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Abstract

One popular way of exorcising the d�mon of dimensionality in dynamic

programming is to consider spatial and temporal hierarchies for representing the

value functions and policies. This paper develops a hierarchical method for Q-

learning which is based on the familiar notion of a recursive feudal serfdom, with

managers setting tasks and giving rewards and punishments to their juniors and

in their turn receiving tasks and rewards and punishments from their superiors.

We show how one such system performs in a navigation task, based on a manual

division of state-space at successively coarser resolutions. Links with other

hierarchical systems are discussed.

1 Introduction

Many tasks for real and arti�cial systems can naturally be cast in hierarchical terms.

Division for conquest is a common metaphor, and it is certainly a conventional way

for human designers to cope with task complexity in everything from the organisa-

tion of large corporations to chip design. Biological control systems, particularly in

invertebrates, also employ it.
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Adopting a hierarchy has two main advantages: it can reduce search (or learning)

complexity for tasks, and it is a natural way to specify solutions in which there is

shared structure { information about one part of the task can be used directly for

another part. These bene�ts are only won at a cost: specifying and learning the

hierarchy may be more expensive in terms of space or time or actions; the ultimate

solution of the task can be suboptimal if the hierarchy is not well tailored to the

environment; and, most worryingly, there may be no solution at all to a task based

on a given hierarchical division.

Hierarchies and the abstraction of tasks and actions have a long and distinguished

career in cybernetics, control theory and arti�cial intelligence { Polya (1945) is often

cited as an early modern source, and Watkins (1989) has exerted an important inu-

ence on the work in reinforcement learning. In this paper we consider the issue from

the perspective of adaptive optimising control in simple Markov decision problems.

We focus on learning, both within and between levels of the hierarchy. Conventional

reinforcement learning algorithms are often accused of being painfully slow, and so

there is de�nite scope for improvement.

The next section discusses some general issues for hierarchical reinforcement learning,

and section 3 presents and gives an example of the Feudal Q-learning system (�rst

discussed in Dayan & Hinton, 1993), which picks some from amongst the possible

options for such learning. At about the same time, a number of groups (including

Jameson, 1992; Kaelbling, 1993; Lin, 1993; Singh, 1992a;b;c) independently presented

hierarchical reinforcement learning systems that are quite similar to each other and

to the Feudal system. Section 4 discusses aspects of them, and other, less closely

related, systems (Ring, 1993).

2 Hierarchical Reinforcement Learning

We are interested in the application of hierarchies to the reinforcement learning (RL)

solution of Markov decision problems (MDPs). These are controlled Markov processes

with numerical rewards or punishments according to states traversed and actions

executed. The job for the agent is to maximise its short or long term average or

discounted return. The set of RL methods we cover are asynchronous ways of doing

dynamic programming (DP, Bellman, 1957; Barto, Sutton & Watkins, 1990; Barto,

Bradtke & Singh, 1991), which is a method of optimal control from engineering. We

use the Q-learning algorithm (Watkins, 1989) which is designed to learn the optimal

value of doing each action at each state from experience of rewards and transitions.

Much of the discussion will be focused on maze tasks, although the lessons are more

general. For �xedness, the agent can move North, South, East or West (NSEW) in
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a two-dimensional grid, and has either to reach a single goal (see the lowest level in

�gure 1), or to navigate between two arbitrary points (pairwise navigation). In both

cases it should use paths that are as short as possible. The agent can fully observe

its state { however, there are edges to the grid and there may be barriers which it

can only infer by observing that some actions have no e�ect. The representations of

neighbouring states may have nothing in common, so even the notion of locality may

have to be acquired.

We employ hierarchies that involve the division of space or time at multiple levels,

the assignment of controllers to each division, and control structures in which higher

level and lower level controllers interact in some way to specify what ultimate action

the agent takes. The hierarchy is a way of storing, in a exible manner, information

about solving a problem. The division will be appropriate for a task if the knowledge

acquired at the lower levels can be shared across di�erent high level control objectives.

The pairwise navigation task is an example of this { getting to any one of the states

in the North-East corner of a maze might require almost all the same initial moves if

the agent starts far away. We give an example like this in section 3.

This section eshes out the description and discusses some of the options for forms

of abstraction and mechanisms of interaction for control.

