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Binocular rivalry is the alternating percept that can result when the two
eyes see different scenes. Recent psychophysical evidence supports the
notion that some aspects of binocular rivalry bear functional similari-
ties to other bistable percepts. We build a model based on the hypoth-
esis (Logothetis & Schall, 1989; Leopold & Logothetis, 1996; Logothetis,
Leopold, & Sheinberg, 1996) that alternation can be generated by com-
petition between top-down cortical explanations for the inputs, rather
than by direct competition between the inputs. Recent neurophysiolog-
ical evidence shows that some binocular neurons are modulated with
the changing percept; others are not, even if they are selective between
the stimuli presented to the eyes. We extend our model to a hierarchy to
address these effects.

1 Introduction

If one’s eyes are presented with two different but very low-contrast stimuli,
as shown in Figure 1, then the overall percept is of the sum or composition
of the stimuli (Liu, Tyler, & Schor, 1992). However, as the stimuli are made
higher contrast, there comes a point when it appears as if the inputs from
the eyes rival. First one dominates, then the other, with stochastic switching
between the two. Figure 1 shows the case of horizontal and vertical gratings
(the grid lines and boxes A and B are for later descriptive convenience and
are not presented), but more complex patterns are also often used.

If the stimuli are large, then one single stimulus may not dominate across
the entire field; rather, there will be a mosaic of patches, with different stimuli
dominating in each patch (Wheatstone, 1838; Levelt, 1965). The dynamics
of rivalry are sensitive to the contrast of the stimuli in the eyes if they are
different, with such characteristic results as that increasing the contrast of
one stimulus decreases the time during which that stimulus is suppressed
much more than it increases the time that it is dominant (Levelt, 1965; Fox
& Rasche, 1969; Blake, 1977; Mueller & Blake, 1989). There are also effects of
the nature of the stimuli—for instance, if two separate patterns are divided
up between the two stimuli, then in certain cases, the patterns will rival
rather than the stimuli directly (Whittle, Bloor, & Pocock, 1968; Kovacs,
Papathomas, Yang, & Feher, 1996), and there is some evidence that familiar
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Figure 1: Rivalrous gratings. Rivalrous stimuli for the left and right eyes con-
sisting of horizontal and vertical gratings, respectively. The grid lines and the
dotted boxes are for descriptive purposes and are not presented. Boxes A show
the basic competitive element in the model, between short horizontal and ver-
tical parts of the gratings; boxes B show the essential repeating unit that the
stimulus comprises.

patterns enjoy an advantage over unfamiliar ones during rivalry (see Yu &
Blake, 1992).

It is natural to suppose that this rivalry is instantiated in the parts of
the visual pathway that are still monocular, that is, the lateral geniculate
nucleus (LGN) and layer IV of V1. Indeed, most models of rivalry implicitly
or explicitly make this assumption (Matsuoka, 1984; Lehky, 1988; Blake,
1989; Mueller, 1990; Lehky & Blake, 1990), using various forms of reciprocal
inhibition between two pathways and thus capturing many of the intricacies
of the dynamics of rivalry. It turns out that the activities of neurons in the
LGN are not affected by rivalry (Lehky & Maunsell, 1996), leaving layer IV
of V1 as the candidate for this class of models.

These models could be augmented with some top-down processing to
capture the familiarity and pattern-based effect. However, they are directly
challenged by psychophysical data from Logothetis et al. (1996) and are hard
to reconcile with the neurophysiological data from Logothetis and Schall
(1989) and Leopold and Logothetis (1996). Logothetis et al. (1996) switched
rivalrous patterns quickly between the two eyes (see also Blake, Westendorf,
& Overton, 1980) while constantly flickering the stimuli. Subjects report that
the perceptual switching time is much greater than the actual switching
time, which is inconsistent with the hypothesis that there is a dominant
eye rather than a dominant pattern. Of course, there could be eye-based
competition as well (Wales & Fox, 1970; Fox & Check, 1972; Blake & Fox,
1974).
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Leopold and Logothetis (1996) trained monkeys to report their percept
during rivalrous and nonrivalrous stimuli while recording from neurons
in V1/2 and V4. They found that striate monocular neurons are unaffected
by rivalry; that there are binocular neurons in all areas that are selective
between the stimuli during binocular presentation and whose activities are
not modulated with the monkey’s percept; that there are binocular neurons
in all areas that are sensitive between the stimuli during binocular presen-
tation and whose activities are modulated with the monkey’s percept; and
that there are binocular neurons in all areas that are sensitive between the
stimuli during binocular presentation whose activities are elevated during
perceptual suppression of their preferred stimuli; and also binocular neurons
that are not selective between the stimuli in binocular viewing, but whose
activities are nevertheless modulated during rivalry.

