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PR
OOAbstract

The response selectivities of neurons in adult primary sensory cortices depend on intricate patterns of synaptic connections; these

selectivities are arranged over cortex in equally rich fashion. Characterising these patterns, and particularly the activity-dependence

(and independence) of their developmental trajectories, has been a major task for experimental and theoretical neuroscience. Here,

we describe and analyse a paradigmatic algorithm for activity-dependent development of the refinement and generation of neuronal

selectivities, and relate it to some of the wealth of suggestions in the literature.

� 2004 Published by Elsevier Ltd.
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1. Introduction

Systematic patterns in the connections received by,

and the resulting arrangements of, cortical cells, abound

in early visual [26,27], auditory [46], and somatosensory
[65] neocortex, and many other structures (e.g. the

thalamus, [52]). V1 cells, for instance, may be selective to

at least least location on the retina, ocularity (favoring

input from one eye over the other), and orientation,

spatial frequency, direction and speed of movement of

bars or gratings. Cells with differing selectivities are laid

out in two-dimensional cortex in a labyrinthine manner

[28]. These regularities, and ideas about the course of
their development, have been the subject of a wealth of

computational modelling (see [14,35,53] for some recent

reviews).

Two selectivities that have been best characterised in

this way are ocularity and orientation. Fig. 1 shows the

result of an optical imaging experiment that investigated

how they are arranged across a region of the primary

visual cortex of a macaque monkey [13,41]. The thick
lines show the boundaries of the ocular dominance

stripes, showing a part of a characteristic fingerprint-like

pattern. The thin lines show iso-orientation contours,

i.e. locations where the preferred orientations are

roughly constant. These indicate, by the regions they

enclose, that whole neighborhoods of cells favor similar

orientations, and show how these neighborhoods are
68
69

70
E-mail address: dayan@gatsby.ucl.ac.uk (P. Dayan).

0928-4257/$ - see front matter � 2004 Published by Elsevier Ltd.
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Darranged with respect to each other and with respect to

the ocular dominance stripes. Large scale order is evi-

dent, as in the singularities in the orientation map (called

pinwheels), where the patches for all orientations meet,

and which tend to occur near the centers of ocular
dominance stripes, and as in the linear zones, where the

iso-orientation domains run parallel to each other, and

which tend to occur at, and to run perpendicular to, the

boundaries of the ocular dominance stripes. These

relationships between orientation and ocular dominance

concern local order; the maps are also known in some

species such as macaques to have more global order, in

the sense that the two-dimensional power spectra of the
patterns of each across extended patches of cortex are

elliptical, and the major axes of the ellipses for ocular

dominance and orientation are orthogonal to each other

[2,41].

Abstractly, both the selectivities of individual cells

generated by their synaptic inputs, and the manner in

which these cells are laid out over cortex can be char-

acterised in terms of patterns. Cortical cells with similar
selectivities tend to be nearby, and, conversely, nearby

cortical cells have similar selectivities. However, making

this absolutely true is impossible, since cells are arranged

on an essentially two-dimensional cortical sheet, but are

selective in many more dimensions. Actual cortical maps

show regularities as to how these two general rules are

violated, and it is these regularities that models of the

selectivity maps must capture. Some of the regularities
arise from basic mathematical facts. For instance, it is

impossible to have a continuous map between spaces

mail to: dayan@gatsby.ucl.ac.uk
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Fig. 1. Orientation domains and ocular dominance. Contour map

showing iso-orientation contours (grey lines) and the boundaries of

ocular dominance stripes (black lines) in a 1.7 mm patch of macaque

primary visual cortex. Iso-orientation contours are drawn in intervals

of 11.25�. Pinwheels are singularities in the orientation map where all

the orientations meet; linear zones are extended patches over which the

iso-orientation contours are parallel. From Obermayer and Blasdel

[41], Erwin [13], Dayan and Abbott [9].
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with different topological characteristics (called homo-

topy classes) without having singularities. This con-
strains the nature of the map of orientation (which lives

in a space that is characterised as the unit circle) onto

cortex (treated as a two-dimensional sheet). Given that

pinwheels are the singularities, it is possible to draw

further conclusions about the order in which orientation

changes around each [53,55].

Here, we consider such arrangements from a slightly

more general perspective of pattern formation, one of
the more general concerns of mathematical biology [40].

Indeed, the similarity between the ocular dominance

stripes and other biological patterns, such as fingerprints

or the stripes on a zebra, has long been noted, and

various of the mathematical models employ very similar

mechanisms to reaction-diffusion equations, which were

first suggested by Turing [57] as a general mechanism for

biological pattern formation.
Many of the questions and models focus on the ways

that these patterns come about, and the degree to which

they can be perturbed by external manipulations. There

is an intricate developmental interaction between innate

specification and environmental influence, and the

development of the maps is determined by both activity-

independent and activity-dependent means. A conven-

tional view has been that activity-independent mecha-
nisms control the initial targeting of axons, choose an

appropriate layer for them to make connections, and

establish a coarse topographic order in projections.

Then, other activity-independent and activity-dependent

mechanisms refine this order and help to create or boost
TE
D
PR
OO

F

and preserve the regular receptive fields of individual
cells, and the patterns of arrangement of multiple cells,

such as ocular dominance stripes (see [66]). However,

although activity-dependent development has been a

particularly seductive target for modelling because it fits

so well with the extensive study of synaptic learning

rules, it is likely that a large majority of neural devel-

opmental processes are unaffected by activity, and there

is an active experimental debate about the true extent of
activity-dependence, even for such complex maps as the

orientation map (e.g. [4,29,50]).

Note that there is no necessary equivalence between

activity-dependence and environmental influence or vi-

sual experience––the patterns of activity that drive

adaptation (perhaps, for instance, waves of activity

moving slowly across the retinas of ferrets during early

development, [64]) can be created by internal mecha-
nisms and reflect any external milieu only indirectly.

Further, very different biophysical mechanisms, even

ones that do not involve activity-dependent synaptic

plasticity at all, can be characterised mathematically as

forming patterns in rather similar ways [61].

Finally, experimental data on the formation of these

maps are currently in considerable flux, significantly

outpacing most of the models. For instance, such critical
factors as the extent to which the development of the

pattern of orientation selectivity precedes the develop-

ment of the pattern of ocular dominance (see Erwin and

Miller, 1998), and the relative degrees of innervation of

contra-lateral and ipsi-lateral projections during the

formation of ocular dominance stripes [5] are only now

becoming clear.

One problem with the field of self-organising pattern
formation is that there is a wealth of closely related,

though not quite identical, models. Here, we consider a

variant of a simple and fairly abstract competitive

Hebbian model [9,44] for the activity-dependent refine-

ment of topography and development of ocularity. Since

this model combines aspects of popular existing sug-

gestions, and yet is analytically tractable (at least in one

spatial dimension, which is all we study), it helps make
clear some of the critical aspects of pattern formation in

such systems. We also consider the relationship between

our weight-based model with one of the standard fea-

ture-based (i.e. low-dimensional) accounts [30,31].
2. The model

We consider the pattern forming capacity of a rea-

sonably abstract competitive Hebbian model [9,44] to

suggest at least some of the critical aspects of many re-

lated developmental models. The model specifies how

synaptic connections change from an initial, essentially

undifferentiated, synaptic state, on the basis of neural

input. The model is intended to capture those aspects of
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the patterns that might possibly develop on the basis of
neural activity, putatively the refinement of a coarse

topography (the initial form of which is specified in a

quantity called an arbor function) and the creation of

monocular cells and ocular dominance stripes. We use

conventional analysis techniques (e.g. [35]).

