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Abstract

Reinforcement learning studies the prediction and control of events of affec-
tive importance in terms of psychological and neural rules for adaptation. Rein-
forcement learning began as a marriage between ideas in mathematical behavioral
psychology and artificial intelligence, and now has links all the way from neuro-
modulatory systems in vertebrates to engineering and statistical theories of adap-
tive optimizing control. In this chapter, we describe the basic theory underlying
reinforcement learning, and its links with neuroscience, psychology, statistics and
engineering.

1 Introduction

Figure 1 shows a very simple maze problem that might be posed to a hungry rat, or
even a robot, involving the choice of direction to run at three choice points A, B and
C. The rat repeatedly starts at location A, runs forward through the maze, and ends at
one of the four shaded boxes. When it arrives at a termination position, it is awarded a
random number of food pellets whose average is written in the box. Then it is then is
replaced at A, only to start again.

This deceptively straightforward maze poses a sequential decision-making task in mi-
crocosm. We use it to discuss the standard techniques of reinforcement learning, and
their links with classical and instrumental conditioning. We seek to use formal mathe-
matical and computational descriptions to model the nature and properties of behavior
in such tasks.

First, consider the decision the rat has to make when it arrives at B or C. In either case,
it faces a standard T-maze task with appetitive outcomes. Such tasks are also known as
stochastic two-armed bandit problems, where the equivalent of pulling one of the arms
is choosing one of the directions, and the stochasticity comes from the randomness
in the number of pellets actually delivered in each shaded box. The rat has to learn
from its random experience that it gets more food on average if it runs left at B and
right at C. Furthermore, it may need to consider the possibility that the experimenter
might change the relative worths of the termination boxes, in which case it would have
continually to explore the different possibilities.
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Figure 1: The maze task. The figure shows a simple maze task. The rat (or robot) enters
from the bottom, and is only allowed to run forwards. The shaded boxes are end points
where the rat receieves food pellets. The average number of pellets is written in each
box (with Poisson variability in our experiments). The potential choice points are at A,
B and C. After Dayan & Abbott (2001).

Second, consider the more difficult case of the choice at location A. Whichever direction
the rat chooses, it receives no direct reward; the only consequence is that it gets to
location B or C. Information that location B is a better choice than C has somehow to
filter back to the choice of direction at A, in order that the rat can learn to go left. This
is sometimes known as the temporal credit assignment problem, since, if the rat goes
left at A and right at B, how does it know that the first direction was good and the
second bad, rather than vice-versa. Credit (or, in this case, blame) has somehow to be
assigned to the second direction. In more challenging sequential decision tasks, there
may be many steps before an actual reward is delivered.

Both these problems are familiar in a variety of fields, including psychology, statistics
and control theory. Reinforcement learning (see Sutton & Barto, 1998; Bertsekas & Tsit-
siklis, 1996) has blended and adapted solutions that have been suggested in each. In
summary, the essential idea for solving the first problem is to consider the model rat
as adopting a parameterized stochastic policy at B and C, which specifies the probabili-
ties with which it turns left or right at each location. The parameters of the policy are
adjusted in the light of the rewards received by the rat, so that actions leading to larger
average rewards come to be favored. This is essentially a formalization of Thorndike’s
(1898; 1911) famous law of effect. An alternative is to sample both directions in order
to learn the average reward associated with each, and then choose whichever seems
more lucrative. These methods are close to those suggested by Bush & Mosteller (1955;
and, more distantly, Rescorla & Wagner, 1972), formalized in the engineering disci-
pline of stochastic learning automata (Narendra & Thatachar, 1989), and analyzed in a
reinforcement learning context by Williams (1992).

The essential idea for solving the second problem is to learn the attractiveness of loca-
tions B and C, and choose an action at A that leads to the more attractive outcome. Here,
the natural measure of attractiveness of the location, which is usually called its value,
is the number of pellets that is expected to be delivered in the future path through the
maze, starting from that location. Thus, going left at A, which leads to a location (B)



from which a large number of pellets is expected in the future, should be favored over
going right, which leads to a location (C) from which only a small number of pellets
is expected. Of course, the values of B and C depend on the policies adopted there;
as these policies change, the action that is preferred at A can change too. However,
provided that the polices are always getting better, so the values of B and C only in-
crease, then the policy at A will change for the better too. In turn, the value of A, the
expected number of pellets associated with starting from A, can also be learned, using
information encountered about the expected number starting from B and C.

There has historically been great interest in psychology in the way that chains of be-
havior, like the successive choices of direction in the maze, are established and main-
tained by reinforcement, and this method for solving the second problem therefore
has a large number of forebears. One is secondary conditioning - since the value of
location A is acquired via a secondary association with the rewards that follow B and
C. Values acquired during secondary conditioning are used to control instrumental
choices of action (resulting in a form of two-factor conditioning theory, eg Mowrer,
1956; Mackintosh, 1974). A second link is to a method suggested by Deutsch (1960) as
to how information about possible future rewards in the maze could come to influence
present actions. There is a slightly more remote relationship with Hull’s suggestion of
goal gradients (Hull, 1943; 1952). Another link is to Samuel’s (1959) checker playing
program and Michie & Chambers’ (1968) BOXES control system, since the expectation
of future reward starting from A is determined by making it consistent with the expec-
tations of future reward starting at the locations accessible from A, namely B and C. A
further link, which we explain in more detail below, is to the engineering method of
dynamic programming via policy iteration (Bellman, 1957). Finally, albeit in a slightly
different setting, ethologists use dynamic programming to formalize behaviors such
as these in the context of optimal foraging decisions (Mangel & Clark, 1988), and this
provides a link between psychological and ethological ideas about learning. In rein-
forcement learning, the method was suggested and analyzed by Sutton (1988); Barto,
Sutton & Anderson (1983); Sutton & Barto (1990), and linked to dynamic programming
by Watkins (1989) and Werbos (1990).

Many drugs of addiction hijack the mechanisms normally employed by animals to pro-
cess appetitive information. This has led to the collection of a substantial body of
experimental data in rats, monkeys and humans on the neural underpinning of adap-
tive action choice, which bears directly on the neural basis of reinforcement learning. In
particular, the neuromodulator dopamine is thought to play a critical role in the appeti-
tive aspects of addictive drugs, and so is a natural candidate for the neural substrate for
aspects of reinforcement learning. Consistent with this, as we will see, measurements
of the activity of dopaminergic neurons during conditioning show that they exhibit
some of the characteristic properties of the reinforcement learning signal involved in
propagating information on prediction errors about future rewards to train present pre-
dictions and control present actions. Altogether, reinforcement learning melds neural,
psychological, ethological and computational constraints on a single problem.

In this chapter, we first consider the two control problems described above in the con-



text of the maze, and show the reinforcement learning solution and its links with more
standard accounts of classical and instrumental conditioning. In section 4, we discuss
the putative neural basis, providing a model of the activity of dopamine cells. Finally,
in section 5, we consider some current efforts to model attentional aspects of condi-
tioning. Whereas the standard reinforcement learning models are strongly influenced
by engineering ideas about optimal control; the attentional models are influenced by
statistical ideas about learning.

