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Abstract

Estimation of returns over time, the focus of temporal difference (TD) algorithms,
imposes particular constraints on good function approximators or representations.
Appropriate generalisation between states is determined by how similar their succes-
sors are, and representations should follow suit. This paper shows how TD machinery
can be used to learn such representations, and illustrates, using a navigation task, the
appropriately distributed nature of the result.

1 Introduction

The method of temporal differences (TD, Samuel 1959; Sutton, 1984; 1988) is a way of esti-
mating future outcomes in problems whose temporal structure is paramount. A paradig-
matic example is predicting the long term discounted value of executing a particular pol-
icy in a finite Markovian decision task. The information gathered by TD can be used to
improve policies in a form of asynchronous dynamic programming (DP) (Watkins, 1989;
Barto, Sutton & Watkins, 1990; Barto, Bradtke & Singh, 1991).

As briefly reviewed in the next section, TD methods apply to a learning framework which
specifies the goal for learning and precisely how the system fails to attain this goal in par-
ticular circumstances. Just like the proposal to minimise mean square error, TD methods
lie at the heart of different mechanisms operating over diverse representations. Represen-
tation is key – difficult problems can be rendered trivial if looked at in the correct way.
It is particularly important for systems to be able to learn appropriate representations,
since it is rarely obvious from the outset exactly what they should be. For static tasks,
generalisation is typically sought by awarding similar representations to states that are
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nearby in some space. This concept extends to tasks involving prediction over time, ex-
cept that adjacency is defined in terms of similarity of the future course of the behaviour
of a dynamical system.

Section 3 suggests a way, based on this notion of adjacency, of learning representations
that should be particularly appropriate for problems to which TD techniques have been
applied. Learning these representations can be viewed as a task itself amenable to TD
methods, and so requires no extra machinery. Section 4 shows the nature of the resulting
representation for a simple navigation task. Part of this work was reported in Dayan
(1991a; 1991b).

2 TD Learning

Consider the problem of estimating expected terminal rewards, or returns, in a finite ab-
sorbing Markov chain; this was studied in the context of TD methods by Sutton (1988).
An agent makes a transition between non-absorbing states i and j 2 N according to the
ij th element of the Markov matrix Q, or to absorbing state k 2 T with probability sik, with
a stochastic reinforcement or return whose mean is �zk and whose variance is finite. In this
and the next section, the returns and transition probabilities are assumed to be fixed. The
immediate expected return from state i 2 N , represented as the ith element of a vector h,
is the sum of the probabilities of making immediate transitions to absorbing states times
the expected returns from those states:

[h]i =
X

k2T

sik�zk

The overall expected returns, taking account of the possibility of making transitions to
non-absorbing states first, are:

[�r]i = [h]i + [Qh]i +
h
Q
2
h

i
i
+ : : :

=
h
(I� Q)�1h

i
i

(1)

where I is the identity matrix.

The agent estimates the overall expected return from each state (compiled into a vector �r)
with a vector-valued function r̂(w) which depends on a set of parametersw whose values
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are determined during the course of learning. If the agent makes the transition from state
it to it+1 in one observed sequence, TD(0) specifies that w should be changed to reduce
the error:

�t+1 = [r̂(w)]it+1 � [r̂(w)]it (2)

where, for convenience, [r̂(w)]it+1 is taken to be the delivered return zit+1 if it+1 is ab-
sorbing. This enforces a kind of consistency in the estimates of the overall returns from
successive states, which is the whole basis of TD learning. More generally, information
about the estimates from later states [̂r(w)]it+s

for s > 1 can also be used, and Sutton
(1988) defined the TD(�) algorithm which weighs their contributions exponentially less
according to �s.

With the TD algorithm specifying how the estimates should be manipulated in the light of
experience, the remaining task is one of function approximation. Howw should change to
minimise the error �t+1 in equation 2 depends on exactly how w determines [r̂(w)]it . Sut-
ton (1988) represented the non-absorbing states with real-valued vectors fxig, [r̂(w)]i as
the dot product w:xi of the state vector with w taken as a vector of weights, and changed
w in proportion to

�(w:xit+1 �w:xit)xit

using zit+1 instead of w:xit+1 if it+1 is absorbing. This is that part of the gradient �r
w
�t+1

that comes from the error at step xit , ignoring the contribution from xit+1 (Werbos, 1990;
Dayan, 1992).