2.1. Architecture

Fig. 2 shows the model. Two input layers (each

containing N units), laid out in a single spatial dimen-

sion, connect to an output layer (with N units too), also

laid out in a single spatial dimension. The input layers

represent a one-dimensional version of the eye-specific

layers of the lateral geniculate nucleus (labelled �L’ and
�R’); the output layer represents a one-dimensional

version of layer IV in the cortex. Labelling the cells as if
there is a continuum of them, WL

ð~a;~bÞ and WR

ð~a;~bÞ represent

the weight of each connection from the neurons at po-

sition~b in the left and right input layer to the neuron at

position~a in the cortex; Að~a;~bÞ represents the multiplicity

of each such connection, and is also known as an arbor

function [35]. The net connection strengths from ~b to ~a
are the products WL

ð~a;~bÞAð~a;~bÞ and WR

ð~a;~bÞAð~a;~bÞ. Fig. 3(A)
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Fig. 2. Competitive ocular dominance model. Left (L) and right (R)

input units (with activities uLð~bÞ and uRð~bÞ at the same location~b in input

space) project through weights (WL

ð~a;~bÞ and WR

ð~a;~bÞÞ and a restricted

topography arbor function Að~a;~bÞ to an output layer, which is subject to

lateral competitive interactions.

Fig. 3. Ocular dominance patterns from the competitive Hebbian

model. (A) Gaussian arbor function Að~a;~bÞ showing explicitly the con-

nections from the L and R projections. Toroidal boundary conditions

are used to avoid edge effects. (B) Stable weight patternsWR

ð~a;~bÞ showing

ocular dominance. (C) (Left) difference in the connections

W�
ð~a;~bÞ ¼ WR

ð~a;~bÞ �WL

ð~a;~bÞ from right and left eye; (right) sum difference

across ~b showing the net ocularity for each ~a. Here, rA ¼ 0:2,

rI ¼ 0:08, rU ¼ 0:075, b ¼ 10, c ¼ 0:95 and multiplicative normalisa-

tion is employed with the weights adding to 3. There are N ¼ 100 units

in each input layer and the output layer. Circular (toroidal) boundary

conditions are also used.
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shows an example arbor function; Fig. 3(B) shows the
final weights WL

ð~a;~bÞ and WR

ð~a;~bÞ for one application of the

model.

In our one-dimensional model, the monocularity of

cortical cells is represented by having WR

ð~a;~bÞ �WL

ð~a;~bÞ
being either all positive (the right projection dominat-

ing) or all negative (the left projection dominating) over

a single receptive field, i.e. WR

ð~a;~bÞ �WL

ð~a;~bÞ should have

the same sign over ~b for each ~a (though different signs
for different ~a). Stripes of ocular dominance translate

into a pattern of alternating preferences across the cor-

tex as in Fig. 3(B).

Different patterns or modes of synaptic connections

grow at different rates, in a way that depends on the

parameters and form of the model, and can be

approximately characterised near the undifferentiated

state using a linear difference (or differential) equation.
In many cases, those modes that grow fastest tend to

dominate even once non-linear aspects of the models,

such as saturation bounds on the strengths of synapses,

become important, and so we determine a likely out-

come of the complex developmental process from the

simple linear difference equation. We can then analyse

how the components of the model such as the degree of

competition and the restricted topography control stripe
width and its dependence on input correlation. There are

two different competitive aspects to ocular dominance:

competition at the level of single cells for one eye to

dominate, i.e. to create monocular cells at all, and sec-

ond, competition at the level of the maps between input

from the two eyes.

2.2. Components

The model has four key characteristics. First is the

arbor function Að~a;~bÞ (Fig. 3(A)) which specifies the basic

topography of the map at the time that the pattern of

synaptic growth is being established. The arbor function

is typically considered to be the product of activity-

independent axonal targetting mechanisms, the molec-

ular basis of which is under intense experimental and
theoretical investigation [15,18,21,56]. In our model, we

consider

Að~a;~bÞ / e�ð~a�~bÞ2=2r2A ð1Þ

where rA is a parameter specifying the width of the ar-

bor. Two revealing special cases of the arborisation are

Að~a;~bÞ being constant (rA ¼ 1), and Að~a;~bÞ / dð~a�~bÞ
(rA ¼ 0, the case of rigidly specified topography). For

some algorithms which explicitly or implicitly model the

growth and retraction of axons, the arbor function can

change over time in consort with the synaptic weights,
for instance if branches of an axonal arbor are stabilised

if they support any non-zero synaptic weights. We study

the initial formation of patterns, assuming that such
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changes do not affect the gross characteristics of the
patterns that form.

The second component of the competitive Hebbian

model is the nature of the input activity during devel-

opment. There is evidence about waves of activity

moving across the retinæ over development [64] and

even about aspects of the activity in the visual thalamus

(e.g. [34,58]; however this is far from a full characteri-

sation. For simplicity, we ignore most details (for
example, the known differences between ON-center and

OFF-center inputs) and consider highly spatially sim-

plified input activities at location ~b in the left (uLð~bÞ) and
right (uRð~bÞ) reflecting just a single, randomly located,

Gaussian bump (of width rU ) which is stronger to the

tune of c in (a randomly chosen) one of the input pro-

jections than the other

uLð~bÞ ¼ 0:5ð1þ zcÞe�ð~b�nÞ2=2r2U

uRð~bÞ ¼ 0:5ð1� zcÞe�ð~b�nÞ2=2r2U ð2Þ

where n 2 ½0; 1Þ is the randomly chosen input location, z
is set randomly to )1 or 1 (with probability 0.5 each),

and determines whether the input is more from the right

or left projection. Parameter 06 c6 1 governs the
weakness of correlations between the projections. Of

course, activity patterns must really be substantially

more complicated than just a single Gaussian bump.

The third component is the way that input activities

and the weights conspire to form output activities. This

happens in three steps, the first a linear combination of

the inputs through the weights and the arbor

linear vð~aÞ ¼
Z

d~bAð~a;~bÞ WL

ð~a;~bÞu
L

ð~bÞ

�
þWR

ð~a;~bÞu
R

ð~bÞ

�
ð3Þ

the second involving competition between the output

units in which their activities are raised to a power b to
sharpen them, and are then normalised

competitive vcð~aÞ ¼ ðvð~aÞÞb
.Z

d~a0ðvð~a0ÞÞb ð4Þ

and the third involving cortical interaction, in which
active units can excite their neighbors

interactive við~aÞ ¼
Z

d~a0 Ið~a;~a0Þvcð~a0Þ ð5Þ

In Eq. (4), bP 1 is a parameter governing the strength

of competition between the cortical cells. As b ! 1, the

activation process becomes more strongly competitive,

ultimately having a winner-takes-all effect. This is the

same sort of idealisation of the equilibrium patterns of

activity in the neural activity model [60] that was

adopted to good effect in the definition of the self-or-

ganising map [30,31]. We will see that the case of b ¼ 1
is quite closely related to a standard non-competitive

model [35]. The separation between the competition and

cooperation between the output units in Eqs. (4) and (5)
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is somewhat artificial, since the same cortical connec-
tions presumably instantiate both. However, it qualita-

tively captures the outcome of some more faithful

activation rules. We consider a Gaussian interaction

function

Ið~a;~a0Þ ¼ e�ð~a�~a0Þ2=2r2I ð6Þ
which would generally not produce ocular dominance

stripes of a width smaller than the arbor function in
non-competitive models [35].