2 Action Choice

Choosing a direction at B or C is more straightforward than at A, because immediate
information is provided about the quality of the action in terms of the delivery of
pellets of food. The main difficulty comes if the pellets are delivered in a stochastic
manner at each termination point, so averages have to be taken over many trials, or if
the experimenter actually changes the average values over time. These lead to a critical
choice for the rat between exploration and exploitation, that is, between choosing the
action which is currently believed to be worse in order to make sure that it really is,
and choosing the action that is currently believed to be best in order to take advantage
of its apparently superior characteristics. A fair wealth of theoretical work has been
devoted to optimal tradeoffs between exploration and exploitation (eg Berry & Fristedt,
1985), and there is even some evidence of this sort of ‘meta-optimization’ in animals
(Krebs, Kacelnik & Taylor, 1978). However, we shall confine ourselves to the simpler
problem of learning out which direction is best when the averages are fixed.

We consider two simple methods for choosing directions. One is based on parameter-
ized stochastic policies, whose parameters are changed to increase the average number
of pellets. This is sometimes called a direct method, since the policy is directly specified
and improved. The second is based on learning the average number of pellets provided
by each direction, and then preferring the direction associated with the greatest mean
reward. This is called an indirect method, since the policy is an indirect function of the
estimated mean rewards. For convenience, we start by considering just location B, and
so omit an argument or index indicating the location at which the choice is being made.

The Direct Actor

In the direct method, the choice between the directions is specified by a stochastic
policy. Let 1t be the probability of turning left at B, and mz = 1 — 11y, be the probability
of turning right there. A natural way to parameterize these is to use the sigmoid rule

m = o(fm), (1)

based on an action value m, where o(x) = 1/(1 + exp(—x)) is the standard logistic
sigmoid function. This is actually a special form of the softmax or Luce choice rule



(Luce, 1959). If m is positive, then the larger its magnitude, the more likely the rat is to
go left at B. If m is negative, then the larger its magnitude, the more likely the rat is to
go right at B. Here, the value of B sets the scale for the action value, and, by controlling
the frequency with which the rat samples the alternative believed to be worse, controls
the trade-off between exploration and exploitation.

Say the rat chooses to go left on a particular trial, and receives a reinforcement of
11 pellets of food. How should it use this information to change the parameter m to
increase the expected number of pellets it will receive? Intuitively, if 7; is large, then
m should be increased, since that makes mr; larger; if 7; is small, then m should be
decreased, since that makes 11, smaller. One way to achieve this (Williams, 1992) is to
change the parameter according to

m-m+e(r—7)(1-m), (2)
together with the equivalent expression if the rat chooses to go right instead
m—m—€e(rr —7)(1 — 1) (3)

on receiving a reward of 73), then the number of pellets the rat can expect to receive
will increase, at least on average. Here € is a (small) learning rate, and 7 is called a
reinforcement comparison term which sets a standard against which the actual number
of reward is compared.

We should step back at this point to consider the implications of equation 2. This is an
algorithmic learning or adaptation rule for the parameter m, indicating how it should
change in the light of experience. It was derived from the computationally sound intent
of increasing the average reward. As we see in the rest of this chapter, in reinforcement
learning, many such algorithmic and computational proposals about the maximization
of reward in more complicated circumstances are studied.

Rule 2 makes perfect sense - if the actual number of pellets delivered is greater than
the comparison term, then m should be increased; if it is less than the comparison
term, then m should be decreased. Oddly, provided the reinforcement comparison
term 7 does not depend on whether the rat chose to go left or right, then the fact that
the average number of pellets increases does not depend on its actual value. For an
intuition as to why this might be so, consider the case that # is very large and positive.
Then, if the rat goes left on a trial, then m tends to decrease according to equation 2,
even if going left is better than going right. However, if the rat goes right on a trial,
then, according to equation 3, m will increase by an even larger amount, and so m will
still tend to grow on average. The value of # does not affect the average outcome of
the learning rule. Nevertheless, the value of # does, however, affect the variance of this
learning rule, and so can determine subsidiary factors such as the speed of learning. A
natural value of 7 is just the average reward across all directions.

Figure 2 shows the course of learning to go left at B using the direct actor. Here,
the rewards have Poisson distributions, with means 5 and 3 for going left and right
respectively. Figure 2A shows 11, for one particular session; the randomness is clear.
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Figure 2: Simulation of the direct actor. A) The probability 1, of going left over 30
trials at location B (solid line) and the actual choices of direction (dotted line in a single
session; 1 means left; 0 means right). Here 8 = 1,e¢ = 0.4,# = 4 and the number of
pellets has a Poisson distribution. B) The average probabilities (over 500 runs) of going
left at B for B = 0.1,1,10.

Figure 2B shows the average behavior for various values of S. For this simple problem,
larger values of B lead to faster learning. However, if 8 (or indeed €) is too large, then
the rat can be overly tempted by the first reward it experiences, and might never explore
to find a better direction. The extent to which this is true depends on the actual mean
and variance of the reward delivery, something about which the rat is likely to have
only vague expectations at the start of learning.

Altogether, the direct actor is a very straightforward learning controller for which there
is a relatively easy way of controlling the trade-off between exploration and exploita-
tion. We use it later for our full model for the maze, in which case we need different
action values for each location. We will call these m(A), m(B) and m(C).

The Indirect Actor

The indirect actor uses the same action choice rule as the direct actor

m = o(B(qL — qr)) , 4)

but with two parameters g; and gr that have a completely different semantics from m
in equation 1. The idea is that g, should come to be the average number of pellets pro-
vided for going left, and gy the average number for going right. In this case, equation 4
automatically favors the direction leading to the greater reward, where the size of the
difference is judged according to B.

Say, as above, that the rat chooses from this distribution to go left, and receives a
reinforcement of 7; pellets of food. How should the estimate of the average return of



going left be altered? An obvious suggestion is to use

a. — qu+n(r —qu) (5)

where n is again a learning rate. This tends to increase q; if the estimate is too low, and
increase it if the estimate is too high. Alternatively, it moves g, towards a target value
11, by altering g, according to the prediction error 6 = 11 — q.. This learning rule is a
simple form of the Rescorla-Wagner rule (Rescorla & Wagner, 1972). The only difference
from standard applications of the Rescorla-Wagner rule is that the target value 7; here
is stochastic, whereas in most standard cases it is deterministic (and is often written
as A, the asymptotic value to which the association tends over trials). In this case, the
equivalent asymptotic value is the mean reward for going left, which we write as (7).

Sutton & Barto (1981) pointed out that this Rescorla-Wagner rule is a simple form of
the least mean squares or delta rule in engineering (Widrow & Hoff, 1960). There is
a substantial body of theory (see Widrow & Stearns, 1985) about how the delta rule
will lead g; to approximate the average value of the reward associated with going left,
and which can be used for such tasks as understanding the consequences of different
settings of 1. An equivalent rule can be used to train gy to estimate the average reward
associated with going right. As for the direct actor, we later need different values ¢q;
and gy for each locations. Where necessary, we write these state-action values as g (X)
and gg (X), where X = A, B, C labels the location.