Logothetis and his colleagues have long suggested an account of rivalry
under which it is cortical explanations of sensory input that compete rather
than the inputs themselves. Various recent models of cortical processing are
based on the old notion of analysis by synthesis (MacKay, 1956; Grenander,
1976; Mumford, 1994; Carpenter & Grossberg, 1987; Pece, 1992; Hinton,
Dayan, Frey, & Neal; 1995; Dayan, Hinton, Neal, & Zemel, 1995; Olshausen
& Field, 1996; Rao & Ballard, 1997). For these, the synthetic model, which is
usually instantiated in top-down connections in cortex, exactly constructs
a top-down explanation for input, and an analysis procedure finds which
particular synthetic explanation is appropriate for a given input. In this
article, we consider one form of analysis-by-synthesis model and show how
it can exhibit rivalry between explanations in the case that the eyes receive
different input. This model can provide an account for many of the behaviors
described above.

Section 2 discusses a simplified case of rivalry to illustrate the basic prin-
ciples of the model, based on the contents of boxes A in Figure 1; section 3
describes a more complete model with three layers of units in a hierarchy,
based on boxes B of Figure 1; the implications of the model are discussed in
section 4.

2 The Simple Model

Figure 2a shows a simple abstract model illustrating competition between
cortical explanations. It is taken from boxes A of Figure 1, representing the
minimal competitive unit in that stimulus. The grating consists of pairs
of horizontal and vertical bars, to enhance the strength of the signal. For
illustrative convenience, the pairs have been separated. There is no special
significance to the spatial order of the input units.

In Figure 2, w1 and w2 model two binary-valued notational striate units,
and layer z models 32 binary-valued geniculate units—16 each for left (L)
and right (R) eyes. In the generative model, turning w1 on activates two
binocular horizontal bars in the input z, and we therefore say that w1 ex-
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Figure 2: (a) Simple generative model. Units w1 and w2 are shown in the form of
their projective fields (e.g., w2 generates two vertical bars binocularly in the 4×4
left (L) and right (R) geniculate units, z), together with a subset of the weights.
The other weights follow similarly. bw = −2 and bz = −3 are the generative
biases, Jwz = 5.8 are the generative weights from w to z. (b) Rivalrous input
pattern. Horizontal input is provided to the geniculate units for the left eye
(z1, . . . , z16), with strength l (e.g., P[z1 = 1] = σ(l)); vertical input to those for
the right eye (z17, . . . , z32), with strength r. Silent units have input φ such that
σ(φ) = 0.01.

plains the input activity, if the input were really to consist of two binocular
horizontal bars. Similarly, the activity of w2 explains two binocular vertical
bars in the input. More formally, the explanations arise as the analysis or
recognition phase of an analysis-by-synthesis model of cortical function.
The top-down, synthetic model specifies successively probabilities P[w]
and P[z|w] according to:

P[wk = 1] = σ(bw)

P[zi = 1|w] = σ
(

bz +
2∑

k=1

wkJki
wz

)
, (2.1)

where

σ(x) = 1
4000

{
1+ 3998√

2π

∫ x

t=−∞
e−t2/2dt

}
,

is a normal distribution function, squashed to avoid infinities, and the wk
and zi are independent (the latter, given w). The parameters of the gener-
ative model, the weights Jwz, and the biases bw and bz are shown in the
diagram. They were set by hand such that in the generative model, w1 and
w2 are active only rarely (i.e., activity in the w layer is sparse), but are al-
most sure to produce their favored pattern in z if they do fire. In general,
these weights would be learned from experience of horizontal and vertical
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contours (Hinton et al., 1995; Dayan et al., 1995; Saul, Jaakkola, & Jordan,
1996).