2.1 Spatial and Temporal Abstraction

Hierarchies can reduce the complexity of searching for solutions to MDPs using re-

inforcement learning (RL) because they introduce temporal and/or spatial (ie state-

wise) abstraction. Indeed, multi-resolution or state-aggregation methods are a main-

stay for speeding up conventional dynamic programming (see Morin, 1978, for numer-

ous examples and references). Standard methods focus on having a single task, and

using coarser and �ner representations of the value function. This is not hierarchical,

in the terms of this paper, since there are not di�erent but interacting controllers at

the di�erent levels. The advantage of standard multi-grid methods is that, given an

accurate model of the task and the rewards, it is possible to guarantee the quality of

the approximation at di�erent resolutions (analogously to the multi-grid methods for

solving partial di�erential equations). These guarantees do not apply in a straight-

forward manner to systems that lack such models or ones with interacting controllers,

as described here.

Abstraction in a learning system is useful since it allows there to be fewer states

at higher levels, which generally makes the search problem easier there. Also, if

di�erent higher level tasks can be satis�ed by the same lower level actions, then these

actions need not be relearnt. Problems can also arise. Since top level commands

are typically insensitive to the exact low level state of the agent, the paths can be
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suboptimal. Worse, use of hierarchies can be disastrous if the di�erent low-level states

within a high-level state require inconsistent commands. Such problems reect the

fact that, from the perspective of the high levels, the problem becomes only partially

observable (Lovejoy, 1990), because of the state abstraction.

As an example of state abstraction, in the case of navigating to a goal in the maze, Lin

(1993) considered tessellating the space into a set of regions according to proximity

to a set of selected points (landmarks or abstract states) in the space. The high

level actions speci�ed that the agent should get from an arbitrary point to its nearest

landmark, and from this landmark to ones successively closer to the goal (which was

also made into a landmark). Lin (1993) showed that if the complexity of �nding

(learning) an optimal solution to an MDP is O(n2), where n is the number of states,

then inventing k suitably spaced landmarks, each of whose domain of knowledge of

optimal trajectories contains at most m points and whose maximal separation is l

steps, reduces the overall complexity to O(km2+ lk
2) The abstraction process can be

recursed. Of course, the ultimate paths can be suboptimal { there would in general

be no reason for the best path between two points to go through the landmarks.

Watkins (1989) described a di�erent scheme for spatial abstraction in which some

aspects of the state spaces of higher and lower levels were the same, but others were

di�erent. Also the actions available at each level were disparate. He discussed the

example of a navigator giving orders to a helmsman on a sailing ship in which both

could see which way the ship is moving. The navigator could also see higher level

information about such things as the desired itinerary of the ship and the helmsman

could also see lower level information about the direction of the wind and the force

of the currents.

Note that it is possible to abstract over space without using hierarchies. Moore

(1991;1994) considered splitting up the state space at variable resolutions, choosing

�ner divisions in one case according to divergence from a learned model along paths

to the goal and in the other if it is required to prevent the possibility of being trapped

by a currently infelicitous division. On each step, Moore (1991) performed full dy-

namic programming under the (temporary) assumption that the value of a state (eg

its distance from the goal) is constant in each region. This nulli�es the curse of

dimensionality without resorting to multiple levels of division of space.

In some problems, abstraction over time is as important as abstraction over space.

Jameson (1992) considered a version of the problem of balancing an up-ended pole in

the case that the base of the pole is not allowed to stray too far from the start point.

He noted that there are inherently two timescales in the problem { a fast one from the

immediate instability, and a slow one from the fact that the pole can have a net drift

in one direction (if it is balanced on average at a small non-zero angle to the vertical).

The top level of his hierarchy averaged over a longer timescale than the bottom one
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(they were actually clocked at di�erent rates), and was therefore in a good position to

learn to extract the drift and command its removal. All the abstraction was temporal

{ high and low level controllers saw the state space at the same resolution.

For most hierarchies (including the Feudal system), however, abstraction over space

is coupled with abstraction over time. If the states at high levels are viewed at a

coarser resolution than those at the low levels, then the system will tend to dwell

longer in the former than the latter. Just because the state does not change at

the high level does not mean that the action at the high level cannot itself change

(eg Singh, 1992a). Indeed, there are circumstances in which it is essential that the

managerial command can change without the managerial state changing. An example

is if the partial observability of the high level manager's MDP might allow the agent

to become permanently trapped.