In the ‘batch-learning’ case for which the weights are updated only after absorption, Sut-
ton showed that if the learning rate is sufficiently small and the vectors representing the
states are linearly independent, then the expected values of the estimates converge ap-
propriately. Dayan (1992) extended this proof to show the same was true of TD(�) for
0 < � < 1.

3 Time-based Representations

One of the key problems with TD estimation, and equivalently with TD based control
(Barto, Sutton and Watkins, 1989), is the speed of learning. Choosing a good method of
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function approximation, which amounts in the linear case to choosing good representa-
tions for the states, should make a substantial difference. For prediction problems such
as the one above, the estimated expected overall return of one state is a biased sum of
the estimated expected overall returns of its potential successors. This implies that for
approximation schemes that are linear in the weights w, a good representation for a state
would be one that resembles the representations of its successors, ie is only a small Eu-
clidean distance away from them (with the degrees of resemblance being determined by
the biases). In this way, the estimated value of each state can be partially based on the
estimated values of those that succeed it, in a way made more formal below.

For conventional, static, problems, received wisdom holds that distributed representa-
tions perform best, so long as the nature of the distribution somehow conforms with the
task – nearby points have nearby solutions. The argument above suggests that the same
is true for dynamic tasks, except that neighbourliness is defined in terms of temporal suc-
cession. If the transition matrix of the chain is initially unknown, this representation will
have to be learned directly through experience.

Starting at state i 2 N , imagine trying to predict the expected future occupancy of all
other states. For the jth state, j 2 N , this should be:

[�xi]j = [I]ij + [Q]ij + [Q
2
]ij + : : :

= [(I� Q)�1]ij: (3)

where [M]ij is the ij th element of matrix M and I is the identity matrix. Representing state
i using �xi is called the successor representation (SR).

A TD algorithm itself is one way of learning SR. Consider a punctate representation which
devotes one dimension to each state and has the lth element of the vector representing state
k, [xk]l, equal to [I]kl. Starting from it = i, the prediction of how often [xis ]j = 1 for s � t is
exactly the prediction of how often the agent will visit state j in the future starting from
state i, and should correctly be [�xi]j . To learn this, the future values of [xis ]j for s � t can
be used in just the same way that the future delivery of reinforcement or return in used
in standard TD learning.

For a linear function approximator, it turns out that SR makes easy the resulting problem
of setting the optimal weights w� which are defined as those making �r = r̂(w�). If �X is the
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matrix of vectors representing the states in the SR, [�X]ij � [�xj]i, then w� is determined as:

�X
T
w
� = �r; which implies, from equations 1 and 3, that

w
� = h:

But h is just the expected immediate return from each state – it is insensitive to all the
temporal dependencies that result from transitions to non-absorbing states.

The SR therefore effectively factors out the entire temporal component of the task, leaving
a straightforward estimation problem for which TD methods would not be required. This
can be seen in the way that the transition matrix Q disappears from the update equation,
just as would happen for a non-temporal task without a transition matrix at all. For
instance, for the case of an absorbing Markov chain with batch-learning updates, Sutton
showed that the TD(0) update equation for the mean value of the weights �wn satisfies

�wn+1 = �wn + �XD(h+ QX
T �wn � X

T �wn)

where X is the representation, � is the learning rate and, since the updates are made after
observing a whole sequence of transitions from start to absorption rather than just a single
one, D is the diagonal matrix whose diagonal elements are the average number of times
each state is visited on each sequence. Alternatively, directly from the estimates of the
values of the states,

(X
T
�wn+1 � �r) = (I� �XT

XD(I� Q))(X
T
�wn � �r);

Using �X instead, the update becomes:

�wn+1 = �wn + ��XD(h� �wn); or

( �wn+1 � h) = (I� ��XD)( �wn � h):

Since �X is invertible, Sutton’s proof that �XT
�wn ! �r, and therefore that �wn ! h as n!1,

still holds. I conjecture that the variance of these estimates will be lower than those for
other representations X (eg X = I) because of the exclusion of the temporal component.

For control problems it is often convenient to weigh future returns exponentially less
according to how late they arrive – this effectively employs a discount factor. In this case
the occupancy of future states in equation 3 should be weighed exponentially less by
exactly the same amount.
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A possible objection to using TD learning for SR is that it turns the original temporal
learning problem – that of predicting future reinforcement – into a whole set of tempo-
ral learning problems – those of predicting the future occupancy of all the states. This
objection is weakened in two cases:

� The learned predictions can be used merely to augment a standard representation
such as the punctate one. An approximately appropriate representation can be ad-
vantageous even before all the predictions are quite accurate. Unfortunately this
case is hard to analyse because of the interaction between the learning of the pre-
dictions and the learning of the returns. Such a system is used in the navigation
example below.