Since the units in the generative model are binary, we cannot model
differing input contrasts directly by changing the level of activity of the zi.
Rather, we represent the input to zi as di, where P[zi = 1] = σ(di) and all
the zi are independent. WriteP[z;d] as the induced probability distribution
over the input units.

Recognition is formally the statistical inverse to generation. For the net-
work in Figure 2a, it should produce P[w|z] over the four choices for w,
given a particular input. In this case, it would be easy to calculate these prob-
abilities exactly. However, in general, this is computationally intractable,
since if there are n units, then there are 2n probabilities. Further, we require
a way of representing these 2n probabilities in terms of just the activities
of the n units. Inspired by Saul et al. (1996) and Jaakkola, Saul, and Jordan
(1996), we achieve both of these by using a mean-field inversion method.
This approximates P[w|z] by the parameterized factorial form,

Q[w;µ] =
∏

i
σ(µi)

wi (1− σ(µi))
1−wi . (2.2)

This sets the mean activity of w1 to be σ(µ1). Note thatµi are real values that,
through equation 2.2, parameterize a distribution over the binary-valued wi.
We model the activities of cells as the real-valued σ(µi).

Mean-field methods would use a descent method to optimize the param-
etersµ to minimize the mean Kullback-Leibler divergence betweenQ[w;µ]
and P[w|z]:

F [µ] =
∑

z
P[z;d]

∑
w
Q[w;µ] log

Q[w;µ]
P[w|z]

.

The simplest model of gradient descent has:

µ1(t+ 1) = µ1(t)− δ∇µ1F [µ(t)] (2.3)

= µ1(t)− δ(log
[
σ(µ1(t))
σ (−µ1(t))

σ (−bw)

σ (bw)

]
+σ ′(µ1(t)) (P10 − P00 + σ(µ2(t))[P11 − P10 − P01 + P00])),

where

Pab =
∑

i
σ(di) logP[zi = 1|w1 = a,w2 = b]

+ σ(−di) logP[zi = 0|w1 = a,w2 = b],

and δ acts like an adaptation rate.
In this simple case, calculating these terms requires only operations local

to each unit, although the operations are somewhat complicated. Jaakkola
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et al. (1996) provide a further approximation that simplifies these calcula-
tions. In this, unit zi passes back to w1 and w2 information about how it is
incorrectly predicted by w1 and w2:

∇w

(
di − bz −

∑
k

σ(wk)Jki
wz

)2

.

We found this model to work slightly less well.
Note that the mean-field model affects only the activities in the w layer

and does not affect the inputs, even though there are top-down inputs to
those units. Lehky and Maunsell (1996) resolved conclusively that the activ-
ities of neurons in the LGN of macaque monkeys are not modulated during
rivalry (see Varela & Singer, 1987), by clear contrast with the data cited above
from cortical cells. In the hierarchical model in the next section, there are
top-down influences on the activities of modeled cortical (but not modeled
thalamic) cells.

If a nonrivalrous input is presented, with just horizontal bars in both
channels, then recognition assigns full responsibility to w1. Rivalry results
when different inputs are presented to the two eyes. For inputs such as Fig-
ure 2b, {w1 = 1;w2 = 0} and {w1 = 0;w2 = 1} are equally good explanations
(albeit worse than in the nonrivalrous case). Explanation {w1 = 0;w2 = 0}
is poor because it does not account for any input; {w1 = 1;w2 = 1} is
poor because activity across w should be sparse, according to the genera-
tive model, and w1 = 1 explains away (Pearl, 1988) the need for w2 = 1 for
those elements of z that are common between horizontal and vertical bars.
Note that w1 and w2 compete even though there are no explicit inhibitory
interconnections between them in the generative model.

The recognition model of a Helmholtz machine (Hinton et al., 1995) is
unsuitable to model rivalry, since it acts in a purely bottom-up direction in
such a way that it lacks the capacity to capture explaining away (Dayan &
Hinton, 1996), on which this model of rivalry crucially depends. This is one
reason that we used a mean-field method instead (Saul et al., 1996).