2.2 Hierarchical Choices

Given that some sort of hierarchy is to be adopted, it remains to choose the levels

and the nature of the (presumably increasingly coarse) abstraction, and the jobs for

the various elements. The whole process of specifying and using the hierarchy should

ideally be recursive, so that there is nothing special about any of the levels, bar

possibly the highest and the lowest.

High level controllers (we will also call them managers) have two basic prerogatives:

selecting between low level controllers (sub-managers) and setting them tasks. We will

not discuss the case in which more than one sub-manager can be active simultaneously

with some form of direct, intra-level, contention for control { either there will be just

one possible sub-manager at any time, or the manager will be responsible for selecting

exactly one. Managers can also attempt to inuence sub-managers by providing them

with reinforcement signals indicating how well or poorly they are doing (instead of,

or in addition to, any direct reinforcement they might acquire from the environment).

If the managers explicitly set tasks to their sub-managers, there might appear to

be a problem of semantics { the sub-managers have to understand, or at least be

capable of learning, what their managers mean. The language can either be speci�ed

by the designer at the outset, or sub-managers can learn the meaning on the basis of

reinforcement from the managers when they successfully (or unsuccessfully) complete

a task. For instance, in the Feudal system described below, a manager might specify

to a sub-manager that it wishes the next transition it will observe (at its level of

state abstraction) to be to the North. The sub-manager receives this command as

an additional part of its state, and learns just from the reinforcement provided by

the manager what it has to do to achieve this goal. It is clear that if a manager

speci�es a task to a sub-manager, then the manager has to know the satisfaction
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conditions of that task so that it can reward or punish its sub-managers correctly, or

learn itself to choose better ones. Recursion is easy, so that sub-managers can have

sub-sub-managers in their turn, provided that managerial reinforcement looks just

like ordinary reinforcement to the sub-managers.

This still leaves a large number of possible options for the interaction. At a Darwinian

extreme, one could use selection, in which there would be a large population of non-

adaptive sub-managers and a high-level manager which learns to choose from them

the one that works the best. At the other, instructive, extreme (closer to the Feudal

system), only one sub-manager would be available at any time, and the high-level

manager would set it tasks, and would have to cajole it into doing its bidding by

providing reinforcement appropriately.1 Managers may either inuence only their

immediate sub-managers, or could additionally a�ect the choices at even lower levels

in the hierarchy.

Another choice which must be made to specify a system is the passage of control on

descending a hierarchy. Watkins (1989) makes the distinction between delegatory and

supervisory control. If a manager supervises its sub-managers, then, as in (eg Singh,

1992a), it does not relinquish control to them but rather re-selects them or re-directs

them either every time-step, or at some intermediate times. For the hierarchy to be

eÆcient, however, managers should lack the resolution in state-space to monitor the

exact behaviour of their underlings, so raising the question as to what information

they might use to make the reselection. One thing they could use is the amount of re-

inforcement the sub-managers are getting from the world. If, like Watkins' navigator,

they have some components of their state-space in common with their sub-managers,

they could use this too.

If a manager delegates to its sub-managers, then it will normally only regain control

once they terminate. This would usually be only once the state changes at the

manager's own level. If sub-managers can be completely incompetent, potentially

allowing the system to get stuck in a state, then some form of `escape' clause will be

required so that the manager can regain control. There is a strong analogy with an

economic arrangement with contracts, costs and penalty clauses.

1The Feudal system uses a table-lookup representational scheme in which no information is shared

between the di�erent tasks of a single sub-manager. For such a scheme, the choice of a task for a

single sub-manager could equally be characterised as a choice between sub-managers, each of which is

dedicated to learning to satisfy one of the manager's tasks on the basis of the manager's instructional

signals.
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3 Feudal Q-Learning

Abstract Description

The Feudal system (Dayan & Hinton, 1993) is the result of picking a set of these

choices, inspired by a medi�val feudal �efdom. We will describe it in the context of a

two-dimensional maze. The state space of the maze is divided manually at successive

levels; a single manager, which is a straightforward Q-learning entity, is appointed to

each division of the state space at each level (except for the �nest level at which this

is trivial), and is awarded total control over the sub-managers in the level directly

below it. Figure 1 shows an example of this division, where each manager is given as

`level-(x,y)' on the diagram, and has exactly four sub-managers. Only one of these

sub-managers is relevant at any one time, since the agent only occupies one state at

each level, but the manager does not know which one of the sub-managers is active,

since its spatial resolution is too coarse. However, it can specify di�erent commands

to the collection of sub-managers { and these become part of their state space (as

in Watkins, 1989) so that they learn how to satisfy them. Part of the reinforcement

to a sub-manager comes from the world, to provide all levels with information about

the lengths of paths, and part from its manager, to encourage it to accomplish the

set tasks.

