness of our closed-
form solution as a predictive tool for axonal responses.

Quantitative Implications. These calculations illustrate clearly that
the level of response depends not on the absolute difference in
receptor binding levels but on a nontrivial combination of
gradient steepness and absolute concentration. We have been
able to quantitatively capture this relationship from first prin-
ciples in a simple analytical formula. Once more quantitative
data becomes available for the gradients existing in vivo, it will
be possible to use this equation to make precise predictions for
how the fidelity of guidance should vary along a pathway, and to
what degree perturbations in the gradient should affect guid-
ance. Our equation can also be used to make quantitative
estimates for how guidance should vary with parameters such as
space, time, and rate of chemotropic factor production in in vivo
situations and more conventional collagen gel coculture assays
(35, 36).

Clearly the differences in average binding calculated above
would need to be amplified by downstream processes to
produce a response. This might involve, for instance, move-
ment of receptors toward the up-gradient side (40). However,
such amplification is only useful once the direction of the
gradient has actually been detected and so is not a reliable
mechanism for the detection itself. It is possible that the
comparison may be occurring over a longer distance than the
width of an individual growth cone, for instance, by taking into
account information from receptors on the axon shaft. How-
ever, although this would change the details of the numbers
calculated above, it would not change the optimal strategy we
have determined for comparing information from spatially
distributed receptors or its quantitative fit to the measured
responses (due to the unknown scaling constant). It is also
possible that, by internalizing bound NGF, the local gradient
conditions are perturbed by each growth cone. However, for
this to have an impact on our overall conclusions, it would be
necessary for the perturbations to somehow amplify the SNR.
Analogously to the remarks above regarding amplification by
receptor redistribution, amplification by differential NGF
uptake presupposes that the direction of the gradient has
already been correctly determined.

Asymmetry with Concentration in the Guidance Response. Our model
also offers a simple explanation for the asymmetry in chemo-
tactic sensitivity seen in Fig. 2B. We assume that the growth cone
has knowledge of the gradient only through the signals produced
by its bound receptors. However, because of stochastic f luctu-
ations in receptor density across the width of the growth cone,
it will inevitably be the case for shallow gradients that occasion-
ally, the receptor density fluctuations will be large enough to

Fig. 3. Match between model and data. Measured guidance ratio plotted
against the signal-to-noise formula predicted by the model. Error bars are
SEMs. The red line is a linear fit (Pearson’s r � 0.90). For the dependence of the
fit on KD see Fig. S5B
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dominate the true gradient signal. For the case of low ligand
concentrations, few receptors are bound, and the size of this
effect is small. However, as the ligand concentration increases
the proportion of bound receptors increases, and thus the bias in
the downstream signal due to nonuniform receptor density also
increases, reducing the accuracy of decision making.

Possible Implementations of the Optimal Chemotaxis Strategy. We
have shown that the optimal strategy is to calculate the sum of
the positions of bound receptors weighted by their distances
from the center of the growth cone. It is useful to think of this
weighted sum as the difference in signal strength between the
2 sides of the growth cone. Implementing the optimal strategy
then involves 2 steps: correctly weighting the inputs from the
receptors so that receptors contribute in proportion to their
distance from the center and then deciding whether the
resulting signal is stronger on one side or the other. One
possibility for how the growth cone might achieve the weight-
ing step is by maintaining an inhomogeneous distribution of
receptor-coupled effector proteins, with effector concentra-
tion proportional to the distance from the center of the growth
cone. Peripheral receptors would then be presented with a
greater number of effectors than central receptors, thus con-
tributing more to the signal strength. Although direct evidence
for or against this does not exist in growth cones, in Dictyo-
stelium the most obvious candidate molecules for this role—
various forms of G proteins—are known to be uniformly
distributed across the leading edge (41), arguing against this
possibility. Alternatively, the growth cone might preferentially
distribute its receptors to the extremities, i.e., to the tips of
filopodia. Some classes of guidance cue receptor have been
observed to redistribute in the presence of a gradient—for
example, on stimulation by a GABA gradient, GABA recep-
tors cluster on the up-gradient side of rat spinal neuron growth
cones, before a noticeable response occurs (40).

However, the analysis of the dynamical model of gradient
detection of Skupsky et al. (42, 43) motivates a third alternative
based on the properties of intracellular reaction diffusion pattern
formation process triggered by receptor binding events. In the
model presented in ref. 43, polarized cells are most sensitive to
local environmental perturbations in concentration, which im-
pinge at an angle of �60° to the axis of polarization. This
naturally awards peripheral receptors greater influence than
those closer to the polarization axis. Although these authors
focused on eukaryotic cell chemotaxis, similarities with the
signaling networks underlying growth cone chemotaxis suggests
that their results may also be relevant for growth cones (8, 44).
The decision process itself, i.e., choosing the side on which the
weighted signal is greatest, could then be implemented through
adaptation and positive feedback, tuned to the appropriate
length scale (8).