If the dynamics were just determined by equation 2.3, then the activities
would tend to one of the two equivalently good explanations (which are
global minima of F ) and stay there. We therefore implemented a simple
oscillatory model with auxiliary variables µ′k(t) implementing a form of
fatigue process. The full dynamics for µ1(t) and µ′1(t) are:

µ1(t+ 1) = µ1(t)+ δ(−∇µ1F [µ(t)]+ α(βµ1(t))− µ′1(t))
µ′1(t+ 1) = µ′1(t)+ δ(µ1(t)− βµ′1(t)),

where β is a decay term. A similar equation applies for µ2(t) and µ′2(t). In
all the simulations, α = 0.5, β = 0.1, and δ = 0.01. Factor 1/δ now plays the
role of a time constant for the network. As with most models of rivalry (see
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Lehky, 1988, for a notable exception), we are modeling data on the mean
dominance times and are ignoring the stochasticity of the data.

Based on this simple oscillatory process, the model effectively switches
between horizontal ({w1 = 1;w2 = 0}) and vertical ({w1 = 0;w2 = 1}) ex-
planations. Figure 3a shows the resulting activities of w1 and w2 for a case
in which the input to the horizontal bars (l) is stronger than to the vertical
(r). Alternations ensue, with a greater dominance period for w1 than w2.
Figure 3b shows that, as empirically observed, when the input strengths
for both patterns are increased together (modeling increasing contrast), the
oscillations speed up (Levelt, 1965; Fox & Rasche, 1969), and when just r is
varied, it has a significantly greater effect on the period for which the verti-
cal explanation is suppressed (i.e., the horizontal explanation is dominant)
than on the period for which it is dominant (Levelt, 1965; Fox & Rasche,
1969; Blake, 1977; Mueller & Blake, 1989; Leopold & Logothetis, 1996). This
achieves the effect of mutual inhibition (Fox & Rasche, 1969; Matsuoka,
1984; Lehky, 1988; Mueller, 1990) between w1 and w2, dependent on input
contrast (Mueller, 1990) by statistically justifiable means. Furthermore, for
very weak inputs, both w1 and w2 are weakly activated, which is the model’s
account of the psychophysical observation that fusion rather than rivalry
occurs for very low-contrast stimuli. Also, if the eyes are provided with
binocularly consistent inputs within a reasonable range of contrast, then
the system does not oscillate.

We have therefore shown that it is possible to get rivalry between cortical
explanations for input, using a mean-field inversion method for a top-down
generative model. In this case, the final model resembles existing models
for rivalry in which there is competition among binocular-oriented units
rather than within a monocular system (Grossberg, 1987). Indeed, Sengpiel,
Blakemore, and Harrad (1995) studied interocular suppression of activity
in binocular cells when the two eyes were presented with gratings of or-
thogonal orientations. In the mean-field model, this suppression arises as a
consequence of explaining away during the process of recognition and has
a precise relationship with the underlying top-down generative model.