Almost absolute control is transferred from a manager to its sub-managers { having

speci�ed the command, it would normally only provide reinforcement when it detects

a state change at its own level. However, for the reasons discussed above, it does

have an escape clause if the same command has proved ine�ectual for too many

steps. Managers specify actions to their sub-managers in terms of the transitions

they would like to observe at their own level of spatial abstraction, and reward them

accordingly. The collection of sub-managers can therefore face a temporal credit

assignment problem: reward or punishment only comes from their manager when

the state changes at the managerial level { even though the state can change at the

sub-managerial level without this happening.

Two principles characterise this strict hierarchy:

information hiding managers have no information about the means by which sub-

managers carry out their tasks { they even lack the representational resources

to appreciate what is going on. They do get to see the amount of reinforcement

accrued from the world in the course of execution of their commands (they need

this to help work out if the set task was appropriate). Sub-managers also do not

get any information about the tasks that their managers were set by their own

managers (the super-managers). Although both of these restrictions can lead
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to sub-optimal ultimate paths, that is the price to be paid for the abstraction

bene�ts of the hierarchy.

reward hiding managers should reward their sub-managers for carrying out their

bidding whether or not the managers were themselves rewarded by the super-

managers. It is important that sub-managers become perfect slaves { they

should leave it to their managers to decide what tasks to set and they have no

right of appeal to the super-managers. By this means, in the early stages of

learning, even if the highest level tasks have never been achieved, lower level

sub-managers can have come to learn how to obey their managers.

Further, only the fruits of honest labour should be rewarded { if a super man-

agerial task is achieved by a sub-managerial action, but that action violates a

managerial command, then neither the manager nor the sub-manager should be

rewarded. The sub-manager failed to obey its manager, and the manager failed

to choose the right task. It was just happenchance that this confusion led to

appropriate behaviour from the perspective of the super-manager.

3.1 Concrete Description

The particular task on which we tested one implementation of the Feudal system is

shown in the lowest level of �gure 1. This is a simple 8 � 8 two-dimensional maze

with a goal, although we used grids of sizes up to 64� 64 for the experiments. The

agent had to solve a pairwise navigation task, in which the goal was signalled, but

could be anywhere on the grid. Except where indicated, there was no barrier. As will

become clear, the task is almost ideally suited to the Feudal system, and indeed was

chosen for this reason.

As for a standard pairwise navigation task, the agent knows its own location, and

also the location of the goal, and it has to get to the goal in as few steps as possible.

When it reaches the goal, the current trial ends, the goal moves randomly somewhere

else in the grid, and the agent has again to �nd it. The agent does not have a model

of the world and does not know where the boundaries of the maze are. If it tries to

cross them, it stays where it is. Except where mentioned, each of the lowest level

actions has probability 1�� = 0:9 of being executed correctly (if this is possible) and

probability � = 0:1 of being discarded and (without the agent knowing this) replaced

by a random other action.

We are going to contrast the Feudal system with a straightforward Q-learning system

for this task. The Q function is indexed by the state of the agent in the world, which

includes the current location of the goal (so if the maze is 32�32 then the agent really

faces 1024 separate Q-learning tasks, and the Q function has 32�32�32�32�4 = 4:2
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Figure 1: The Grid Task. This shows how the maze is divided up at di�erent levels

in the hierarchy. The shaded square is the goal (at 3-(3,3) in this case). Each high

level state is divided into four low level ones at every step.

million entries). The appendix gives details for both standard and Feudal Q-learning

of the learning rates and how the trade-o� between exploration and exploitation was

arranged.