The fourth component is the learning rule governing

the change in the weights. This depends on the Hebbian

correlation between input and output activities (with

contributions such as hvið~aÞuLð~bÞinz, averaging over input

patterns nz). We ignore temporal aspects of Hebbian

plasticity (Markram et al., 1997; see [9]). Hebbian

learning is generally unstable, leading to weights of
infinite magnitude, and so normalisation and/or satu-

ration constraints are usually required. We constrain the

weights Wð~a;~bÞ 2 ½0; 1�, and normalise the sum of the

weights of each postsynaptic cell to be constantZ
d~bAð~a;~bÞ WL

ð~a;~bÞ

�
þWR

ð~a;~bÞ

�
¼ X ð7Þ

in a multiplicative manner

WL

ð~a;~bÞ ! WL

ð~a;~bÞ þ � hvið~aÞuLð~bÞinz
�

� kð~aÞW
L

ð~a;~bÞ

�
ð8Þ

where kð~aÞ ¼ kð~aÞðWL;WRÞ is chosen to enforce equality

in Eq. (7). The update equations for WR

ð~a;~bÞ follow simi-

larly. There is an interaction between the upper satu-

rating value for the weights (taken here to be 1) and the

value of X. For instance, if X is too large, then it can

become impossible for ocular dominance to develop.
Note that only the bottom-up weights are subject to

Hebbian plasticity, the intracortical weights defining b
and I are either fixed, or are made to change in sys-

tematic ways (b ! 1, rI ! 0) over the course of

adaptation. Note that in models without activity com-

petition, subtractive normalisation is often considered,

because it offers another way to induce the sort of

competition that leads to the preferential formulation of
ocularity [37]. For this model, in many parameter re-

gimes, it does not make a substantial difference.

The initial conditions for the weights are taken to

have the Gaussian form

WL

ð~a;~bÞ ¼ xe�ð~a�~bÞ2=2r2W þ gdWL

ð~a;~bÞ

WR

ð~a;~bÞ ¼ xe�ð~a�~bÞ2=2r2W þ gdWR

ð~a;~bÞ ð9Þ

where x is chosen to satisfy the normalisation con-

straints, g is small, and dWL

ð~a;~bÞ and dWR

ð~a;~bÞ are Gaussian

or uniformly distributed random perturbations con-

strained to satisfyZ
d~bAð~a;~bÞ dWL

ð~a;~bÞ

�
þ dWR

ð~a;~bÞ

�
¼ 0 ð10Þ
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for all postsynaptic cells. Given the existence of the
arbor function, it is most natural to use r2

W ¼ 1 for the

initial conditions for the weights, so that each synapse is

roughly equally efficacious, although one could also

conceive that weights in different regions of an axonal

arbor could have different characteristic values. In any

case, we will see that it is important to consider values of

r2
W < 1, since they emerge as equilibrium values of the

weights if there is competition (b > 1) or a restricted
arbor (r2

A < 1).

It turns out that, for flat topography (and initial

conditions, rA ¼ 1 and rW ¼ 1) and b ¼ 1, this model

behaves quite like a simple version of a non-competitive

Hebbian model [35], with the exception that ocular

dominance stripes of a finite width can develop even if I

is purely Gaussian. The key questions are the differences

as the model is more competitive (as b gets larger), and
as the arbor becomes more peaked (as rA gets smaller).
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3. Analysis

3.1. Linearisation

The essential analysis technique for this pattern for-
mation problem is to linearise Eq. (8) around the equi-

librium values for the weights, and then analyse the

effects of perturbations in these values. Since left and

right inputs are symmetrical, we consider sum and dif-

ference modes

Wþ
ð~a;~bÞ ¼ WR

ð~a;~bÞ þWL

ð~a;~bÞ W�
ð~a;~bÞ ¼ WR

ð~a;~bÞ �WL

ð~a;~bÞ ð11Þ

and, equivalently,

dWþ
ð~a;~bÞ ¼ dWR

ð~a;~bÞ þ dWL

ð~a;~bÞ

dW�
ð~a;~bÞ ¼ dWR

ð~a;~bÞ � dWL

ð~a;~bÞ ð12Þ

403

404

405

406
407

408

Fig. 4. Log–log plots of the equilibrium values of rW in the case of

multiplicative normalisation. Solid lines based on parameters as in Fig.

3 (rA ¼ 0:2, rI ¼ 0:08, rU ¼ 0:075, b ¼ 10). (A) rW as a function of b
for rA ¼ 0:2 (solid), rA ¼ 2:0 (dotted) and rA ¼ 0:0001 (dashed). (B)

rW as a function of rA for b ¼ 10 (solid), b ¼ 1:25 (dashed) and b ¼ 1:0

(dotted). (C) rW as a function of rI . Other parameters as for the solid

lines.
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We first analyse the behavior of the sum mode Wþ
ð~a;~bÞ,

because it generally governs the degree of refinement of

the topography of the weights, through its equilibrium

values. These can then exert a strong influence over the

behavior of the difference mode.

The trickiest aspect of the analysis of the sum mode is
that the unperturbed initial values of the weights (putt-

ing g ¼ 0 in Eq. (9)) may not be equilibrium points for

the full dynamics. If they are not, then the dynamics of

changes to the weights will typically exhibit two time-

scales, a fast one in which the weights change towards

the equilibrium values, and a slower one in which more

subtle weight changes such ocular dominance occur.

Analysis of the equilibrium values is easy for multi-
plicative normalisation of the weights. In this case, the

equilibrium values of the weights can be found by

solving
TE
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við~aÞu
L

ð~bÞi
D

¼ kþW
L

ð~a;~bÞ hvið~aÞuRð~bÞ
E
¼ kþW

R

ð~a;~bÞ ð13Þ

for the kþ determined such that the normalisation con-

straint
R
d~bWL

ð~a;~bÞ þWR

ð~a;~bÞ ¼ X is satisfied for all ~a.
Although vð~aÞ is a non-linear function of the weights,

with the given input distribution, this implies that the
equilibrium values of WL

ð~a;~bÞ and WR

ð~a;~bÞ are the same,

determined by

WL

ð~a;~bÞ ¼ xe�ð~a�~bÞ2=2r2W ð14Þ

for a particular width rW that depends on rI , rA, rU and

b according to a simple quadratic equation and a value

of x that depends on the normalisation constraint. We

assume that x < 1, so the weights do not reach their

upper saturating limit.
Fig. 4 shows how this equilibrium value of rW de-

pends on b, rA and rI . The solid lines are based on the

same parameter values as in Fig. 3 apart from the

parameter on the abscissa. Fig. 4(A) shows that the

width rapidly asymptotes as b grows, and it only gets

large as the arbor function gets large for b near 1. Fig.

4(B) shows this in another way. For b ¼ 1 (the dashed

line), which closely parallels the non-competitive case of
Hebbian learning, rW grows roughly like the square root

of rA as the arborisation gets flatter. However, for any

b > 1, one equilibrium value of rW has a finite asymp-

tote with rA. For absolutely flat topography and b > 1,

there are actually two equilibrium values for rW , one

with rW ¼ 1, i.e. flat weights; the other with rW taking

values such as the asymptotic values for the dotted and

solid lines in Fig. 4(B). If the flat equilibrium point is
unstable, and the peaked equilibrium point is stable,

then topography will be refined over the course of

development. For other values of rA or b, there is only

one equilibrium solution, and it is stable. The stable

equilibrium value of rW governs the degree of refinement

of the final topography.

To assess the stability of the equilibrium solutions, we

linearise the solution about each equilibrium point and
calculate the resulting eigenvalues and eigenfunctions.