3 The Hierarchical Model

The simple model is too small to be able to have populations of units that
are and are not modulated with rivalry, as in the neurophysiological data.
We therefore extended it to a hierarchy of units covering a larger spatial ar-
ray, incorporating various characteristics of cortical visual processing. The
hierarchical version is intended to capture the processing of boxes B in Fig-
ure 1. Boxes B were chosen to capture the minimal repeating unit in the
stimulus. No smaller box will suffice; for instance, boxes A miss the por-
tion of the stimuli that do not directly compete. No larger box is necessary,
since it would only represent copies of boxes B. Since the model operates
by constructing explanations, it is, of course, vital to choose appropriately
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Figure 3: (a) Development and maintenance of oscillations in the mean activities
of w1 = σ(µ1) and w2 = σ(µ2) over time. Input strengths l = 1.25 and r = 1.0, so
the horizontal bars dominate. (b) Dependence on the input strength (modeling
contrast) in l and r of the periods of suppression and dominance. Horizontal
patterns are taken as dominant when the mean activity of w1 is greater than the
mean activity of w2. There is no switching reaction time. For the equal contrast
case, l and r were varied together; for suppression and dominance plots, l = 1.25
was constant; r was varied.
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Figure 4: Hierarchical generative model for 8×8 bar patterns across the two eyes.
Units are depicted by their net projective (generative) fields, and characteristic
weights are shown. Even though the net projective field of x1 is the top horizontal
bar in both eyes, note that it generates this by increasing the probability that units
y1 and y9 in the y layer will be active, not by having direct connections to the
input z. Unit w1 connects to x1, x2, . . . , x8 through Jwx = 0.8; x16 connects to
y31, y32 through Jxy = 1.0, and y32 connects to the bottom right half vertical
bar through Jyz = 5.8. Biases are bw = −0.75, bx = −1.5, by = −2.7, and
bz = −3.3. Each unit in the z layer is really a pair of units (as in Hinton et al.,
1995), to increase the strength of the signal.

those portions of the input that are to be explained. Figure 4 shows the full
generative model.

Units in layers y (crudely modeling V1) and x and w (modeling early
and late extrastriate areas) are all binocular and jointly explain successively
more complex features in the input z according to a top-down generative
model. Apart from the half bars in y, the generative model is similar to that
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learned by the Helmholtz machine (Dayan et al., 1995) for which increasing
complexity in higher layers rather than the increasing input scale is key.1 In
this case, for instance, w2 specifies the occurrence of vertical bars anywhere
in the 8× 8 input grids; x16 specifies the right-most vertical bar; and y31 and
y32 the top and bottom half of this vertical bar, respectively. Again, these
specifications are provided by a top-down generative model in which, as in
equation 2.1, the activations of units are specified by probabilities such as

P[yi = 1|x] = σ
(

by +
∑

k

xkJki
xy

)
,

where the sum k is over all the units in the x layer.
In this more complicated model, activities of units in different layers

could conflict. For instance, unit w1 could be activated, suggesting that there
are horizontal bars in the input; but units x15 and x16 could also be active,
suggesting that there are two particular vertical bars. Such patterns of activ-
ity are unlikely, since they are inconsistent with the generative model, and
we never observed them with the settings of the weights that we adopted.
We therefore model the percept of the network as the activity in the w layer.

A similar mean-field method is used to perform recognition in this hier-
archical model. The equivalent mean-field distribution is:

Q[w, x,y;µ, ξ,ψ] = Q[w;µ]Q][x; ξ]Q[y;ψ],

which renders independent all the units in the model. The equivalent of F
now depends on µ, ξ, and ψ:

F [µ, ξ,ψ] =
∑

z
P[z;d]

∑
w,x,y
Q[w, x,y;µ, ξ,ψ]

× log
Q[w, x,y;µ, ξ,ψ]
P[w, x,y|z]

.

We adopted various heuristics to simplify the process of using this rather
cumbersome mean-field model. First, fatigue is implemented only for the
units in the y layer, and theψ follow the equivalent of the dynamical equa-
tions above. Although adaptation processes can clearly occur at many levels
in the system, their exact form is not clear. Bialek and DeWeese (1995) argue
that the rate of a switching process should be adaptive to the expected rate
of change of the associated signal on the basis of prior observations. This is
clearly faster nearer to the input.

The second heuristic is that rather than perform gradient descent for the
nonfatiguing units, the optimal values of µ and ξ are calculated on each
iteration by solving numerically equations, such as

∇ξiF [µ, ξ,ψ] = 0.

1 Although the recognition model of the Helmholtz machine is not used, since it does
not capture explaining away.
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Figure 5: Recognition activity in the network for four different input patterns.
The units are arranged in the same order as Figure 4, and white and black squares
imply activities for the units whose means are less than and greater than 0.5.
(i, ii) Normal binocular stimulation. (iii, iv) The two alternative stable states
during rivalrous stimulation, without the fatigue process.

The dearth of connections in the network of Figure 4 allows µ and ξ to
be calculated locally at each unit in an efficient manner. Whether this is
reasonable depends on the time constants of settling in the mean-field model
with respect to the dynamics of switching and, more particularly, on the way
that this deterministic model is made appropriately stochastic.