For the Feudal system, the state space is divided by a factor of 2 in each dimension

at each level going down the hierarchy. Each state at each level has a manager which

is responsible for setting tasks and awarding reinforcement to the four sub-managers

within its spatial domain at the layer below, so, for instance, the manager 1-(1,1)

controls the sub-managers 2-(1,1), 2-(2,1), 2-(1,2) and 2-(2,2). This division of space

was designed to respect locality, clearly an important property for this task.

Exactly one manager is active at any time at each level, and so there is never any
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contention for control between di�erent managers at the same level. A manager at

each level emits one of �ve commands, the four `geographical' moves, NSE and W,

and a special action �, which, as described below, gets translated by the sub-managers

into one of four actions �SW , �NW , �SE and �NE. A geographical move is satis�ed

at a given level in the hierarchy if the next time the state changes at that level, the

agent has moved in the given direction. Some can clearly never be satis�ed, eg the

agent cannot move North from 1-(1,2).

Given a managerial task, the collection of sub-managers solves the simple RL problem

of trying to minimize the number of steps it takes to satisfy the manager's command

whilst avoiding having the managerial state change incorrectly. In the latter event,

the sub-manager just active is awarded a reinforcement penalty (the equivalent of a

somewhat arbitrary 10 extra steps) by the manager (and also has to pay the previous

estimate of the cost of satisfying the manager's command before the state changed).

No explicit reward is given for satisfying the command, so sub-managerial Q-values

reect the veridical (average) costs of satisfying their managers. As an example, if

the agent currently occupies 3-(6,6), and the instruction from the level 1 manager is

to move South, then the 2-(3,3) manager draws upon its experience in the temporal

credit assignment problem that it and 2-(3,4), 2-(4,3) and 2-(4,4) have shared in trying

to get to 2-(3,2) or 2-(4,2). The action the 2-(3,3) manager decides upon is then fed

down one level, in this case maybe causing the agent to move Soutth to 3-(6,5).

The special command � is not required for conventional Q-learning. It is the way a

manager tells its sub-managers to search for the goal within its domain { a penalty

will be awarded if it sees the state change at its own level before the goal is found.

For each trial, the agent knows the coordinates of the goal { the intent is that during

learning it works out how to use this information to navigate to it. The location of

the goal is also represented in a hierarchical manner, taking advantage of the way

that space is split. If (and only if) the goal lies within the domain at a given level,

then the manager's action at that level will just be �. Consider the four sub-managers

at the next level, indexed by their geographical relationship to the manager (South-

West (SW), North-West (NW), South-East (SE) and North-East (NE)). They work

out which of them contains the goal, and translate the � action into one of �SW ,

�NW , �SE or �NE accordingly. This labelling of the sub-managers is arbitrary { the

sub-managers that do not contain the goal have to learn which actions to demand of

their sub-sub-managers to get to the domain of the one that does contain the goal.

An example should make this clearer. If the goal is at 3-(3,3), as in �gure 1, and the

agent is at 3-(2,2) (and therefore 1-(1,1) and 2-(1,1)), then the actions speci�ed at

the various levels are and their translations are:
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Level State Action Translation

0 0 � �SW

1 1-(1,1) � �NE

2 2-(1,1) ?

3 3-(2,2) ?

where the question-marks indicate that the choice of actions for sub-managers whose

domains do not include the goal is a function of their Q-values, and is determined over

the course of learning. These actions will not be �, and therefore need no translation.

Clearly only the � action is available at level 0, where there is just one state. The �

action is not available at the lowest level (level 3 in the diagram), since the agent is

either already on the goal or just moves geographically.

Under normal circumstances, control is completely passed from one level to the next

lower one { only returning if the state changes at the high level. However, an escape

clause is required in case the agent is searching for the goal where it is not to be found

or if it is trying to execute an impossible geographical action. This is implemented

using a timeout { the agent tries to satisfy a manager's command for no more steps

than twice the total number of lowest-level states within that manager's purview.

This limit is important for the performance of the system { if it is too low then

the agent might be too skittish and fail to �nd the goal. If it is too high, then the

agent might waste substantial e�ort. Figure 3 shows this. Since all the managers

are executing Q-learning, the trade-o� between exploration and exploitation is a

function of all their choices. We used the conventional Gibbs sampling technique

(Watkins, 1989), picking actions with probabilities governed by the exponential of

their Q-values. The appendix gives the parameters for learning and action selection

and details of penalties.