Any eigenfunction that grows (in the face of the
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multiplicative constraint) perturbs the equilibrium. The
update equation for perturbations to the sum mode that

satisfy the normalisation condition in Eq. (10) is

dWþ
ð~a;~bÞ ! ð1� �kþÞdWþ

ð~a;~bÞ

þ �
b
2

Z Z
d~a1 d~b1Oð~a;~b;~a1;~b1ÞdW

þ
ð~a1;~b1Þ

� �k0ð~aÞW
þ
ð~a;~bÞ ð15Þ

where the operator O ¼ O1 � O2 is defined by

O1

ð~a;~b;~a1;~b1Þ ¼
1

N

Z Z
dnd~a2 Ið~a;~a2Þv

c
ð~a2Þ

dð~a1 �~a2Þ
vð~a1Þ

Að~a1 ;~b1Þu
R

ð~b1Þ
uRð~bÞ

ð16Þ

O2

ð~a;~b;~a1;~b1Þ ¼
1

N

Z Z
dnd~a2 Ið~a;~a2Þv

c
ð~a2Þ

vcð~a1Þ
vð~a1Þ

Að~a1;~b1Þu
R

ð~b1Þ
uRð~bÞ

ð17Þ
where the values of vð~aÞ and vcð~aÞ are determined by the

values of n and z ¼ 1 and the unperturbed initial values

of the weights (g ¼ 0), and the values of kþ and

k0ð~aÞ ¼
b
2X

Z Z Z
d~bd~a1 d~b1Að~a;~bÞOð~a;~b;~a1;~b1ÞdW

þ
ð~a1;~b1Þ

ð18Þ
come from the normalisation condition. Here, kþ is

determined by Wþ
ð~a;~bÞ and not by dWþ

ð~a1;~b1Þ
. Except in the

special case that rA ¼ 1, which we discuss below, the

term �k0ð~aÞW
þ
ð~a;~bÞ generally keeps stable the equilibrium

solution.

We consider the full eigenfunctions of Oð~a;~b;~a1;~b1Þ be-

low. However, for flat topography, with both Að~a;~bÞ ¼ 1

and the unperturbed values of the initial weights

Wð~a;~bÞ ¼ x being constant, the operator simplifies to

1ffiffiffi
2

p
xN 2

ðe�ð~a�~a1Þ2=2r2I � �IÞe�ð~b�~b1Þ2=4r2U ð19Þ

where �I is the average value of Ið~a;~a0Þ across~a0 for each~a.
The two parts of this operator decouple, and its eigen-
functions are just sines and cosines, i.e. products of real

and imaginary parts of

Wk;lð~a;~bÞ ¼ e2pik~a � e2pil
~b ð20Þ

where k and l govern the frequencies of variation in the

projective field of a single input unit and the receptive

field of a single output unit, respectively. Note that

stripes of a finite (albeit overly large) width can form

even if I is purely excitatory (cf. [35]), whatever the

strength of the competition (i.e. whatever the value of

b).
Remember that the assumption of a continuously

sampled system is only an approximation. In the simu-

lations generating figures such as Fig. 3, we treat a finite
number of neurons N (so ~a 2 f1=N ; 2=N . . . 1) and cir-

cular boundary conditions (e.g. the neuron with
~a ¼ 1=N is considered to be adjacent to the neurons with
TE
D
PR
OO

F

~a ¼ 2=N and ~a ¼ 1). This means that the continuum of
frequencies such as k and l should be replaced by a

discrete, quantised set (k; l 2 f0; 1; 2; 3; . . .g). Further-

more, although the circular boundary conditions make

the system translation invariant (so each unit plays ex-

actly the same role), it is not a perfect model for an

infinitely large system without circular boundary con-

ditions. In particular, the finite system cannot faithfully

represent broad inputs or broad connectivity (i.e. large
rU ; rA or rW ), and this can have significant effects. We

typically use a mixed notation with integrals instead of

sums, but showing the scaling with the number of units

N in an explicit manner.

The eigenvalue of an eigenfunction in Eq. (20) is

ek;l ¼
2prIrU

x
ðe�1

2
r2I k

24p2 � dðkÞÞe�r2U l
24p2 ð21Þ

If normalisation is imposed, Eq. (10) implies a

restriction on the perturbations such that eigenmodes

with l ¼ 0 are not excited. Their growth would in any

case be arrested by the �k0ð~aÞW
þ
ð~a;~bÞ component of Eq. (15).

The remaining mode with the largest eigenvalue has

k ¼ 1, l ¼ 1. This mode will grow if

b
2
e2p;2p > kþ ð22Þ

It turns out for this case that kþx ¼ prIrU , and so the

mode will grow if

b > e4p
2ðr2Iþ2r2U Þ=2 ð23Þ

If this condition is not satisfied, then the flat mode is

stable, and topography will not be refined. If this con-

dition is satisfied, then the flat mode is unstable. Al-

though the pattern of weights that grows the fastest has

k ¼ 1, l ¼ 1 (see Fig. 5(B)), the terminal pattern of

weights (provided that ocular dominance does not form,

see the next section) at the peaked, equilibrium, value of
rW often has more sharply refined topography (Fig.

5(C)). This, more refined, topographical solution is, in

general, stable when the flat solution is unstable.

Inequality 23 couples the degree of competition and the

spatial characteristics of the intracortical connections

and the input.

To summarise, for rA < 1, the only equilibrium

solution for the weights has a refined topography, and
this is stable. This width depends on the parameters in a

way shown in Fig. 4, in particular, reaching a non-zero

asymptote even as b gets very large. For a flat arbor

(rA ¼ 1), and b ¼ 1, the only equilibrium solution has

flat weights, and is stable. For b > 1, there are two

equilibrium solutions, one flat, and one with refined

topography (the asymptotic values of the curves in Fig.

4(D)). For multiplicative normalisation, for sufficient
intracortical competition (b sufficiently large, as judged

by Eq. (23)), the flat solution is unstable, and the

topography can refine. Altogether, there can therefore
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Fig. 5. Topographical refinement given a flat arbor (rA ¼ 1). The

figures show the weights using a grayscale, with the minimum (black)

and maximum (white) values above each. (A) Initial weights––there is

a very slight bias in favor of diagonal to orient the ultimate solution.

(B) Weights after 10 iterations, showing that the k ¼ 1, l ¼ 1 mode (in

the form of cosð2p~aÞ cosð2p~bÞ) is dominating the unstable growth. (C)

Equilibrium weights showing very sharp refinement. The same

parameters are used as in Fig. 3, except with b ¼ 5 and c ¼ 0:1 (to

prevent the formation of ocular dominance). Also, � ¼ 0:1.
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be a qualitative difference between an assumption that

the initial arborisation is flat and one that it is even fairly

coarsely topographic, at least if there are competitive

cortical interactions.

3.1.2. The difference mode

The sum mode mostly controls the refinement of

topography, whereas the difference mode controls the

development and nature of ocular dominance. Given the

simple form of inputs adopted, the development of

dW�
ð~a;~bÞ follows almost exactly the same equations as that

of the sum mode. The development of ocular dominance
requires that a mode of dW�

ð~a;~bÞ 6¼ 0 grows, for which

each output cell has weights of only one sign (either

positive or negative). The stripe width is determined by

changes in this sign across the output layer. The example

shown in Fig. 3 is typical for multiplicative normalisa-

tion. Fig. 3(C) shows the final value of W�
ð~a;~bÞ explicitly

together with the net ocularity of each output unit.

