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Abstract

The elastic net, which has been used to produce accounts of the formation of topology preserving maps
and ocular dominance columns (OD), embodies a nearest neighbour topology. A Hebbian account of OD
is not so restricted – and indeed makes the prediction that the width of the columns depends on the nature
of the (more general) neighbourhood relations.

Elastic and Hebbian accounts have recently been unified – raising a question mark about their different
determiners of column widths. This paper considers this issue, and demonstrates theoretically that it
is possible to use more general topologies in the elastic net, including those effectively adopted in the
Hebbian model.

1 Introduction

Durbin and Willshaw’s (1987) elastic net algorithm for solving the travelling salesperson

problem (TSP) is based on a method for developing topology-preserving maps between

the eye and brain (lateral geniculate nucleus and cortex for mammals) due to von der

Malsburg and Willshaw (1977) and Willshaw and von der Malsburg (1979). The elastic

algorithm inspired a host of similar ones aimed at different optimisation tasks, one of

which is this topology problem, augmented by two associates – forming ocular domi-

nance stripes and orientation selective cells (Goodhill and Willshaw GW, 1990; Durbin

and Mitchison, 1990).

Simić (1990, 1991) and Yuille (1990) looked at the relationship between elastic algorithms

and Hebbian inspired ones (Hopfield and Tank, 1985), showing that both mechanisms

could be viewed as optimising the same functions, albeit implementing differently the

constraints (for the TSP, that each city should be visited exactly once). More recently,

Yuille, Kolodny and Lee (YKL, 1991) repeated the feat and aligned elastic and Hebbian

(Miller, Keller and Stryker MKS, 1989) accounts of ocular dominance.
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The elastic net for the TSP consists of a set of points on a computational rubber band,

pulled by forces toward the cities that have to be visited and by tension. The energy in

a stretched rubber band is proportional to the square of its extension, which is incorrect

for modelling the length of a tour (proportional just to the extension, in this model), but

Durbin (cited as a personal communication in Yuille, 1990) suggests that changing the

elastic net to use the absolute distance rather than its square is infelicitous. Hopfield and

Tank’s (1985) model does in fact use the actual distances, and so, as they lucidly discuss,

Simić’s and Yuille’s match between the elastic and Hebbian algorithms is not perfect.

The nature of the topologies is even more mysterious in the match between Hebbian and

elastic algorithms for ocular dominance. Topology enters MKS’ model through a cortical

interaction function, which involves more than just the nearest neighbours. Conversely,

these are the natural topology for the elastic version. This has led to an apparent differ-

ence between the predictions of MKS and GW. MKS suggested that the width of ocular

dominance stripes is governed by the width of the cortical interaction function, whereas

GW predicted that it is dependent on the relative correlations within and between the

two eyes.

This paper considers the issue by examining the two models of ocular dominance. The

next section reviews YKL’s analysis, and section 3 looks at generalising the nearest neigh-

bour topology, testing the generalisation in a one-dimensional version of ocular domi-

nance.

2 Yuille, Kolodny and Lee’s Analysis

YKL unify the two models through the medium of a single cost function, which defines a

generalised deformable model:1
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1For convenience, this paper will look at the one-dimensional versions of the various tasks. Extensions to the second dimension
are straightforward, but messy. Also, YKL separate out the retinotopy dimension – whereas it is incorporated here into the continuous
variables x andY.
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where VL
ai and VR

ai are the variables matching the ith unit in the left and right eyes respec-

tively to the ath unit in the cortex, xLi and xRi are the retinal ‘positions’ of the ith unit in

the left and right eyes, ya is the ‘position’ of the ath unit in the cortex, and Y � fyag.

As GW and YKL say, these ‘positions’ are defined somewhat abstractly; however they

are intended to capture something like the correlations between the firings of the reti-

nal and cortical units. � is a constant which governs the relative weighting of the first

term, which measures how close, correlationally, matching cells are, and the second term,

which measures how close neighbouring cortical cells are. This cost function owes its

power of unification to having both matching V and continuous Y variables.

The constraint on both retinal and cortical fields on a solution – that each cell should have

a unique partner – is effectively duplicated in these two sets of variables.2 Minimising E

subject to these constraints leads to the optimal map. Hebbian and elastic methods are

effectively different ways of minimising this function, imposing different constraints in

different manners on the way to deriving a solution. Both use Hopfield and Tank’s key

insight for the TSP that the constraints need not all hold throughout the optimisation pro-

cess, so long as they are guaranteed to be satisfied by the time the algorithm terminates.