We will later consider methods that use the average number of pellets v (B) associated
with starting from B, averaging over the randomness of the choice of direction as well as
the outcome at each end-point. This can also be learnt using exactly the same learning
rule

v(B) — v(B) + n(r —v(B)) (6)

where 7 is the number of pellets received, whichever direction the rat chooses. Some-
times, v (B) is called the value of B.

Although the direct and indirect actors look very similar, they actually have quite dif-
ferent interpretations and end points. If, as in figure 1 at B, going left is more lucrative
on average than going right, then m for the direct actor should tend to increase with-
out bound towards oo, albeit extremely slowly because the increments are scaled by the
ever-decreasing probability that the rat chooses to go right. However, q; — gz for the
indirect actor should come to take on the value of the average difference in worth be-
tween the two directions, even if this difference is very small. This makes the role for 8
very different in the two algorithms. For the direct actor, if § is fixed and # is constant,
then going left will generally be favored over going right to an arbitrary degree, even if
left is only a little better than right. However, the indirect actor will tend to match its
behavior more closely to the average outcomes. The preferred direction will only come
to be chosen on every trial if f is set to be very large. Albeit in a rather more compli-
cated reward context, Egelman, Person & Montague (1998) showed that the propensity
of this rule towards matching made it a good model of human choice behavior.
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Figure 3: Simulation of the indirect actor. A) The probability 71, of going left over
30 trials at location B (solid line) and the actual choices of direction (dotted line; 1
means left; 0 means right). Here B = 1,n = 0.2 and the number of pellets has a
Poisson distribution. B) The average probabilities (over 500 runs) of going left at B for
g =0.1,1,10.

For the same task as figure 2, figure 3 shows the course of learning to go left at B using
the indirect actor. As there, figure 3A shows a sample of the randomness in a single
run and figure 2B shows the mean effect over many runs for a few different values
of B. The effect described above is at work in the persistently poor performance for
small B = 0.1. Whereas for the direct actor, in figure 2B, the probability of turning left
continually increases, for the indirect actor, it has an asymptotic value of r; = 0.55. If 8
is too large, then, like the direct actor, the balance between exploration and exploitation
can be disturbed.

3 Sequential Action Choice

It is clear that neither direct nor indirect actors can directly be employed to choose
which direction to take at A, since the equivalent of the reward terms 7; or 7y are al-
ways 0. The task here is closely analogous to the intensively studied case of sequential
chains of behavior, reinforced by a final goal. The investigations of this led to sophisti-
cated, complicated, and contentious learning theories, such as those of Hull (see Hull,
1952), and Deutsch (1960). At the heart of the reinforcement learning solution to the
temporal credit assignment problem is the very simple and old idea of using secondary
reinforcement to learn values v (B) and v (C) which reflect the attractiveness of loca-
tions B and C, and then choosing the direction at A that leads to the more attractive
location. Here, v(B) acts like a surrogate reward for the choice of going left at A, and
v (C) acts like a surrogate reward for the choice of going right at A.

The main novelty (Sutton, 1988; Sutton & Barto 1990) in this approach lies in the way



that secondary reinforcement is formalized and thus in the definition of the values. The
suggestion is that the value of a location should come to be the total reward expected
starting from that location, adding up over all future steps. The expectations of total
future reward should be mutually consistent at successive steps, so, for instance, if the
rat always chooses to go left at A, then the value of A should be the same as the value
of B. The temporal difference learning rule is based on the discrepancy in the value
estimates at successive steps.

Given these values, the actual reward term 77 in in equations 2 and 4 might simply be
replaced by the expected future reward v(B), and learning a policy at A using either
direct or indirect actors could proceed. Of course, v(B) and v (C) will change as the
policy at B and C improves, but this should only improve the choice of direction at A.

We first consider a more formal treatment of the problem of learning values, including
what to do if pellets can be provided at any step. We then discuss how the information
about values can be used to learn a good policy at A.

The Critic

The values of locations are the expected total number of pellets that will be received,
starting from each location, and following a fixed, though possibly stochastic, policy.
Once the policy is fixed, the problem of learning the values can be seen as one for
classical conditioning, ie predicting the rewarding consequences of locations without
reference to the actions actually adopted. This makes the link to secondary condition-
ing clearer - B is directly associated with the delivery of pellets; A is directly associated
with getting to B, and so A should be associated with the delivery of pellets too. Indeed,
the reinforcement learning method, called temporal difference learning (Sutton, 1988)
that we are about to describe for learning the values, was explicitly motivated by the
failure of secondary conditioning to come under the umbrella of the Rescorla-Wagner
rule. This failure comes about because the Rescorla-Wagner rule does not take account
of the sequence of presentation of the stimuli (here, the sequence of locations in the
maze).

Unfortunately, though the idea underlying temporal difference learning is simple, the
notation is rather ugly. Starting from any location X, there are only two ways to get
pellets. One is that some might be immediately provided for choosing a direction (as
at B and C). These are called immediate rewards, and, as above, we write (7;.(X)) and
(rr(X)) for the average numbers of pellets provided for going left and right at location
X. More generally, we write (rp(X)) for the average number of pellets provided for
choosing a direction D, and this allows for the possibility that pellets might be provided
at intermediate locations in the maze on the way to the end points. The other way to
get pellets is that they might be expected to be provided in the farther future, based
on the location Y the rat gets to directly from X on account of its action. For instance,
if the rat gets from A to B, then it can expect to get pellets in the future, following the
action it takes at B. Once learning is complete, v (Y) is exactly the number it can expect



to get from Y. In fact, the expected future reward from X is simply the sum of these
two contributions, averaged over the choice of action at X. Sutton & Barto’s (1990) key
insight was to introduce the idea of predicting the sum of all future rewards, rather
than just the current reward, and this led directly to temporal difference learning.

To put this more concretely, we can write a formula for the value of A as

v(A) = m(A) ((12.(A)) + v(B)) + r(A) ({1=(A)) + v (C)) (7)

. (A)v (B) + mr(A)v (C) 8)

In equation 7, we have written out explicitly the two contributions mentioned above and
averaged them over the probabilities of going left and right at A. Equation 8 follows,
since no pellets are immediately provided for the action at A. Similarly, we can write
the value of B as

v(B) = m.(B){71.(B)) + r(B){(7=(B)) = mm.{1) + Tr{1%) = 105 + ™R3 9)

where, in this case, the contributions to the number of pellets from the future steps in
the maze (the equivalents of v (B) and v (C) in equation 7) are zero, since the trial ends
in one of the shaded boxes. We have also included the reduced notation of the previous
section.

If we were to follow the Rescorla-Wagner rule of equation 6 to learn v (A), we might use
the right hand side of equation 7 as the target for v(A) (replacing the 7), and use the
difference between the target value and the current value v (A) to drive learning

VA) = v(A) + n([m(A) (rL(A)) + v(B)) + T(A) (1r(A)) + v<c>)] - v(A)) (10)

There are three problems with equation 10, all of which temporal difference learning
addresses.

The first problem with equation 10 is that the target value for v (A) involves knowing
the true values v (B) or v (C). Of course, at the beginning of learning, these are no better
known than v (A). Temporal difference learning ducks this concern, by bootstrapping its
estimates from each other. That is, learning proceeds for all locations simultaneously,
and as v(B) and v (C) become more accurate, then v (A) becomes more accurate too.