The main differences between the development of
dW�

ð~a;~bÞ and dWþ
ð~a;~bÞ given multiplicative normalisation

are, first, that the equilibrium value of W�
ð~a;~bÞ is always 0,

independent of the other parameters, since the projec-

tions are assumed equivalent. Therefore, we need only

consider the linearised dynamics about W�
ð~a;~bÞ ¼ 0. The

linearised difference equation is

dW�
ð~a;~bÞ ! ð1� �kþÞdW�

ð~a;~bÞ

þ �
bc2

2

Z Z
d~a1 d~b1Oð~a;~b;~a1;~b1ÞdW

�
ð~a1;~b1Þ

ð24Þ

which is almost the same as Eq. (15) (with the same

operator O), except that the multiplier for the integral is

bc2=2 rather than b=2. Since c < 1, the eigenvalues for

the difference mode are therefore all less than those for
the sum mode, and by the same fraction. The multipli-

cative decay term �kþdW
�
ð~a;~bÞ uses the same kþ as Eq.

(15), whose value is determined exclusively by properties
TE
D
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F

of Wþ
ð~a;~bÞ; but the non-multiplicative term �k0ð~aÞW

þ
ð~a;~bÞ is

absent. Note that the equilibrium values of the weights

(controlled by rW ) affect the operator O, and hence its

eigenfunctions and eigenvalues.
The second difference is the initial conditions for the

perturbations dW�
ð~a;~bÞ. Whereas for multiplicative nor-

malisation for the sum mode, the initial perturbations

dWþ
ð~a;~bÞ must satisfy Eq. (10), there is no such constraint

on dW�
ð~a;~bÞ.

The simple form of the inputs allows the eigenfunc-

tions of operators O1 and O2 to be calculated. Provided

that the arbor and the initial values of the weights are
not both flat (rA 6¼ 1 or rW 6¼ 1), the principal eigen-

functions can be shown to have the general form

W�
ð~a;~bÞ ¼ e2pik~ae�d2ð~b�~aÞ2þ2pilkð~b�~aÞpnð~b�~a; kÞ ð25Þ

where pnðr; kÞ is a polynomial of degree n in r whose

coefficients depend on k and d and l are constants that

depend on the various parameters of the model. Here k
controls the periodicity in the projective field of each
input cell ~b to the output cells, and ultimately the peri-

odicity of any ocular dominance stripes that might form.

The remaining terms control the receptive fields of the

output cells since they depend on ~b�~a which governs

position relative to the center of the receptive field.

Operator O2 has zero eigenvalues for the polynomials

of degree n > 0. Unfortunately, the expressions for the

non-zero eigenvalues of O1 and O2, and also for the
coefficients of the polynomials, are too complicated to

give here. However, we can use them to predict the

outcome of development. Remember that the use of

continuous labelling for the neurons is only an

approximation and the continuum of frequencies should

be replaced by a discrete, quantised set (0, 1, 2,. . .).
Fig. 6 shows an example of this analysis. The left 5 · 3

block shows eigenfunctions and eigenvalues of O1 for
k ¼ 0 . . . 5 and n ¼ 0; 1; 2; the middle 5 · 3 block, the

equivalent eigenfunctions and eigenvalues of O2. As

mentioned above, the eigenvalues of O2 for n > 0 are

actually 0, and so the operator has a very large null

subspace. The eigenfunctions for n ¼ 0 look just like

conventional T€oplitz eigenfunctions, except confined by

the equilibrium values of the weights rW and the arbor

to just the central region. The eigenfunctions for n ¼ 1
and n ¼ 2 are a little different. When plotted out in the

single dimension of ~b�~a, the eigenfunctions look like

Gabor functions, whose frequency is set by n, and this is

what results in the apparently complicated shapes.

The numbers on top of the eigenfunctions are the

eigenvalues. For n ¼ 0, they actually have the form of a

Gaussian in k (i.e. strictly, just like the discrete Fourier

transform of a sampled Gaussian). The Gaussian for O2

is narrower (though scaled). This is particularly easy to

see in Eq. (21), for which the eigenvalues of O2 have the

shape of a delta function in k. To a crude first approx-
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imation, therefore, the eigenvalues of O resemble the

difference of two Gaussians in k, and so have a peak at a

non-zero value of k, i.e. a finite ocular dominance peri-

odicity.

However, this first approximation is too crude. Al-

though the eigenfunctions of O1 and O2 shown in Fig. 6
look almost identical, they are, in fact, subtly different.

Indeed, the operators do not commute, making it hard

to infer the eigenfunctions and eigenvalues of O from

those of O1 and O2. Nevertheless, the similarity between

the eigenfunctions makes it possible to approximate the

eigenfunctions of O very closely by expanding those of

O2 in terms of O1 (or vice-versa). This only requires

knowing the overlap between the eigenfunctions, which
can be calculated analytically from their form in Eq.

(25). Expanding for n6 2 leads to the approximate ei-

genfunctions and eigenvalues for O shown in the pen-

ultimate column on the right of Fig. 6. The difference,

for instance, between the eigenfunction of O for k ¼ 3

and those for O1 and O2 is striking, considering the

similarity between the latter two. In the special cases of

flat and rigid topography, O1 and O2 do commute, and
so the eigenfunctions and eigenvalues can be calculated

exactly. Just for comparison, the farthest right column

shows empirically calculated eigenfunctions and eigen-

values of O (using a 50 · 50 grid). These are clearly very

close (note that there is no reason for the eigenfunctions

to have the same spatial phase).
TEPutting dW� back in terms of ocular dominance, we

require that eigenmodes O resembling the modes with

n ¼ 0 should grow more strongly than the normalisation

makes them shrink; and then the value of k associated

with the largest eigenvalue will be the stripe frequency

that should be expected to dominate. For the parame-
ters of Fig. 3, the case with k ¼ 3 has the largest eigen-

value––and indeed, note how close the outcome of

development of W� in Fig. 3(C) is to this analytically

calculated eigenfunction.

We are now in a position to make qualitative pre-

dictions about the outcome of development for any set

of parameters, in the face of multiplicative normalisa-

tion. First, the analysis of the behavior of the sum mode
(including, if necessary, the point about multiple equi-

libria for flat initial topography) allows a prediction of

the equilibrium value of rW , which indicates the degree

of topographic refinement. Second, this value of rW can

be used to calculate the value of the normalisation

parameter kþ that affects the growth of dWþ and dW�.

There is then a barrier of 2kþ=bc2 that the eigenvalues of
O must surmount for a solution that is not completely
binocular to develop. Third, if the peak eigenvalue of O
is indeed sufficiently large that ocular dominance

develops, then the favored periodicity is set by the value

of k associated with this eigenvalue. Of course, if many

eigenfunctions have similarly large eigenvalues, then
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Fig. 7. (A) The constraint term kþðX=NÞ (dotted line) and the ocular

dominance eigenvalues eðkÞðX=NÞ (solid line c ¼ 1; dotted line c ¼ 0:5)

of bc2O=2 as a function of rI , where k is the stripe frequency associated
with the maximum eigenvalue. For rI too large, the ocular dominance

eigenfunction no longer dominates. The star and hexagon show the

maximum values of rI such that ocular dominance can form in each

case. The scale in (A) is essentially arbitrary. (B) Stripe frequency k
associated with the largest eigenvalue as a function of rI . The star and

hexagon are the same as in (A), showing that the critical preferred

stripe frequency is greater for higher correlations between the inputs

(lower c). Only integer values are considered, hence the apparent ali-

asing. (C) Preferred stripe frequency when rW is fixed to rW ¼ 0:04

(dotted line) or rW ¼ 1:0 (dashed line) rather than being determined

from the equilibrium state of the sum mode. The solid line is the same

as in (B) for comparison.

Fig. 8. (Upper row) maximal values of rI for which ocular dominance

will develop as a function of c. All other parameters as in Fig. 3, except

that rA ¼ 0:2 (solid), rA ¼ 2:0 (dashed); rA ¼ 0:0001 (dotted). (Lower

row) value of stripe frequency k associated with the maximal eigen-

value for parameters as in the upper row at the critical value of rI .
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slightly different stripe periodicities may be observed
depending on the initial conditions.