The reduction to an elastic net comes from eliminating the VL and VR variables using

a Gibbs trick. The probability of a particular assignment of V and Y is declared to be

proportional to e��E[V
L;VR;Y], and these terms are summed over the set of VR and VL that

satisfy the partial constraint that each cell in the cortex maps to a unit in either the left or

the right eye, but not both. The resulting elastic energy function is3
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Note that the topology term survives this reduction intact, since it does not depend on

the V .

The alternative to eliminating the V variables is to eliminate the Y. YKL do this by re-

garding E
h
VL;VR;Y

i
as a quadratic form in Y which has a minimum at Y

�

h
VL;VR

i
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2In terms of these variables: for each a, one of the collection over i of
�
V
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should be 1 and all the rest 0, and for each i the

same should be true of the collection over a. Also, for each a, ya should be the same as one xL
i

or xR
i

, and for each i, there should be
different a1 and a2 such that ya1 = x

L
i

and ya2 = x
R
i

.
3Here and throughout, boundary conditions are avoided by assuming toroids and using modulo arithmetic.
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Imposing the normalisation constraint (see MKS) that each cortical cell receives a con-

stant weight from the retina: X
i

VL
ai + VR

ai = 1 8a (3)

gives

(I + �T )YT
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embodies the toroidal nearest neighbour topology. Therefore, at the minimum

YT
�
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where the inverse exists for � > 0. Substituting back into equation 1, imposing the con-

straints in equation 3, and ignoring terms that do not depend on the V , gives
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(4)

MKS’ Hebbian system regards the output oa of cortical cell a as coming partly from the

input from the two eyes iL and iR through the connection matrix,
h
VLiL + VRiR

i
a
, and

partly from the other cortical cells [Do]a (MKS call C � (I � D)
�1 the cortical interaction

function):

o = VLiL + VRiR +Do

= (I � D)
�1
�
VLiL + VRiR

�
(5)

Hebbian learning changes VL
aj proportional to hoai

L
j i, where the angle-brackets represent

an averaging process. Defining

DLL
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L
k i; D
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R
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R
k i;
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YKL show that the V are moving down the gradient of

EMKS
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Compare equations 4 and 6. YKL argue that for the intent of comparing minima, one can

identify K �
���xLi � xLj

���2 with DLL
ij and similarly for DRR

ij and DLR
ij , for some constant K.

Therefore, if �D = �T , these two expressions will have the same interesting minima – so,

provided that the constraints are properly satisfied during learning, they should lead to

the same ultimate solution.4

The cortical interaction function calculated from T (using � = 3=4) is shown in figure 1.

Although YKL show that this is enough to produce interesting ocular dominance stripes,

it is clearly not the same as MKS’ cortical interaction function which is shown in the same

figure. It is also obvious why elastic and Hebbian models make different predictions

about the factors determining stripe widths – the cortical interaction function correspond-

ing to the elastic topology is immutable. The next section considers alternatives.

3 Generalising Elastic Topologies

The shape of the interaction function comes from the term
P

a jya � ya+1j
2 in equation 1.

A more general quadratic form for this is

X
ab

yTa Sabyb = tr
n
YTYS

o
: (7)

For instance, if S = T , then this reduces to exactly the same expression as in equa-

tion 1. Note also that this formulation is sufficiently general as to model the case of

two-dimensional retinæ and cortex, although it does not extend to non-quadratic cases

such as the length rather than the square of the length for the TSP.
4YKL actually derive a different condition for matching – that �T = (I�D)�1 for some constant �. The truth of this would appear

to depend on
P

aij
V
L
ai
V
R
aj

��xL
i
� x

L
j

��2, and the similar expressions for VRVR and VRVL, being constant over the V that satisfy the
partial constraints.
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Such a change has little effect on the elastic energy function from equation 2, which be-

comes:
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However, differentiating E as a quadratic form to eliminate the Y leads to
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= VLXLT
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assuming that S is symmetric. If S also has a similarity property such that
P

b(I + �S)�1ab

does not depend on a,5 then substituting back in gives the energy function:
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As above, setting D = ��S to unify the elastic and Hebbian energy functions allows

Hebbian modelling of arbitrary elastic topologies and vice versa.