Top-down connections are allowed to influence the activities of the units
in layers x and y. This is necessary in general to coordinate the explanations
for distant parts of the input and to provide a means by which top-down
information can influence the course of rivalry. As in the simpler model,
and following the data of Lehky and Maunsell (1996), the activities of units
in layer z are not affected by top-down influences, although this is not for a
principled reason in the model.

Figure 5 shows the activities of units in response to binocular horizontal
(i) and vertical (ii) bars. In these cases, there are no oscillations. Figure 5
also shows the two equally likely explanations for rivalrous input (iii and
iv). For rivalry, there is direct competition in the top left-hand quadrant of
z, as in Figure 2, which is reflected in the competition between y1, y3 and
y17, y21. However, the input regions (top right of L and bottom left of R), for
which there is no competition, require the constant activity of explanations
y9, y11, y18, and y22. Under the generative model, the coactivation of y1 and
y9 without x1 is quite unlikely (P[x1 = 0|y1 = 1, y3 = 1] = 0.1), which is
why x1, x3, and also w1 become active with y1 and y3.

Figure 6a shows the resulting activities during rivalry of units at various
levels of the hierarchy, including the fatigue process. Broadly, the compet-
ing explanations in Figure 5 (iii and iv)—that is, the horizontal and ver-
tical percepts—alternate, and units without competing inputs, such as y9,
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Figure 6: (a) Mean activities of units at three levels of the hierarchy in response
to rivalrous stimuli with input strengths l = r = 1.75. (b) Contrast dependence of
the oscillation periods. The dash-dotted line shows the period when the contrasts
in both eyes are varied together. The solid and dashed lines show the periods of
dominance of the left and right eyes, respectively, when the contrast in the left
eye is fixed (l = 1.25) and the contrast in the right eye r is varied.

are much less modulated than the others, such as y1. The activity of y9 is
slightly elevated when horizontal bars are dominant, based on top-down
connections. The activities of the units higher up, such as x1 and w1, do
not decrease to 0 during the suppression period for horizontal bars, leaving
weak activity during suppression. Leopold and Logothetis (1996) observed
that many of their modulating cells were not completely silent during their
periods of less activity. Figure 6b shows that the hierarchical version of the
model also behaves in accordance with experimental results on the effects
of varying the input contrast (Levelt, 1965; Fox & Rasche, 1969; Blake, 1977;
Mueller & Blake, 1989; Leopold & Logothetis, 1996).

4 Discussion

Following Logothetis and his colleagues (Logothetis & Schall, 1989; Leopold
& Logothetis, 1996; Logothetis et al., 1996; see also Grossberg, 1987), we
have suggested an account of rivalry based on competing top-down hier-
archical explanations. Neurons explain inputs by virtue of being capable of
generating their activities through a top-down statistical generative model.
Competition arises between higher-level explanations of overlapping active
regions (those involving contrast changes) of the input rather than between
inputs themselves.

The overall model mechanistically has much in common with models
that place the competition in rivalry at the level of binocular-oriented cells
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rather than between monocular cells (see Grossberg, 1987; Blake, 1989).
Indeed, the model is based on an explanation-driven account for normal
binocular processing, so this is to be expected. The advantage of couching
rivalry in terms of explanations is that this provides a natural way of ac-
counting for top-down influences, which are clear in such phenomena as
the influence of perceptual organization on rivalry (Whittle et al., 1968; Ko-
vacs et al., 1996). In fact, one can hope to study top-down control through
studying its effects on the behavior of cells during rivalry. The model would
also explain other sorts of alternation phenomena (such as those that arise
with the Necker cube) in terms of competition between top-down explana-
tions. The top-down model governs which units should compete with each
other.