The second problem is that the learning rule involves an average over both the possible
directions the rat could choose at A, rather than just the single direction the rat can
actually choose on a single trial. Gallistel (personal communication, 2001) calls this
the problem of the ‘road not taken'. Fortunately, just as we use the random number
of pellets 71 received for going left on a single trial in equation 6 and still make g, be
the average number of pellets consequent on turning right (7), we can use the actual
value v (B) or v(C) encountered by the rat on a single trial, and still learn the average
of equation 8.

In order to have a slightly more general description of this, we need to use the more
general way of describing a single step in the maze that we mentioned above. Consider

10



the case that the rat starts at a location X, picks a random direction D according to
. (X) and 1R (X), receives an immediate reward of 7;,(X) pellets and moves to location
Y. Here, 1 (X) + v (Y) is a quantity that is random, since the choice of action D and the
delivery of 7, (X) pellets are both random. Starting from X = A, if direction D is left, then
Y is B; if direction D is right, then Y is C. Averaging over these sources of stochasticity,
the mean value of 1, (A) + v(Y) is

m.(A) ((1.(A)) + v(B)) + mr(A) ({1=(A)) + v (C)) (11)

which is just the right hand side of equation 7. This is also true for general moves in
the maze. Thus, 15 (X) + v (Y) can be thought of as a random sample of the value of v (X)
in the same way that 71 in equation 5 is a random sample of (71). The overall learning
rule uses this sample to replace the expression in the square brackets of equation 10.
That is it uses the difference

0 =1p(X) +v(Y) —v(X) (12)

between the sampled target (7, (X) + v (Y)) and current (v (X)) values of X to drive learn-
ing, just as the Rescorla-Wagner rule of equation 5 uses the difference between the
sampled target (71) and current (q;) state-action values. The final learning rule is

v(X) = v(X)+nd (13)

The difference 6 of equation 12 is called the temporal difference and plays a central role
in both biological and engineering aspects of reinforcement learning. Its name derives
from the difference v (Y) — v(X) between the estimates of the values of two successive
states.

The third concern is that a straightforward implementation of equation 13 seems to
require that the rat have a very simple representation of each location, with a single
parameter v (X) for each location. As is completely standard in theories of condition-
ing, we might more reasonably expect X to be represented by the activity of a set of
atomistic stimulus representation or cue units (#1,uU2,...,Uy) = U, whose activity at
X, called u(X) might be determined by the unique cues at each location in the maze, or
perhaps the activity of place cells associated with the locations. Associated with each
cue unit u; is a weight or parameter w; that determines its contribution to the values
of locations at which the cue is active. As in the Rescorla-Wagner rule in such circum-
stances, the value of location X, v(X), is a sum over the weights of just the cues that
are active at X, and only the weights associated with active cues are changed in the face
of prediction errors.

An easy way to put this version of the Rescorla-Wagner rule more formally is to assume
that a stimulus representation unit u;(X) takes the value 0, if the cue is not present at
X, or 1 if the cue is present. Then, because of this simple binary form, the Rescorla-
Wagner rule’s assumption that the value of X is determined as a sum over the cues that
are active there, can be written

v(X) = D> wiui(X) =w-u(X) . (14)

11
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Figure 4: The architecture of the critic. The stimulus representation u, which here has
one element for each location in the maze, maps to the value estimate v through a
set of modifiable weights w. The prediction unit incorporates information about the
delivered rewards » and calculates the temporal difference error 6, which is used to
change the weights.

Further, the extension to the temporal difference learning rule of equation 13 specifies
changes to the weights for just the cues that are active at X

w; — w; + noéu;(X) (15)

This rule shares most of the properties of the Rescorla-Wagner rule to do with stimulus
competition (such as blocking), and also shares many of its faults. Figure 4 shows the
learning architecture in a different way, where, in this case, there are just three cues
and three weights (n = 3).

The extensive theory of temporal difference learning (see Sutton & Barto, 1988; Bert-
sekas & Tsitsiklis, 1996) indicates circumstances under which this learning rule will
make the values v (X) come to satisfy equation 8. More concretely, figure 5 shows the
course of learning of the values of A, B and C (solid lines), together with their target
values (dashed line) in a single session of 100 trials in the maze of figure 1 for the
case that the rat chooses left and right equally often. It is apparent that the values are
learned quickly and accurately.

The Sequential Actor

We have so far shown how to learn the values of the locations as the expected future
rewards starting from those locations. How can we use this information to learn a good
policy at location X? The idea, just as in equations 12 and 13, is to use 7p(X) + v (Y)
as a sampled estimate of the value of performing action D. This sampled estimate can
just replace 77 in the learning rules for the direct and indirect actor, as we discuss in
the next two sections.

12
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Figure 5: Learning the values. The solid lines show the course of learning of v (A), v(B)
and v (C) over a single session of 100 simulated runs through the maze. The dashed
lines show the true values from equation 8. Here € = 0.2.

The Actor-Critic

In discussing the direct actor, we introduced the idea of the reinforcement comparison
term 7, and suggested that it might take on the value of the average reward. In this case,
an estimate of the current average reward is just v(X), and so, for instance, learning
rule 2 becomes

mX) = mX) +e(rnX) +v) —vX)(1-m) =mX) +€d(1l — 1) (16)

and depends on the values only through the temporal difference error 6 of equation 12.
Therefore, the same temporal difference error term is used to train both the value of
X and the policy at X. To put it another way, 6 > 0 means either that the estimate
of the value v(X) is too pessimistic, or that the estimate is right on average, but the
action D is better than average (or both). In the first case, the estimate should ideally
be changed; in the second, the policy should be changed. Figure 6 shows the course of
learning of actions at A, B and C in the maze. The rat rapidly learns to turn left at A and
B, and also to turn right at C. This combination of temporal difference learning and the
direct actor was first suggested by Barto, Sutton & Anderson (1983) under the name of
the actor-critic architecture.

In the case that stimulus units 1;(X) represent the locations in the maze, then, as in
equation 14, a set of action weights m; can be used to parameterize the action choice
at X

m(X) = > miu;(X) (17)

The equivalent of the actor learning rule 16 is

m; - m; +€6(1 —m)u;(X) . (18)
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Figure 6: Learning the policies. The lines show the course of learning 1T (A), 7r.(B) and
m.(C) over a single session of 100 simulated runs through the maze using temporal
difference learning and the direct actor. Here € = 0.4.

Q-learning

It would be possible to use exactly the indirect actor as described in section 1 in con-
junction with the estimate 7, (X) + v (Y) of the future rewards from a location. However,
this is not done, because of the redundancy between learning the average value of each
action at each location gp(Y) and, separately, the average value of the location v (Y)
itself. Rather, the conventional alternative is to define v (Y) in terms of the state-action
values qp(Y). There are two ways to do this. Since the state-action values define an
explicit policy, r(Y), one way is to define v (Y) as a weighted average of the state-action
values, where the weights are determined by the policy. However, the object of learn-
ing is to find the actions that maximize the expected reward. Since the rat is free to
choose which direction to run at Y, it is appropriate to evaluate Y not according to the
estimated average worth of all the possible directions at Y, but rather by the estimated
worth of the best direction at Y. The second way to determine v (Y) is thus

v(Y) = maxqp(Y) (19)

Whichever form for the value of Y is used, given a choice of action D, and a transition
from location X to Y, the Q values should be updated as

an(X) = ap(X) + n (1 (X) + v(Y) — g (X)) (20)

Equation 20 is almost the same as the standard temporal difference rule of equation 13.
This form of reinforcement learning is called Q-learning, and was invented by Watkins
(1989).