One way of generating elastic topologies is to consider them in terms of an estimation

problem. Say that
P

b Eabyb is an estimate of ya. Then, the total square estimate error is

X
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X
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�����
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Comparing this with equation 7 shows that S = (I � E)T (I � E). T can be generated this

way, by making Ea(a+1) = 1 and the remaining components 0. Another example comes

from estimating ya as the average of both its neighbours, ie setting:

Eab =
1

2

8><
>:

1 b = a + 1; b = a� 1

0 otherwise
=) Sab =

1

4

8>>>>>>><
>>>>>>>:

6 b = a
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(8)

whose associated cortical interaction function more closely resembles the MKS mexican

hats (see figure 1). Note that although for any E there is a unique associated S and there-

fore C, the same is not true the other way around. Symmetric S will only have a square
5This holds if the topology is the same over the whole cortex.
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Figure 1: Cortical interaction functions.

root if all its eigenvalues are positive, and it is easy to generate seemingly plausible C for

which this is not the case.

MKS generated their C as

Cab = e
�

ja�bj2

(�D)2 �
1

9
e
�

ja�bj2

(3�D)2 (9)

where � = 1=7:5 and D = 7 was the width of their arbor function (the number of cortical

cells to which a retinal cell would connect). Changing D changes the length scale of the

cortical interaction, and so changes the optimal stripe width. Figure 1 shows graphs of

the elastic net cortical interaction function, the mexican hat one from equation 8, and two

generated from MKS – one with D = 7 and one with D = 14.

One way to test the generalised topology terms is to use them in the cost function of

equation 1 and to consider the optimal stripe width for the ocular dominance maps this

defines.6 It is convenient to study the 1-dimensional case, since the interesting optima

are just ‘Z’ folds, as in the left-hand side of figure 2 (after GW). Maps inspired by the

sideways ‘U’ shape on the right-hand side of the figure will, in many cases, have lower
6If the appropriate constraints are satisfied, one of the equivalent equations such as 4 can also be used.
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Figure 2: One dimensional ocular dominance maps.

costs than these – however they are ruled out as the cortex does not traverse the retinæ

appropriately. Given particular spatial locations of the retinal cells, it is straightforward to

calculate the cost per unit length of Z-folds of varying widths – the width that minimises

this is the one both Hebbian and elastic algorithms should find.

GW show that the optimal width of a stripe for the basic elastic topology is 2l=d, where l

is the separation of the two retinæ and d is the distance between two cells within a retina.

Simulations verified this, using the elastic net topology T . Note that increasing l increases���xLi � xRj

���2 in the third term of equation 4, leaving the other distance terms unaltered.

For the MKS topology, the optimal width should increase with D, the length scale of the

cortical interaction function. The analysis above suggests that it should also increase with

l, given the common energy function. Both of these are demonstrated in figure 3, which

shows how the optimal Z-fold stripe width w varies with both l and D. With the exception

of the patch for low l and high D, this is monotonic in both variables.

Note that as D increases, the matrix C becomes increasingly singular, which forces im-

plausible constraints on the cortical connectivity. Also small stripes are favoured for large

D and small l, since they benefit more from the negative contributions from the influences

of widely separated cells than they lose through the cost of switching between the retinæ.

In fact the cost function becomes tri-modal in the width of the stripes in this regime; one

optimum is at the minimum stripe width, another is at the sideways ‘U’ of figure 2 and
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Figure 3: Optimal Z-fold stripe width w versus length scale D of the cortical interaction function and dis-
tance l between the retinæ. The cost function valuesE were calculated from equation 4, replacing (I+�T )�1

with C generated using equation 9.

the third is at the width that would preserve monotonicity in figure 3.

4 Discussion

It is natural to wish to incorporate more extensive topologies into the elastic net than

the rather impoverished nearest neighbour one with which it is presently endowed. One

particular motivation for this comes from the apparent conflict between the predictions

of stripe width from the elastic and Hebbian theories of the development of ocular dom-

inance. However it is important in other cases such as graph matching in von der Mals-

burg’s (1981) correlation theory of brain function. In this, fine scale temporal correlations

in the firing of cells in a field are determined by the topology of the object being repre-

sented on that field, and inference consists of matching this graph with an isomorphic one

on another field. If the fine scale temporal correlations embody more than nearest neigh-

bour correlations (and inference will be faster if they do), then describing this process in

elastic terms will require a more general topology too.
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This paper has used the formalism of generalised deformable models to consider how

general topologies fit into an elastic net framework. It demonstrates that this is effective

by showing how the optimal stripe widths theoretically change with changing cortical

length scales. However, it does remain to be seen which of the alternatives lead to stable

elastic algorithms. Designer topologies are as simple to specify as designer error func-

tions, and it will be interesting to see if there is an equivalent wealth of well motivated

examples.
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[7] Simić, PD (1990). Statistical mechanics as the underlying theory of “neural” and

“elastic” optimizations. Network, 1, pp 89-104.
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