The model correctly captures a number of the experimental character-
istics of rivalry. If the input stimuli are weak, then there is no alternation,
and instead both horizontal and vertical representing neurons are weakly
activated (as in Liu et al., 1992). If input stimuli are stronger, then alternation
ensues. The period of the alternation increases as the contrast of both the
stimuli decreases, and if the contrast of only one stimulus increases, then the
dominance period of the other stimulus decreases substantially more than
the dominance period of the given stimulus increases (as in Levelt, 1965; Fox
& Rasche, 1969; Blake, 1977; Mueller & Blake, 1989). There are two classes of
binocular units activated by the rivalrous stimulus. The activity of one class
is substantially modulated during rivalry; the activity of the other is not (as
in Leopold & Logothetis, 1996). Alternating the input between the two eyes
has absolutely no effect on this behavior of the model (as in Logothetis et
al., 1996). The last effect arises since, apart from the input layer, on which
there are no top-down influences, all the units are binocular, and there is no
static or dynamic difference in the connections from the two eyes.

Although it captures these phenomena, the model is simplified and
incomplete. In particular, it does not exhibit two of the phenomena that
Leopold and Logothetis (1996) observed. The first is that there is no oppor-
tunity in the model for monocular cells to be unmodulated during rivalry,
as they found. Given redundant inputs and an extra layer of monocular
units between layers z and y, this behavior would be expected. These units
would explain away the redundancy in the input and, like unit y9 in Figure 6,
would have to be activated consistently during rivalry.

The second lacuna is that there are no units in the model that are selec-
tive between the stimuli when presented binocularly and are preferentially
activated during suppression of their preferred stimuli during rivalry, or
are not selective during binocular presentation but are selective during ri-
valry. In a model with more complicated stimulus contingencies, such units
would emerge to account for the parts of the stimulus in the suppressed eye
that are not accounted for by the explanation of the overlying parts of the
dominant explanation, at least provided that this residual between the true
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monocular stimulus and the current explanation is sufficiently complex as
to require explaining itself. This suggests the experimental test of presenting
binocularly a putative form of the residual (e.g., dotted lines for competing
horizontal and vertical gratings). We predict that these cells should be acti-
vated. One might expect some of these cells to participate in the explanation
of the patterns when presented binocularly, whereas the activity of others
would be explained away during binocular presentation, only to emerge
during suppression.

Other extensions are also desirable. Foremost, it is necessary to model
the stochasticity of switching between explanations (Fox & Herrmann, 1967;
Levelt, 1965). The distributions of dominance times for both humans and
monkeys have traditionally been characterized in terms of a gamma dis-
tribution and, more recently, in terms of a log normal distribution (Lehky,
1995), with independence between successive dominance periods. Our
mean-field recognition process is deterministic. The stochastic analog would
be some form of Markov chain Monte Carlo method such as Gibbs sampling
(see Neal, 1993). However, it is not obvious how to incorporate the equiva-
lent of fatigue in a computationally reasonable way. In any case, the nature
of neuronal randomness is subject to significant debate at present.

We have adopted a very simple mean-field approach to recognition, giv-
ing up neurobiological plausibility for convenience. The determinism of the
mean-field model in any case rules it out as a complete explanation, but it
at least shows clearly the nature of competition between explanations. The
architecture of the model is also incomplete. The cortex is replete with what
we would model as lateral connections between units within a single layer.
We have constructed generative models in which there are no such direct
connections, because they significantly complicate the mean-field recogni-
tion method. These connections are certainly important for the recognition
process (Dayan & Hinton, 1996), but modeling their effect would require
representing them explicitly. This would also allow modeling of the appar-
ent diffusive process by which patches of dominance spread and alter. In
a complete model, it would also be necessary to account for competition
between eyes in addition to competition between explanations (Wales &
Fox, 1970; Fox & Check, 1972; Blake & Fox, 1974).

Another extension is some form of contrast gain control (Carandini &
Heeger, 1994). The model is quite sensitive to input contrast, which is ob-
viously important for the effects shown in Figures 3 and 6. However, the
range of contrasts over which it works should be larger. Achieving this
will likely require a statistical model with real-valued rather than binary-
valued activities. It would be particularly revealing to explore the effects of
changing the contrast in some parts of images and examine the consequent
effects on the spreading of dominance, particularly in images as large as the
full Figure 1 rather than just the portion in boxes B that the existing model
addresses.
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