Dynamic Programming

Markoyv decision problems (Puterman, 1994) provide a rich theoretical context for un-
derstanding sequential action choice tasks such as the maze. Methods in engineering
for solving Markov decision problems are generally forms of a technique called dynamic

14



programming (Bellman, 1957), to which reinforcement learning algorithms are closely
related. For instance, the actor-critic implements a dynamic programming technique
called policy iteration, involving policy evaluation (finding the values v (X) that satisfy
equation 8 and policy improvement (using the values to find actions that are better).
Q-learning implements a dynamic programming technique called value iteration.

The link with dynamic programming has led to comprehensive theory (see Sutton &
Barto, 1998; Bertsekas & Tsitsiklis, 1996) as to circumstances under which Q-learning
will find optimal policies in tasks like the maze. It has also opened many lines of
investigation extending and improving the basic methods outlined here.

4 Dopamine and Reinforcement Learning

Unfortunately, there has been no complete investigation of the neural basis of the learn-
ing behavior of rats or other animals in a maze such as that in figure 1. However, as
is evident in many other chapters in this book, a substantial body of neurobiological
data, based on drug addiction, self-stimulation, lesion studies and neuropharmacology
bears on how animals actually learn about rewards. A venerable organizing focus of
this work has been that the neuromodulator dopamine plays a central role (see, for
instance, Wise, this volume; Wise, 1982; Beninger, 1983; Wise & Bozarth, 1984; Simon
& le Moal, 1988; Wise & Rompre, 1989; Robbins & Everitt, 1992; Koob, 1992). Note,
however, that this is an active and controversial field of study, and there are also many
recent challenges (see Berridge, & Robinson, 1998; Spanagel & Weiss, 1999; Ikemoto &
Panksepp, 1999). Temporal difference learning has been used to model the activity of
dopamine cells during reward learning, a link we describe in this section. The relevant
dopamine cells are both in the ventral tegmental area, which project to areas associated
with the limbic system, including the nucleus accumbens or ventral striatum, and the
those in the substantia nigra pars compacta, which project to the dorsal striatum.

Figure 7 shows a histogram of the activity of dopamine cells of a thirsty macaque mon-
key in conditions before and after it learns a predictive association between a stimulus
(which cues a motor response) and a reward (which is a drop of juice). These actu-
ally come from different experiments, but the qualitative pattern of results is robust.
In figure 7A, left and right plots show activity stimulus-locked to the cue and the re-
ward respectively. The cue is irrelevant before learning, and there is little response to
it, whereas delivery of the reward induces a large and well-timed response from the
cells. Figure 7B shows that after learning, the contingencies reverse - now the activity
is consequent on the early reliable predictor and not the reward itself.

Figure 8 describes the account of this activity that comes from temporal difference
learning (Montague, Dayan & Sejnowski, 1996; Houk, Adams & Barto, 1995; Friston et al,
1994; Schultz, Dayan & Montague, 1997; Wickens, 1993). The idea is that the difference
between the activity and the baseline activity reports the temporal difference prediction
error 6 (equation 12). In early trials, the reward is unexpected, and so the prediction
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Figure 7: Histograms of population activity of dopamine cells stimulus-locked to a cue
and to the reward during a conditioning task. A) Dopamine activity before learning
shows response to the reward not the cue. B) Dopamine activity after learning shows
response to the cue and not the reward. Adapted from Schultz (1998).

error, and so the model dopamine activity, follows the reward signal v. In later trials,
the activity associated with the reward is expected, and so induces no prediction error,
and so no non-baseline dopamine activity. However, the stimulus is not expected. It
provides a signal that reward will be delivered in the future, and so is associated with a
large and positive prediction error, and so a large and positive deflection above baseline
of the dopamine activity. The way that this model accounts for secondary conditioning
is clear. If another stimulus (say a tone) is presented before the light, then the activity
of the dopamine system consequent on the light (seen in ‘after’) acts for the tone just
as the activity consequent on the reward (seen in ‘before’) originally acted for the light.
Thus, learning about the relationship between tone and reward will proceed. In the
figure, the signal Av is the difference in successive predictions of the reward. This is 0
whenever the predictions are not changing, ie before the cue, and between the cue and
reward.

One facet of the temporal difference signal is shown by the plot of Av in figure 8 after
learning is complete. If the monkey is not provided with a reward when it is expecting
it, then the temporal difference signal 6 = Av will be exactly this. The below-baseline
activity around the time of the reward is a mark of the reward prediction. The rightmost
plot in figure 9 shows dopaminergic activity in the same circumstances. The well-timed,
below-baseline, activity is clear, just as in the model.

Figure 8 embodies a crucial assumption that the monkey has a way of keeping time
precisely between the stimulus and the reward. Each time step is individuated by a dif-
ferent stimulus (called a serial compound conditioned stimulus, Gormezano & Kehoe,
1989 or a spectral representation of time, Grossberg & Schmajuk, 1989) in just the same
way that each location in the maze might be identified by a single stimulus. Since fig-
ure 9 shows that the inhibition is well timed in the case that the reward is not provided,
we know that this time must be represented somehow; however the precise neural sub-
strate is unclear. O’Reilly, Braver & Cohen (1999); Braver, Barch & Cohen (1999) have
suggested that one result of the dopamine response to the predictive stimulus is to
gate the stimulus into working memory in prefrontal cortex. This would mean that in-
formation that the stimulus had recently been presented is available for prediction and
control, and the complex developing pattern of population activity of neurons in the
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Figure 8: Model of the data of figure 7. The series of graphs show the cue (u), the ac-
tivity consequent on the reward (), the learned prediction (v), the temporal difference
in the learned prediction (Av), and the temporal difference error signal (6 = ¥ + Av).
Left plots show ‘before’ learning; right plots show ‘after’ learning. é should be matched
to the data in figure 7. Adapted from Montague, Dayan & Sejnowski (1996); Dayan &
Abbott (2001).

prefrontal working memory may individuate the time steps between the stimulus and
reward, as in proposals for how timing information is represented in the cerebellum,
Buonomano & Mauk, 1994; Medina & Mauk, 2000). Suggestions for the involvement
of the hippocampus (Grossberg & Merrill, 1996) and intracellular processes in striatal
cells (Brown, Bullock & Grossberg, 1999) have also been made. In fact, the cerebellum
has been suggested as another neural substrate for conditioning, particularly eyeblink
conditioning, and Rescorla-Wagner (Gluck, Reifsnider & Thompson, 1990) and temporal
difference (Moore, Berthier & Blazis, 1990) models of its involvement have been built.
These lie outside the scope of this chapter. The subtleties of the timing behavior of ani-
mals in conditioning experiments are discussed in other chapters in this book (Church,
this volume). The substantial timing noise that is evident in many experiments and is
the subject of substantial theory itself (eg Gibbon, 1997) may have a significant impact
on the pattern of activity of the dopamine cells.