� The agent could be allowed to learn the predictions by exploring its environment
before it is first rewarded or punished. This can be viewed as a form of latent learn-
ing and works since the representation does not depend on the returns.

One could regard these predictions as analogous to the hidden representations in Ander-
son’s (1986) multi-layer backpropagation TD network in that they are fashioned to be
appropriate for learning TD predictions but are not directly observable and so have to be
learned. Whereas Anderson’s scheme uses a completely general technique which makes
no explicit reference to states’ successors, SR is based precisely on what should comprise
a good representation for temporal tasks.

4 Navigation Illustration

Learning the shortest paths to a goal in a maze such as the one in figure 1 was chosen
by Watkins (1989) and Barto, Sutton & Watkins (1989) as a good example of how TD
control works. For a given policy, ie mapping from positions in the grid to directions of
motion, a TD algorithm is used to estimate the distance of each state from the goal. The
agent is provided with a return of �1 for every step that does not take it to the goal and
future returns, ie future steps, are weighed exponentially less using a discount factor. The
policy is improved in an asynchronous form of dynamic programming’s policy iteration
by making more likely those actions whose consequences are better than expected.
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Goal

Barrier

Agent

Figure 1: The grid task. The agent can move one step in any of the four directions except
where limited by the barrier or by the walls.

Issues of representation are made particularly clear in such a simple example. For the
punctate case, there can be no generalisation between states. Distributed representa-
tions can perform better, but there are different methods with different qualities. Watkins
(1989), for a similar task, used a representation inspired by Albus’ CMAC (1976). In this
case, CMAC squares which cover patches of 3 � 3 grid points are placed regularly over
the grid such that each interior grid point is included in 9 squares. The output of the units
corresponding to the squares is 0 if the agent is outside their receptive fields, and oth-
erwise is modulated by the distance of the agent from the centre of the relevant square.
Over most of the maze this is an excellent representation – locations that are close in the
Manhattan metric on the grid are generally similar distances from the goal, and are also
covered by many of the same CMAC squares. Near the barrier, however, the distribu-
tion of the CMACs actually hinders learning – locations close in the grid but on opposite
sides of the barrier are very different distances from the goal, and yet still share a similar
CMAC square representation.

By contrast, the successor representation, which was developed in the previous section,
produces a CMAC-like representation that adapts correctly to the barrier. If the agent
explores the maze with a completely random policy before being forced to find the goal,
the learned SR would closely resemble the example shown in figure 2. Just like a CMAC
square, the representation decays exponentially away from the starting state (5; 6) in a
spatially ordered fashion – however note SR’s recognition that states on the distant side
of the barrier are actually very far away in terms of the task (and so the predictions are too
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Figure 2: The predictions of future occupancy starting from (5,6) after exploration in the
absence of the goal. The z-coordinate shows the (normalised) predictions, and the barrier
and the goal are overlaid. The predictions decay away exponentially from the starting
location, except across the barrier.

small to be visible). Simulations confirm that using the SR in conjunction with a punctate
respresentation leads to faster learning for this simple task (see figure 3), even if the agent
does not have the chance to explore the maze before being forced to find the goal.

This example actually violates the stationarity assumption made in section 2, that transi-
tions probabilities and returns are fixed. As the agent improves its policy, the mean num-
ber of steps it takes to go from one state to another changes, and so SR should change too.
Once the agent moves consistently along the optimal path to the goal, locations that are
not on it are never visited, and so the prediction of future occupancy of those should be
0. Figure 4 shows the difference between the final and initial sets of predictions of future
occupancy starting from the same location (5; 6) as before. The exponential decay along
the path is caused by the discount factor. The path taken by the agent is clear. If the task
for the agent were changed such that it had to move from anywhere on the grid to a dif-
ferent goal location, this new form of the SR would actually hinder the course of learning,
since its distributed character no longer correctly reflects the actual nature of the space.
This demise is a function of the linked estimation and control, and would not be true for
pure estimation tasks.
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Figure 3: Learning curves comparing punctate representation (Rpunctate), CMAC-squares
(RCMAC) and a punctate representation augmented with the SR (RSR), in the latter case both
with and without an initial, un-rewarded, latent learning phase. TD control learning as
in Barto, Sutton and Watkins (1989) is temporarily switched off after the number of trials
shown in the x�axis, and the y�axis shows the average number of excess steps the agent
makes on the way to the goal starting from every location in the grid. Parameters are in
Dayan (1991b).
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Figure 4: The degradation of the predictions. Both graphs show the differences between
the predictions after 2000 steps and those initially – the left graph as a surface, with the
barrier and the goal overlaid, and the right graph as a density plot. That the final predic-
tions just give the path to the goal is particularly clear from the white (positive) area of
the density plot – the black (negative) area delineates those positions on the grid that are
close to the start point (5; 6), and therefore featured in the initial predictions, but are not
part of this ultimate path.