The solid line in Fig. 7(A) shows the largest eigen-

value of bc2O=2 as a function of the width of the cortical

interactions rI , for c ¼ 1, the value of rW specified

through the analysis of the sum mode, and values of the

other parameters as in Fig. 3. The dashed line shows kþ,
which comes from the normalisation. The largest value

of rI for which ocular dominance still forms is indicated
by the star. For c ¼ 0:5, the eigenvalues are reduced by a

factor of c2 ¼ 0:25, and so the critical value of rI (shown

by the hexagram) is reduced. Fig. 7(B) shows the fre-

quency of the stripes associated with the largest eigen-

value. The smaller rI , the greater the frequency of the

stripes. This and other lines are jagged because only

integers are acceptable as stripe frequencies given cir-

cular boundary conditions.
Fig. 8 shows the consequences of such relationships

in a slightly different way. Some models consider the

possibility that rI might not be fixed during develop-

ment, but could change from a large to a small value. If

the frequency of the stripes is most strongly determined

by the frequency that grows fastest when rI is first suf-

ficiently small that stripes grow, we can therefore ana-

lyse plots such as those in Fig. 7 to determine the
outcome of development. The figures in the top row

show the largest values of rI for which ocular domi-

nance can develop; the bottom plots show the stripe

frequencies associated with these critical values of rI

(like the stars and hexagons in Fig. 7), in both cases as a

function of c. The columns are for successively larger

values of b; within each plot there are three lines, for

rA ¼ 0:0001 (dotted); rA ¼ 0:2 (solid), and rA ¼ 2:0
(dashed). Where no value of rI permits ocular domi-
TE
D
PRnance to form, no line is shown. From the plots, we can

see that the more similar the inputs, (the smaller c) or
the less the competition (the smaller b), the harder it is

for ocular dominance to form. However, if ocular

dominance does form, then the width of the stripes de-

pends only weakly on the degree of competition, and
slightly more strongly on the width of the arbors. The

narrower the arbor, the larger the frequency of the

stripes. For rigid topography, as rA ! 0, the critical

value of rI depends roughly linearly on c. We analyse

this case in more detail below. Note that the stripe width

predicted by the linear analysis does not depend on the

correlation between the input projections unless other

parameters (such as rI ) change, although ocular domi-
nance might not develop for some values of the

parameters.

The last aspect of the solutions that bears comment is

the effect of the existence of ocular dominance on the

topography of the solution. Fig. 9 shows the general

pattern of results, in this case using a different set of

parameters from those in Fig. 3. Fig. 9(A) shows the

final weights from both projections in the same format
as Fig. 3(A). Fig. 9(C) shows the net ocular preference in

favor of the right eye for these weights. Each output cell

is then characterised by the weighted mean location in

the left projection (solid lines in Fig. 9(B) and (D)), the

right projection (dashed lines) and both projections

(dotted lines). Fig. 9(B) shows these mean topographic

locations directly (allowing for the wrap-around);

Fig. 9(D) shows the difference between these mean
locations and a purely linear progression from one end

of the output to the other. It is apparent that the

topography within a single projection changes most

slowly when that projection is dominant, and most

quickly when that projection is suppressed. The topo-

graphic locations within the two projections are equal at

the most monocular regions.
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Fig. 9. The effect of ocular dominance on topography. (A) Weight

matrix from both input projections (rI ¼ 0:04;rA ¼ 0:5;rU ¼ 0:075;

b ¼ 25; c ¼ 0:9). (B, D) Mean topographic location (B) or difference

between the mean topographic location and a purely linear progression

(D) for the left input (solid line); right input (dashed line); and both

inputs (dotted line). (C) Net ocular bias in favor of the right projection

(white is right dominant; black is left dominant). In (B), wrap-around

topography is accommodated by identifying ~b < 0 with 1þ~b and
~b > 1 with ~b� 1.
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We can now continue the analysis of the two special

cases we considered above. First, for flat topography,
i.e. rA ¼ 1, we saw that there are two equilibrium

solutions for rW . For b that satisfies the inequality of

Eq. (23), the equilibrium with flat weights rW ¼ 1 is

unstable, and development proceeds as in the general

case, based on the equilibrium solution with finite rW .

However, for the sum mode, the eigenfunction associ-

ated with k ¼ 1, l ¼ 0 in Eq. (20) is not excited in the

initial conditions (because of normalisation), and is, in
any case, prevented from growing by the term k0ð~aÞW

þ
ð~a;~bÞ

which afflicts the update for the sum mode Eq. (15) but

not the difference mode (Eq. (24)). Neither of these is

true for the difference mode, and therefore if b satisfies

1

c2
e4p

2r2I =2 < b < e4p
2ðr2Iþ2r2U Þ=2 ð26Þ

then ocular dominance will form, with a frequency of

k ¼ 1, but with completely flat receptive fields, i.e. no

topographic refinement.

For rigid topography, as rA ! 0, the operators O1

and O2 come to commute, and we can calculate the ei-

genvalues exactly. Towards this limit, the eigenfunctions

of bc2O=2 become the real and complex parts of

W�
ð~a;~bÞ ¼ e2pik~a � e�IbUð~b�~aÞ2=j ð27Þ

where

I ¼ 1

2r2
I

U ¼ 1

2r2
U

j ¼ I þ bðI þ UÞ ð28Þ

with eigenvalues (which scale with rA) of

N
ffiffiffiffiffiffiffiffiffiffi
2pr2

A

q
bc2

1

X

ffiffiffiffiffiffi
pb
j

r
e�ðbþ1Þp2k2=j 1

�
� e�lp2k2=j

�
ð29Þ

where l ¼ Ið1þ 2bÞ=bU . This peaks for a stripe fre-

quency k that satisfies

e�lp2k2=j ¼ bþ 1

bþ 1þ l
ð30Þ
783

784
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Further, the multiplicative normalisation term kþ
becomes

kþ ¼ N
ffiffiffiffiffiffiffiffiffiffi
2pr2

A

q
1

X

ffiffiffiffiffiffi
pb
j

r
ð31Þ

The sum mode is uninteresting in the limit of rigid

topography, since there is no opportunity for topo-

graphic refinement. However, ocular dominance will

form when the eigenvalue of Eq. (29) is larger than the
normalisation term of Eq. (31).

One interesting limit for rigid topography is that as

b ! 1, i.e. infinitely sharp competition. In this limit,

the largest rI such that ocular dominance will form

satisfies

rI ¼
cffiffiffiffiffiffiffi
eU

p ¼ c

ffiffiffi
2

e

r
rU ð32Þ

which is linear in c (as in the rightmost plot of Fig. 8),

and the stripe frequency k that maximises the eigenvalue

at the critical rI is

k ¼ 1

p

ffiffiffiffiffiffiffiffiffiffiffiffi
I þ U

p
¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
c2

þ 2

� �
1

r2
U

s
ð33Þ

In this limit, the model behaves, at the equilibrium

point, just like the self-organising map [30,31], which we
consider below, and that has been extensively investi-

gated in its own right. One complicating factor for sharp

competition is that the analysis of pattern formation

near the equilibrium solution may not accurately predict

the final outcome. Consider what happens to the linear

input vð~aÞ in the artificial case that the weights reflect just

a single eigenfunction

WL
ð~a;~aÞ ¼ xþ l cosð2pkð~a� 0:5ÞÞ

WR
ð~a;~aÞ ¼ x� l cosð2pkð~a� 0:5ÞÞ

ð34Þ

where x ¼ X=2, and, for definiteness, the input pattern
is specified by Eq. (2) with n ¼ 0:5 and z ¼ �1. The

linear aspect of the activation of the output units (Eq.