The original suggestion for a temporal difference account of conditioning (Sutton &
Barto, 1990) did not employ a serial compound conditioned stimulus, but instead relied
on the earlier psychological notion of stimulus traces (Hull, 1943). The idea is that if
u; representing the cue is active at one time (t = 100 in figure 8), then the associated
weight w; is eligible to be changed according to temporal difference prediction errors
6 that occur at later times (¢t = 200 in the figure, around the time of the reward). This
allows the model to account for phenomena such as secondary conditioning. However,

17



no prediction, reward prediction and reward prediction, no reward

i 1 A 0 14 2s A 0 1 2s
R cs R cs ino R)

Figure 9: Activity of single dopamine cells to reward that is unexpected (left), predicted
and delivered (center), or predicted and not delivered. The left and center plots match
to figures 7 and the lowest lines in figure 8, the rightmost plot matches Av ‘after’
learning in figure 8. The scale is in spikes per bin per trial. Adapted from Schultz,
Dayan & Montague, 1997.

short of a way of keeping time between the stimulus and the reward, it does not make
correct predictions about the activity of the dopamine cells. Stimulus traces actually
play an interesting computational role in the temporal difference model, as explored
by Watkins (1989).

As mentioned, there is an active debate on the full link between dopamine and appet-
itive conditioning. For instance, we have focused on the phasic behavior of dopamine
cells in response to surprising rewards; there is also evidence from dialysis that
dopamine is released, and from neurophysiology that the dopamine cells are activated
in a more persistent manner, by aversive contingencies (Herman et al, 1982; Claustre
et al, 1986; Abercrombie et al, 1989; Guarraci & Kapp, 1999). They are also activated
by novel stimuli (Ijungberg, Apicella & Schultz, 1992; Horvitz, Stewart & Jacobs, 1996;
although note that novelty can sometimes act as if it is itself rewarding, Reed, Mitchell
& Nokes, 1996) and by stimuli that resemble other stimuli that are associated with
rewards (Schultz, 1998). Although extensions of the temporal difference model have
been suggested to account for all these behaviors (eg Contreras-Vidal & Schultz, 1999;
Daw & Touretzky, 2000; Kakade & Dayan, 2001), more experiments and more theory
are still required. These, and other findings have also led to suggestions about the role
of dopamine other than prediction and reward learning, particularly focusing on ori-
enting and the allocation of attention (Ward & Brown, 1996; Han et al, 1997; Yamaguchi
& Kobayashi, 1998; Redgrave, Prescott & Gurney, 1999). It is worth noting that it is not
yet completely clear how activity of the dopamine cells translates into the release of
dopamine at target sites.

It is also not clear exactly what is responsible for the activity of the dopamine cells, or
which synapses change their values to reflect the predictions of reward associated with
stimuli and to reflect the appropriate choice of actions. There is some evidence in both
rats and monkeys that the basolateral nucleus of the amygdala and the orbitofrontal
cortex play an important role in storing the values associated with stimuli (Hatfield et al,
1996; Schoenbaum, Chiba & Gallagher, 1998; 1999; Gallagher, McMahan & Schoenbaum,
1999; Robbins & Everitt, 1999; Rolls, 2000). However, exactly how this information
translates into the activity of dopamine cells is open to speculation. Another critical
piece for the model is the way that dopamine can control the selection, and particularly
the learned selection of actions. Early suggestions that this is a role for plasticity into
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the cortico-striatal afferents to the dorsal striatum are now under some question (see
Houk, Davis & Beiser, 1995; Kropotov & Etlinger, 1999).

5 Statistical Models of Attention

The temporal difference model for learning values inherits a number of properties from
the Rescorla-Wagner rule as to how different possible cues interact to make predictions
about expected future rewards and to have their predictive weights change. As in equa-
tion 14, the predictions made by all the stimuli that are present are just summed, and,
as in equation 15, the weights of all stimuli present are changed by the same amount.
The only competition between stimuli is as in blocking, ie if one stimulus already pre-
dicts an outcome perfectly, then other stimuli that are simultaneously present will
attract no learning, because there is no prediction error.

The temporal difference model thus also inherits the problems that these assumptions
make for the Rescorla-Wagner rule. What both leave out is attention. Attention is a com-
plicated and multi-faceted concept (see, for example, Parasuraman, 1998), with many
different implications for different neural processes. In conditioning, there is a long
history (see Dickinson, 1980; Mackintosh, 1983 for reviews) of the study of selective
attention, originally sparked by the idea that there might be a limited capacity learn-
ing processor responsible for relating stimuli to affective outcomes, and that stimuli
might compete to gain access to this processor. Even though the idea of limited capac-
ity explanations for attention now has rather less currency (Allport, 1993), substantial
experimental results on selective attention in conditioning remain to be explained.

The Rescorla-Wagner and temporal difference models do not take account of the possi-
bility that, based on the past history of interaction, animals might accord more weight
to the predictions made by some stimuli than others, or that some stimuli might attract
faster learning than others. Alternative models of conditioning, for which there is quite
some evidence, place substantial emphasis on these stronger forms of competition be-
tween stimuli. One of the best studied alternatives is that due to Pearce & Hall (1980),
who suggested that animals should learn more about stimuli whose consequences are
more uncertain. In fact, in its original form, the Pearce-Hall model explains even ba-
sic blocking by this mechanism, rather than by the lack of prediction error. Pearce &
Hall (1980) also point out that stimuli about which an animal is uncertain are exactly
the ones that should not be believed in making predictions about rewards. However,
they did not suggest a quantitative account of how their predictions could be ignored.
Grossberg (see 1982) suggests that all the stimuli that are present should compete to
make predictions, although this competition is not, at least in a straightforward man-
ner, based on uncertainty.

Holland and his colleagues (see Holland, 1997; Holland & Gallagher, 1999) have per-
formed a wealth of tests of the neural basis of the Pearce-Hall model in appetitive
conditioning. Primarily using selective lesions, they have identified a pathway in rats
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from the central nucleus of the amygdala, through the cholinergic basal forebrain to the
parietal cortex that is critically involved in the faster learning accorded to stimuli whose
outcomes are made uncertain. They have also identified a different pathway involved
in the slower learning accorded to stimuli whose outcomes are perfectly predictable
(as in latent inhibition, Lubow, 1989; see Baxter, Holland & Gallagher, 1997). Baxter
et al, (1999) suggest that eliminating both these pathways leaves rats with an underly-
ing learning behavior more consistent with the Rescorla-Wagner rule, confirming that
a simple phenomenon like blocking is likely to be multiply determined. As an aside,
the involvement of cholinergic systems in processing uncertainty is striking because
of evidence of the action of ACh in changing the balance in favor of stimulus-driven
or bottom-up input against recurrent or top-down input in determining the activity of
cells in both the hippocampus and the cortex (Hasselmo, Anderson & Bower, 1992; Has-
selmo, 1999). In cases in which the animal knows itself to be uncertain, recurrent and
top-down input is less likely to be correct.