10



5 Discussion

This paper has considered some characteristics of how representation determines the
performance of TD learning in simple Markovian environments. It suggests that what
amounts to a local kernel for the Markov chain is an appropriate distributed representa-
tion, because it captures all the necessary temporal dependencies. This representation can
be constructed during a period of latent learning and is shown to be superior in a simple
navigation task, even over others that also share information between similar locations.

Designing appropriate representations is a key issue for many of the sophisticated learn-
ing control systems that have recently been proposed. However, as Barto, Bradtke and
Singh (1991) pointed out, a major concern is that the proofs of convergence of TD learning
have not been very extensively generalised to different approximation methods.

Both Moore (1990) and Chapman and Kaelbling (1991) sought to exorcise the dæmon
of dimensionality by using better function approximation schemes, which is an equiva-
lent step to using a simple linear scheme with more sophisticated input representations.
Moore used kd trees (see Omohundro, 1987, for an excellent review), which have the
added advantage of preserving the integrity of the actual values they are required to
store, and so preserve the proofs of the convergence of Q�learning (Barto, Bradtke &
Singh, 1991; Watkins & Dayan, 1992). However just like the CMAC representation de-
scribed above, the quality of the resulting representation depends on an a priori metric,
and so is not malleable to the task.

Chapman and Kaelbling also used a tree-like representation for Q�learning, but their
trees were based on logical formulæ satisfied by their binary-valued input variables. If
these variables do not have the appropriate characteristics, the resulting representation
can turn out to be unhelpful. It would not afford great advantage in the present case.

Sutton (1990), Thrun, Möller and Linden (1991), and others have suggested the utility of
learning the complete transition matrix of the Markov chain, or, for the case of control, the
mapping from states and actions to next states. Sutton used this information to allow the
agent to learn while it is disconnected from the world. Thrun, Möller and Linden used
it implicitly to calculate the cost of and then improve a projected sequence of actions.
The SR is less powerful in the sense that it only provides an appropriately distributed
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representation and not a veridical map of the world. A real map has the added advantage
that its information is independent of the goals and policies of the agent; however it is
more difficult to learn. Sutton’s scheme could equally well be used to improve a system
based on the learned representation.

Sutton and Pinette (1985) discussed a method for control in Markovian domains that is
closely related to the SR and which uses the complete transition matrix implicitly defined
by a policy. In the notation of this paper, they considered a recurrent network effectively
implementing the iterative scheme

x̂n+1 = xi + Qx̂n

where xi is the punctate representation of the current state i andQ is the transition matrix.
x̂n converges to �xi from equation 3, the SR of state i. Rather than use this for represen-
tational purposes, however, Sutton and Pinette augmented Q so that the sum of future
returns is directly predicted through this iterative process. This can be seen as an alterna-
tive method of eliminating the temporal component of the task, although the use of the
recurrence implies that the the final predictions are very sensitive to errors in the estimate
of Q.

The augmented Q matrix is learned using the discrepancies between the predictions at
adjacent time steps – however the iterative scheme complicates the analysis of the con-
vergence of this learning algorithm. A particular advantage of their method is that a
small change in the model (eg a slight extension to the barrier) can instantaneously lead
to dramatic changes in the predictions. Correcting the SR would require relearning all the
affected predictions explicitly.

Issues of representation and function approximation are just as key for sophisticated as
unsophisticated navigation schemes. Having a representation that can learn to conform to
the structure of a task has been shown to offer advantages – but any loss of the guarantee
of convergence of the approximation and dynamic programming methods is, of course, a
significant concern.
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