(3)) is

vð~aÞ ¼ e�4p2ð~a�0:5Þ2=2r2U ðx� lc cosð2pkð~a� 0:5ÞÞÞ ð35Þ

If the magnitude of the mode satisfies

l >
x

cð4p2k2r2
U þ 1Þ ð36Þ

then~a ¼ 0:5 is a local minimum of vð~aÞ rather than a local

maximum, and, in the fierce competition engendered by

large b, vcð~aÞ will be large only for ~a 6¼ 0:5, invalidating
the analysis in the preceding sections. Further, it can be

that the weights to some output units are never sub-

stantially altered, if neither they, nor their neighbors
ever win the fierce competition. Artificial mechanisms

are sometimes used to alleviate this effect, such as a fa-

tigue mechanism that prevents units from winning too
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frequently. With smaller values of b, this is less of a
concern.

For such artificial, pure, eigenfunctions, the conse-

quence of the lack of activation of units such as that

with ~a ¼ 0:5 in the case above turns out to be that the

fastest growing eigenmodes have a smaller stripe peri-

odicity (i.e. smaller k) than expected from the equilib-

rium analysis. For smaller correlations between the

input projections (i.e. smaller c), this happens for
smaller magnitudes of the modes, and favors smaller k.
This effect depends strongly on the non-linear competi-

tion, and so is hard to analyse in the case that the

weights reflect a sum of many different modes. However,

broadly, it is a mechanism by which, the competitive

model can generate wider ocular dominance stripes for

smaller correlations, even if the width of cortical inter-

actions is not changed. The same effect also happens for
broader topography (i.e. rA > 0), but, empirically, de-

pends on b being large. This effect is important [20] since

it is one of the pieces of evidence adduced in support of

activity-dependent effects.
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4. Feature-based models

The form of the terminal weights in Figs. 3(B), (C)

and 9 suggests that it is possible to abstract away the

details of the synaptic weights for the output units, and

instead represent each by two single numbers
~wð~aÞ ¼ ðxð~aÞ; zð~aÞÞ––one, xð~aÞ, representing the net topo-

graphic location of the unit, the other zð~aÞ, representing
the net difference in the strength of the connection from

the two input projections. Feature-based models take
exactly this step, also defining inputs and adaptation

rules in terms of these simplified parameters. Here, we

show the relationship between Kohonen’s self-organis-

ing map [17,30,31] and the competitive Hebbian model;

related analysis can be performed for another feature-

based model called the elastic net [10,11,23]. Links to

more abstract feature-based accounts [22,62] are some-

what more obscure.
The self-organising map is a feature-based version of

the competitive Hebbian algorithm, copying almost all

its characteristics. The inputs presented are character-

ised in the same two dimensions ~u ¼ ðn; zcÞ as the

weights, as an abstraction of the activities of the input

units uLð~bÞ and uRð~bÞ. As in Eq. (2), n is the topographic

location of the pattern, z 2 f�1; 1g, each with proba-

bility 0.5, indicates the ocular preference of the input,
and c is a constant representing the dissimilarity of the

two projections. Unlike the feature-based model, the full

model of the previous section could accommodate sub-

stantially more complex inputs.

The key idea underlying Eq. (3) in the competitive

Hebbian model is that cortical interactions should select

the output units according to how strongly activated
TE
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they are by the input, which in turn depends on how
closely aligned their weights WL

ð~a;~bÞ and WR

ð~a;~bÞ are with

the input. In the feature-based model, the alignment is

assessed by the discrepancy between the input pattern ~u
and the weights ~wð~aÞ

v~a ¼ e�ð~u�~wð~aÞÞ
2=2r2U ð37Þ

Then, vcð~aÞ and við~aÞ are calculated just as in Eqs. (4) and

(5). This implements the competitive aspect of the

model.

Similarly, the intuition behind the Hebbian portion of
the weight-based learning rule in Eq. (8) is to pull the

weights of the activated units towards the input pattern

presented, making them respond more strongly to the

same input on subsequent presentations. The remaining

part of the rule implements multiplicative normalisation

to prevent arbitrary weight growth. The feature-based

model uses

~wð~aÞ ! ~wð~aÞ þ �ðhvið~aÞ~uinz � kð~aÞ~wð~aÞÞ

¼ ~wð~aÞ þ �hvið~aÞð~u� ~wð~aÞÞinz ð38Þ

where, in the absence of any equivalent of the sum

mode, the multiplicative weight control factor is given

by

kð~aÞ ¼ hvið~aÞinz ð39Þ

in both cases taking averages over the inputs n and z. As

for the full model, the cortical interaction term rI can

either be fixed, or annealed during adaptation. Note that
for the case of rigid topography in the full model, the

topographic locations in the input of the output units is

fixed, since Að~a;~bÞ ¼ dð~a�~bÞ is fixed. For the self-organising
map, the topographic location xð~aÞ can change during

development. However, such changes turn out to hap-

pen late in development, after the properties of ocular

dominance are set.

Now [42,43], treating the N output units as a con-
tinuum, we can analyse the development of ocular

dominance in this feature-based model by linearising

about the equilibrium solution and assessing the growth

of ocularity eigenmodes in the direction of dzð~aÞ. Since
we employ wrap-around boundary conditions, the

equilibrium solutions is ~wð~aÞ ¼ ð~a; 0Þ. The similarity be-

tween the activation rules for the weight- and feature-

based models means that the linearisations are almost
the same

dzð~aÞ ! ð1� �kþÞdzð~aÞ þ �
b
r2
U

c2
Z Z

d~a1Oð~a;~a1Þdzð~a1Þ

ð40Þ
where

kþ ¼
ffiffiffiffiffiffiffiffiffiffi
2pr2

I

q
ð41Þ
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and the operator O is defined by a difference of two
operators, similarly to Eqs. (16) and (17). The eigen-

functions of bc2O=r2
U are the real and complex parts of

dzð~aÞ ¼ e2pik~a ð42Þ
with eigenvalues

ek ¼
b
r2
U

c2
ffiffiffiffiffiffiffiffiffiffi
2pr2

I

q
e�4p2k2r2I =2ð1� e�4p2k2r2U =bÞ ð43Þ

which can be directly compared with Eq. (29). The main
difference comes because the inputs for the weight-based

model are spatially extended. As above, ocular domi-

nance only grows if the maximal ek > kþ, and then there

is pressure for the stripe frequency that dominates to be

the maximising k.
In the limit as b ! 1, which is the normal case for

the self-organising map, the same pattern of results as

Eqs. (32) and (33) holds. The largest rI such that ocular
dominance will form satisfies

rI ¼ c

ffiffiffi
2

e

r
ð44Þ

which parallels Eq. (32), and the resulting stripe fre-

quency at the critical rI is

k ¼ 1

2p

ffiffiffi
2

p

rI
¼ 1

2p

ffiffiffiffi
e
c2

r
ð45Þ

which parallels Eq. (33). Given slow annealing, this

stripe frequency can be expected to dominate the final

solution.

Therefore, as for the full model, the width of the
stripes does not depend directly on the dissimilarity of

the eyes, although they can be coupled if either rI is
UN
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EC

Fig. 10. Feature-based competitive model for ocular dominance and topograp

upper plots show sample maps (in the form of Fig. 3(C)); the lower plots sho

interactions rI are annealed, and the limit of fierce competition b ! 1 is con

used as in Fig. 9(B).
RO
OF

annealed from a sufficiently large value, or if non-linear
effects such as those analysed in Eqs. (34)–(36) apply. In

the latter case, the most strongly activated output unit

can have~a 6¼ n, for input n, which perturbs the analysis.