From a computational point of view, these two rather different forms of attention
should emerge naturally from statistical considerations. The models of this, such as Kr-
uschke (1997; 2000); Gallistel & Gibbon (2000); Kakade & Dayan (2000); Dayan, Kakade
& Montague (2000) are not yet completely integrated into the full reinforcement learn-
ing models for tasks such as the maze, so we will just describe them briefly.

Competitive Combination

One way to generate competition between cues for making predictions about outcomes
is to think of combining the views of multiple experts about the same event. In this
circumstance, it is natural to weight each expert’s view according to how reliable a
predictor that expert has been in the past. Clearly, adding together the predictions
made by all the experts, which is what equation 14 suggests, would be rather strange.
There are various ways to formalize competitive combination (Jacobs, 1995) from a
statistical viewpoint. Understanding how these models fit conditioning data provides
insight into the statistical assumptions embodied by animal learners.

Two statistical competitive models have been advocated for conditioning. Kruschke
(1997; 2000) suggested using the standard mixture of experts architecture (Jacobs,
Jordan, Nowlan & Hinton, 1991), motivated partly by Mackintosh’s (1975) attentional
model, and Dayan & Long (1997); Kakade & Dayan (2000) suggested the original mix-
ture of experts model (Jacobs, Jordan & Barto, 1991) motivated by the experimental
phenomenon of downwards unblocking (Mackintosh, Bygrave & Picton, 1977; Holland,
1984; 1988) and results on the apparent sloth of learning in autoshaping (Gallistel &
Gibbon, 2000). Although there are substantial differences in the assumptions and be-
havior of these models, they share the characteristic of competitive combination.

Figure 10 shows an example of combination according to the Jacobs, Jordan & Barto
(1991) model. Here, competition is derived from unreliability. Two cues, F and G (say a
light and a tone) both make unreliable predictions about the reward. The unreliability
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Figure 10: Unreliability model. Solid and dotted lines show the distributions of the pre-
dictions of reward made by two cues (F and G). These are Gaussian distributions with
precisions (inverse variances) reflecting the reliabilities of the cues. The dot-dashed
line shows the combined prediction, assuming that the individual predictions are sta-
tistically independent in an appropriate way. After Dayan, Kakade & Montague (2000).

is shown on the plot in the terms of the whole distribution over the actual reward given
each cue by itself. Cue F (the solid line) predicts a single pellet of reward; cue G (the
dotted line) two pellets. However, F is more reliable than G, as is evident from the fact
that its distribution is sharper. That is, under cue F the reward is tightly constrained
near 1 pellet; whereas under cue G, the reward is more loosely constrained near 2 pel-
lets. Given both cues, how should a net prediction be constructed? Under a model
that the unreliabilities of the cues are statistically independent, it turns out that these
distributions should be multiplied together, and then reweighted. The net prediction
(the dot-dashed line) is therefore of an intermediate number of pellets, nearer 1 than
2 (since F which predicts 1 pellet, is more reliable than G). The net prediction is more
reliable than those of either F or G, since it integrates information from both. By con-
trast, the standard additive combination model for temporal difference learning or the
Rescorla-Wagner rule, would predict 3 pellets of reward.

Purely additive models such as equation 14, and purely competitive models such as
figure 10 both fail to account for some conditioning data. Competitive models have
difficulty with circumstances such as overexpectation (see Lattal & Nakajima, 1998;
Rescorla, 1999); additive models fail for phenomena such as downwards unblocking
(see Dickinson, 1980). Providing a statistical basis for integrating these models is an
important next step.
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Competitive Adaptation

The opposite of a reliable predictor is a stimulus about whose consequences the animal
is in substantial doubt. According to the Pearce-Hall model, this uncertainty should
lead the animal to learn faster about the associated stimulus. In the context of the
temporal difference model of equation 15, this can be implemented simply by providing
each stimulus unit with its own learning rate ;. However, what is a computational
account of how these learning rates should be set? Once again, a psychological intuition
has a computational basis, in this case in ideas about learning and adaptation in the face
of uncertainty and change in the world. This basis was provided by Sutton (1992), who
formalized an alternative way of thinking about the course of conditioning in terms of
an engineering and statistical device called a Kalman filter (Anderson & Moore, 1979).

Sutton suggested that the conditioning behavior of animals is consistent with their
trying to ‘reverse-engineer’ the relationship between stimuli and rewards that is estab-
lished by the experimenter (or, in more natural circumstances, by nature). The process
of reverse-engineering consists of combining together the information about the rela-
tionship that is provided by the sample stimuli and rewards provided on each trial.
Initially, the animal will be quite uncertain about the relationship; given lots of trials,
even noisy ones, it may become more certain. However, if the relationship continually
changes (as it almost always does in both natural and experimental contexts), then very
old trials may no longer be relevant to the current relationship, and therefore their
information should be discarded. The Kalman filter is a statistically precise way of for-
mulating the answer to this problem; Sutton (1990); Dayan, Kakade & Montague (2000)
suggested an approximation to it as a way of modeling the phenomena that motivate
the Pearce-Hall rule.

The approximate Kalman filter takes the prediction error 6 of equation 12, and dis-
tributes it among all the stimuli that are present in a trial, in proportion to their un-
certainties. The more certain the animal is about the predictions based on a stimulus,
ie the more past trials have been used to establish this prediction, the less responsibil-
ity that stimulus takes for any new prediction error. Conversely, stimuli about which
the animal has learned little, and about which it is therefore very uncertain, have their
weights changed substantially more.

Figure 11 shows a simple version of this model at work in a case in which three different
stimuli (labelled 11, 1> and u3) are provided in partial combination with a number of
pellets of reward over an extended period. Stimulus u3 is only randomly related to
the reward, and so attracts no learning; stimuli 141 and u» are closely related to the
reward, but in different ways at different times during the experiment. Figure 11B
shows the predictive weights w; (solid) and w2 (dashed) for 11 and u, respectively. The
learning of these weights is based on the uncertainties shown in figure 11C. Initially, the
animal is highly uncertain about the associations of all the stimuli, and so when 11 is
presented in close combination with one pellet of reward, learning of w; is swift. The
animal then becomes more certain about the relationship, so at tyx, when it changes,
the anmal is rather slower to change its prediction. At time tg, when u» is introduced
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Figure 11: Uncertainty model. A) Conditioning experiment involving three stimuli 11,
u2 and 13, whose presence on a trial is indicated by a small black square, and a variable
number of pellets of reward. t4, tg¢ and tr are particular times at which the stimulus
or reward contingencies change. B) net predictions for u; (solid) and u» (dashed) over
the course of the experiment. C) uncertainties associated with the same stimuli. The
predictions change quickly (ie the weights change quickly) for stimuli whose predictions
are highly uncertain. After Dayan, Kakade & Montague (2000).

in combination with a change in the number of pellets, the greater uncertainty of u»
means that it learns much faster than 11, and so establishes itself as a major predictor.
This is exactly as expected from the Pearce-Hall model.