As discussed in the SI Text, some approximations to the
Bayesian strategy have a lower absolute level of performance,
but still produce a similar variation in performance with
gradient parameters (see Fig. S6). Thus, it may be possible to
achieve close to optimal performance by strategies that make
less implementation demands on the growth cone than the
optimal strategy. To directly measure implementation strate-
gies would require a far more detailed analysis than has yet
been performed experimentally of the spatiotemporal varia-
tions in distributions of signaling molecules inside growth
cones exposed to gradients.

Conclusions
Ultimately, the quantitative predictions offered by our model
allow a more precise understanding of in vivo events during both
normal and abnormal nervous system development, and may
facilitate the design of gradients that optimize the ability of the

nervous system to rewire itself after injury. Overall, these results
suggest that optimality principles already demonstrated to be
effective at the systems level will also be useful for understanding
sensory information processing at the cellular level and point to
directions for the quantitative understanding of nervous system
development.

Materials and Methods
Tissue Preparation. DRGs were removed from the thoracic and lumbar regions
of postnatal day P0–P3 rat pups, trimmed and stored in Hibernate E (phenol
red; Brainbits) at 4 °C overnight. On the next day, the outer capsule was
digested for 12 min in 0.25% trypsin/10 �g/mL DNase1/Ca2� and Mg2� free
Hanks’s balanced salt solution. The explants were centrifuged and resus-
pended in Leibowitz’s L-15 medium containing L-glutamine and 0.45% D(�)-
glucose 3 times.

Dry Collagen Gels. A 0.2% collagen gel solution was prepared on ice by mixing
rat tail type I collagen stock solution (BD Biosciences) diluted with water to
contain 0.2 mg/mL collagen, 27 �L of a 7.5% sodium bicarbonate solution per
milliliter of original collagen stock, 1� OptiMEM (Gibco) and a mixture of 100
�g/mL penicillin, 100 �g/mL streptomycin, and 250 ng/mL amphotericin
(Gibco). Collagen gels were prepared and 6 explants plated in a row in 35-mm
tissue culture dishes as described previously (26).

Gradient Generation. Gradients of NGF (GroPep) were created by using a
Nano-Plotter 2.0 (Gesim). The physical principles of gradient generation
were as previously described (26, 27), but the precise details were different
because of the greater flexibility of the Nano-Plotter compared with the
technology used in ref. 26. Twelve stock solutions with exponentially
increasing NGF concentration were ‘‘printed’’ onto the surface of the
collagen gels in the form of 12 parallel lines 20 mm long and 1 mm apart,
each line containing the same volume of stock (see Movie S1). Line 4
coincided with the position of the row of explants. The amount of NGF
required in each line to produce the desired final concentration in the gel
was calculated as previously described (26, 27). However, we also calculated
correction factors for both the concentration and gradient steepness, to
take into account the average gradient conditions existing over the com-
plete time course of the experiment (see SI Text and Fig. S2). Four addi-
tional ‘‘pregradient’’ lines of only vehicle (0.1% BSA/PBS) were applied
adjacent to the low-concentration side of the gradient (line 1) to avoid a
possibly confounding gradient of collagen density near to the explants.
After printing, dishes were returned to a 37 °C incubator with 5% CO2 for
a total explant incubation time of 40 – 48 h. Our standard control was to
print a ‘‘plateau’’ by using the same methods, except with no change in NGF
concentration between the different stocks. For delayed application of
gradients (Table S3), DRG explants were embedded in collagen gel con-
taining 0.1 nM NGF and a gradient resulting in 0.24% steepness with 0.3 nM
NGF at the explant printed either immediately or after 2, 4, 8, 12, 18, or 24-h
incubation at 37 °C.

Neurite Visualization. Explants embedded in collagen were fixed with an equal
volume of 10% formaldehyde/0.1% Triton X-100 in PBS overnight. After 5
washes with PBS for 1 h each, explants were incubated overnight in 1 �g/mL
of the neuronal tubulin antibody TUJ1 (R&D Systems), followed by an addi-
tional 5 washes in PBS for 1 h each. The explants were then incubated
overnight in the secondary antibody Alexa Fluor 488-conjugated goat anti-
mouse IgG (1:1,000; Molecular Probes), washed 5 times in PBS for 1 h each, and
photographed with an AxioCam HRm (Zeiss) camera on a Zeiss Imager Z1
fluorescence microscope.

Quantification of Explant Asymmetry and Total Outgrowth. By manually
applying an appropriate intensity threshold to each image and discounting
the region encompassing the explant tissue (using Adobe Photoshop), an
estimate of the distribution of neurites in each image was obtained as in
ref. 26. Outgrowth asymmetry was quantified by using the guidance ratio
GR � (H 	 L)/(H � L), H and L being the number of neurite pixels on the high
and low ligand concentration sides of the explant, respectively.
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