Fig. 10 shows the consequences of applying this

algorithm for three values of the dissimilarity parameter

c, and annealing the cortical interaction parameter rI to

0. As expected from Eq. (45), the favored stripe fre-

quency is roughly linear in 1=c, and, as in area 17 of
strabismic cats, is smaller, the less similar the projec-

tions. The ultimate stripe frequency is slightly larger

than predicted from Eq. (45), perhaps because of the

development that occurs for values of rI smaller than

the critical value in Eq. (44). The fierceness of the

competition accounts for the small absolute values of c
compared with Fig. 3. The annealing of rI makes the

final values of zð~aÞ close to )1 and 1 and creates the
strong z-fold topography that the weight-based model

lacked (see Fig. 9).
TE
D
P5. Discussion

We have discussed a simple and relatively abstract

competitive Hebbian model for activity-dependent
aspects of topographic refinement and ocularity devel-

opment. The model is closely related to other weight-

based (e.g. [17,35,47]) and feature-based [31] develop-

mental models, and yet permits fairly extensive analysis,

thus, hopefully, casting new light on their workings.

We explicitly considered how the parameters of our

high-dimensional, weight-based, model relate to those of
hy for c ¼ 0:0125 (A, D), c ¼ 0:025 (B, E), and c ¼ 0:0375 (C, F). The

w the average power spectra of the ocularity component. The cortical

sidered. The same accommodation for the wrap-around topography is
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low-dimensional, feature-based models. We focused
exclusively on the simplest properties of V1; ocular

dominance stripes do not possess all the topological

richness of orientation domains, and so the range of

phenomena is more limited (there is no direct equivalent

of pinwheel annhilation, for instance, [63]). However, it

is to be hoped that such models might capture common

principles of cortical plasticity.

The existence in the model of the competition
parameter b (varying from essentially linear to maxi-

mising) and the topographic arbor width parameter rA

(varying from flat to rigid) allows us to understand some

of the essential pattern forming capacities of various

models within the same framework.

Topographic refinement is determined by the prop-

erties of the sum mode Wþ. Under multiplicative nor-

malisation, if the initial value of rW is infinite, refinement
happens except for flat topography. Even if the topog-

raphy is flat, refinement happens if the competition is

sufficiently severe that Eq. (23) is satisfied. Note that this

does not happen for b ¼ 1. Empirically, the best studied

example of topographic mapping is the retino-tectal

system of lower vertebrates. In particular, growth and

regrowth of connections are extremely robust to large

manipulations, including ablating part of the retina or
tectum at various points during development, and

crushing, and allowing a regrowth of the optic nerve. In

particular, some experiments indicate that the tectum has

a form of molecular memory of a pre-existing map that

does not depend on particular retino-tectal synapses

(which wither following crushing of the optic nerve). One

influential model of this (the tea trade model of [33,61],

so called because of a rather complicated analogy be-
tween topographic maps and the importation, blending

and distribution of varieties of tea) is based on molecular

concentration gradients rather than synaptically medi-

ated neural activity, but the mechanisms underlying it

include ones that are quite closely related to those gov-

erning the development of the sum mode in our model.

In our model, the development of ocular dominance

is controlled by properties of the difference mode W�.
Under multiplicative normalisation, this depends on the

same linear operator as for the sum mode near equi-

librium, except that the growth rate is smaller, by a

factor of c2, which is a measure of the dissimilarity

between the input projections. Because of the normali-

sation of activity inherent in vcð~aÞ, the operator is a dif-

ference of two component linear operators. This

difference leads the model to favor the development of
periodic ocular dominance stripes, even if the cortical

interaction function I is purely excitatory.

In general, the width of the ocular dominance stripes

is determined by the initial instability in the direction of

ocular dominance starting from the equilibrium solution

of equal connections. This width does not directly de-

pend on c. However, if the width of cortical interactions
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is annealed, then the largest value of rI at which stripes
can first form does depend on c, and, through this

dependence, the less similar the projections, the wider

the stripes. A further non-equilibrium effect also tends to

enforce the same relation. If the competition is very

strong, i.e. b is very large, then as the strength of the

stripes grows, there comes a point at which the different

eigenfunctions change their relative growth rates, in a

way that favors lower frequency modes. This is
enhanced for weaker correlations. Therefore, it becomes

necessary to consider the effective width of the connec-

tions at the time that ocular dominance is developing.

Except for very short range cortical interactions, the

preferred width of the stripes depends fairly weakly on

this effective width. However, the less the correlation

between the projections, the more substantial the

development that occurs for greater effective widths of
cortical interaction, and the wider the resulting stripes.

Many other aspects of pattern formation have also

been modelled, and merit study in our competitive

Hebbian learning account. Of particular interest is

application [19,24] of the elastic net feature-based model

to the global structure of the ocular dominance pattern

[32], encompassing such phenomena as the perpendicu-

larity of ocular dominance stripes to the boundaries of
V1, and the alteration in stripe width in the fovea. Here,

we only analysed the case of one spatial dimension. For

the global structure, it is critical to extend our analysis to

the two spatial dimensions of real cortex. The basic form

of the pattern formation analysis in terms of symmetry

breaking, linearisation, the effect of intra-cortical com-

petition, etc remains the same. However, it is not possible

to predict gross structure (for instance even that the
ocular dominance stripes are elongated in one direction)

merely from the preferred spatial frequency of the pat-

tern, which is all that the linear analysis can be expected

to provide. Non-linear analysis must be employed to

predict which of the many possible structures with the

same preferred frequency of alternation will dominate.

This analysis would proceed along similar lines to the

seminal recent work of Bressloff, Cowan and their col-
laborators on hallucinations (see [3]).

Further, although we treated the intracortical weights

defining I as either constant or annealed in effective

width, their ultimately patchy structure (e.g. [1,48]),

reflecting the patchy selectivities of the associated neu-

rons, suggest that they might also be plastic (e.g. [51]),

and this might affect the developing map. Next, in our

model and its congeners, the set of possible synaptic
connections is fixed at the outset (via the arbor func-

tion). In fact, axons and dendrites are quite labile, and it

would be interesting to understand the differences, if

any, that arise if one takes into account growth, par-

ticularly in the three dimensions of cortex [12,39]. Last,

but definitely not least, it is natural to assume that the

point of activity-dependent plasticity is to allow cortical
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selectivities to reflect and track significant statistical
structure in the input. This is the focus of computational

and statistical unsuperivsed learning algorithms [25]. It

has proved difficult to link statistically sound models of

the development of selectivity with models of the

arrangement of these selectivities on cortex. Is the

arrangement computationally epiphenomenal [45],

though perhaps anatomically parsimonious [10,38]?

Recent evidence significantly complicates the picture
of development of ocular dominance and its relationship

with other aspects of the maps such as orientation

[4,6,7,29,36,50]. The orientation map (which is also

shown in Fig. 1, and has a complicated relationship with

the underlying topographic map, [8]) is established

extremely early in development and has been shown to

remain stable even during the course of the drastic

anatomical changes consequent on the development of
ocular dominance, during which thalamocortical axonal

arbors are undergoing very extensive remodelling.

Important aspects of orientation selectivity are stable

during monocular deprivation [16]. These results and

others suggest the primacy of the orientation map over

the map of ocular dominance. Further, there is evidence

from kittens that there is an initial bias favoring con-

nections from the contralateral eye over those from the
ipsilateral eye that goes away during the time that the

stripes are forming, provided that the animals are not

deprived [5]. These factors and their ramifications have

yet to be fully captured in models.
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