This model for the competitive allocation of learning is also rather preliminary, and has
yet to be properly integrated with the model of competitive combination. In particular,
it does not capture Pearce-Hall’'s observation that the uncertainties change adaptively in
response to prediction errors, both in predictions of reward and also in predictions of
other stimuli. For instance, the neural basis of attentional allocation has been studied
using a task developed by Wilson, Boumphrey & Pearce (1992), in which uncertainties
in stimulus-stimulus predictions are explicitly manipulated. In this task, the predictive
consequences of one conditioned stimulus for another, change from one set of trials
to the next. This change, which leads to an inevitable prediction error, makes for
faster learning of the association between the first conditioned stimulus and a reward.
Our simple account of the competitive allocation of learning cannot model this more
sophisticated experiment.

In general, reinforcement learning methods can be used to learn stimulus-stimulus
predictions as well as stimulus-outcome predictions, (Sutton & Pinette, 1985; Dayan,
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1993; Suri & Schultz, 2001), and this capacity has even been used to explain phenomena
such as sensory preconditioning. However, the range of properties of such models has
yet to be fully explored. Indeed, there is debate in both the psychological literature
(Gallistel, 1990; Gallistel & Gibbon, 2000) and the theoretical reinforcement learning
literature (Kearns & Singh, 1999) about the relative merits of model-free methods such
as the actor-critic or Q-learning and model-based methods that build and use models
of the stimulus-stimulus and stimulus-reward contingencies of environments.

6 Discussion

Two areas of current work in reinforcement learning have a particular importance for
psychological and neural modeling: eliminating the rather artificial definition of a trial,
and performing planning over larger spatial and temporal horizons.

First, as has been forcefully pointed out by Gallistel & Gibbon (2000) and others, the
definition of a trial in tasks such as the maze is problematical. Even in the maze case,
animals might integrate reward information over multiple runs, if they are continually
taken back to the start point when they reach one of the end boxes; further, many
standard instrumental conditioning tasks involve extended series of repeated choices.
Under such circumstances, the criterion of maximizing the sum total reward over a
whole session is unreasonable, for instance because this sum may get very large. In
dynamic programming, two ways of handling such cases have been suggested, and
both of them have been translated into reinforcement learning. The first is to consider
summed discounted rewards. That is, rewards that are expected to be received in the
future are down-weighted by an amount that reflects how long it takes them to arrive.
The second is to consider the long run average reward rate rather than the sum total
reward.

The standard model of discounting in dynamic programming is exponential, that is a
reward of r pellets received t timesteps from now is treated as being worth only ytr,
where 0 < y < 1 is the discount factor. If y is near 0, then only very proximal rewards
have a significant impact on the sum discounted reward. Exponential discounting is
standard in economic contexts over long times, in order to take account of inflation
and interest rates. Exponential discounting is also easy to incorporate into the temporal
difference model we described, for instance changing equation 12 to

o0=r+yv(Y) —v(X)

However, in direct tests, humans and other animals do not appear to use exponential
discounting. Rather, at least in many contexts, they discount rewards hyperbolically
(Rachlin, 1970; 1974; Ainslie, 1975; 1992; Mazur, 1984), so the r pellets are worth
r/(x + Bt), where o« and 8 are parameters. Hyperbolic discounting has a number of
unexpected properties that have been experimentally confirmed. One example is pref-
erence reversals: offered a choice between $10 now and $20 next week, subjects might
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prefer to get $10 now; whereas offered a choice between $10 in six weeks and $20 in
seven weeks, subjects tend to be content to wait for the $20. Exponential discounting
cannot generate preference reversals like this. Hyperbolic discounting is much harder
to accommodate within a temporal difference framework, since there is no equivalent
to equation 8’s recursive definition of value.

The alternative to the discounted model for dynamic programming is the average-case
model. In this case, the goal is to maximize the reward rate over time rather than the
cumulative reward. Kacelnik (1997) has argued that apparently hyperbolic discount-
ing might really result from the average-case model, at least given the way that the
preference experiments are run. There is an extensive body of dynamic programming
(see Puterman, 1994) and reinforcement learning (Schwartz, 1993; Mahadevan, 1996;
Tsitsiklis & Van Roy, 1999) theory on the average case, which turns out to require only
a small modification to the temporal difference model we have discussed. The idea
is to learn the overall average reward rate p, using a learning rule like the Rescorla-
Wagner rule of equation 6, and then to modify the temporal difference prediction error
of equation 12 by subtracting p from the expression there

o=r+v)—-v(X)—p 21)

Daw & Touretzky (2000) suggested exactly this, and showed that it makes essentially
the same predictions as the standard temporal difference model for the experiments
that have been use to probe the dopamine system.

Equation 21 has an interesting interpretation as the difference between a phasic signal
(the original 6 of equation 12) and a tonic signal (representing p). One possibility
is that these signals are actually represented by different neuromodulators - in the
appetitive case, perhaps dopamine for the phasic signal and serotonin for the tonic
signal. Concomitantly, a tonic dopamine signal might represent the equivalent of p
in the aversive case, ie the mean punishment rate. This has been suggested as an
interpretation of the data that dopamine is released in cases of aversive conditioning.
This way of looking at equation 21 is a special case of an opponent interaction between
appetitive and aversive systems, a long-standing psychological idea, which has been
the subject of influential modeling by Solomon & Corbit (1974) and Grossberg (1984);
Grossberg & Schmajuk (1987). Understanding the interactions between the various
neuromodulators is a key current concern (Doya, 2000).

Another main area of investigation in reinforcement learning is the representation and
manipulation of hierarchical structure. The idea is that many tasks are not best solved
by considering only the simplest and shortest actions at every time (like a single step in
the maze), but rather that planning can better proceed with longer spatial and temporal
horizons. The expanded horizons might come from considering sets of actions, going
by the names of ‘chunks’, ‘options’, ‘macros’ or ‘subroutines’ (see Sutton, Precup &
Singh, 1999). These notions offer the prospect of going full circle back to some of
the concerns that were central in the original study of sequential chains of behavior,
such as the effects of multiple goals in an environment (stemming, for instance, from a
sometimes hungry, sometimes thirsty, rat in a maze with both food and water rewards).
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They also offer mechanisms for integrating model-free and model-based methods of
learning and control. In fact, there are even suggestions (Frank, Loughry & O'Reilly,
2000) as to how the interaction between the prefrontal cortex and the basal ganglia
might implement such subroutines.

There is substantial theory about how to use hierarchical structure such as options
within a reinforcement learning context, and indeed proofs that appropriate structure
can make for much faster learning. However, there are rather fewer proposals as to how
such structure might be induced, as tasks are being solved. One idea is that unsuper-
vised learning methods which are models for cortical plasticity (see Becker & Plumbley,
1996; Hinton & Sejnowski, 1999) and are designed to extract statistical structure from
inputs, might be involved. Understanding this requires modeling the interactions be-
tween unsupervised and reinforcement learning, and between cortical and sub-cortical
plasticity (Doya, 1999).

In conclusion, we have described the standard model of reinforcement learning for sin-
gle and sequential action choice, and its main relationships with classical and instru-
mental conditioning, dynamic programming and the dopamine system. Reinforcement
learning is thus one of the few areas in which constraints and ideas from many levels of
computational analysis (computational, algorithmic and implementational, Marr, 1982)
and many sorts of experimental data (ethological, psychological and neurobiological)
can collectively be brought to bear.
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