Figure 2 shows how the Feudal system performs compared with standard, one-step,

Q-learning. Following the conventions in Barto, Bradtke & Singh (1991), an epoch is

de�ned as twenty consecutive trials, and the curves shown are averages (and standard

errors, shown as `haloes') of the number of steps per single trial over 50 separate

samples, each with a di�erent random seed. The initial starting location of the agent

was random and the goal is set to a new random position for the next trial when

the agent �nds it. The upper graphs labelled `Feudal' are for the feudal system for

the four sizes of maze shown. The inset has a linear scale for the y-axis. The lower

graphs are for the standard Q-learning system. The 64� 64 maze requires too much

memory to store the Q-values in a lookup table and so it was not possible to test it.

The inset graph is the same data with a linear scale for the y-axis (but a di�erent

maximum from the linear graph for the feudal system).

Feudal Q-learning has one more parameter than standard Q-learning which governs

the number of steps the agent is allowed to use in attempting an action at a level
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Figure 2: Comparative Performance. For description see text.
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Figure 3: The e�ects of di�erent timeouts on feudal Q-learning. The curves show

how much greater the average number of steps per trial is when using timeouts of 16,

1 and 1=4 times the number of lowest-level states covered by a manager compared to

using the default of 2 times the number of states.

before the action times out. Figure 3 shows the early part of the learning curve in

a 16 � 16 maze where the timeout is varied from 1=4 of the number of states at

a level to 16 times the number of states. The curves shown are the di�erences in

the average number of steps per trial for using the given timeouts from the average

number of steps for using the default timeout, which is just twice the number of states.

Making the timeout too big harms performance, but by less than 10% of the total

number of steps per trial in the range shown. Reducing the factor below 1=4 is fatal {

the system too rarely gets the chance to complete managerial actions successfully or

unsuccessfully, and so fails to learn. The fact that the maze has no internal barriers

expands the region of stability in this parameter.2

In the standard Q-learning system there is no sharing of information between di�erent

goals. Therefore, the overall learning curve in �gure 2 is a weighted sum of separate

learning curves for getting to each possible goal in the maze, where the weights are

2Some insight into this is provided by the fact that if the agent were to execute a random walk

on a two-dimensional grid starting in the centre of a square, then the expected number of steps it

would take it to get to the edge of the square is roughly 35% of the number of grid points inside the

square (see McCrea and Whipple, 1940).
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Figure 4: The course of learning for a single goal in the 32 � 32 maze for standard,

at, Q-learning.

given by the number of times that those goals have previously been selected. Figure 4

shows part of the learning curve for a single goal (at 5-(4,4) in the 32� 32 maze).

It is apparent that the Feudal system is dramatically better than conventional Q-

learning. This is not surprising { the hierarchical decomposition of the task suits

the hierarchical decomposition of space exactly, and there is the potential for almost

perfect sharing of information between the di�erent tasks (ie the di�erent goals). The

advantage increases as the size of the example increases (in fact we were unable even

to run conventional Q-learning for the 64� 64 maze). These results are only for the

set of parameters given in the appendix, and therefore should be interpreted with

some caution. In particular, there is little reason to think that the same parameters

should be optimal for mazes of very di�erent sizes. The Feudal system is slightly

more expensive than the conventional system in the �rst few epochs (5 for 8 � 8, 2

for 16� 16, 1 for 32� 32), presumably because exploration is happening at all levels.

Lower level managers are learning to satisfy higher level ones even though the higher

level ones do not have enough information about the task to specify them correctly.

However, this exploration is clearly put to good use, since the Feudal system is so

much faster in subsequent epochs. Some aspects of the exploration are still based on

a random walk, which is notoriously slow (Whitehead, 1991).
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Figure 5 shows a di�erent view of the progress of learning. The stacked graphs show

the probabilities of choosing di�erent actions at di�erent levels after various numbers

of epochs, for the case in which the goal is at 3-(4,4) (in an 8� 8 maze) and random

action choice probability � = 0. Throughout these epochs, the agent has never had

3-(4,4) as a goal, and therefore these graphs show the transfer of learning from the

other goals. Various e�ects are apparent in these plots. Most dramatic is the extent

of transfer. The only thing the agent will ultimately have to learn if it is set 3-(4,4) as

a goal is how to get there from 3-(3,4), 3-(3,3) and 3-(4,3). Wherever else the agent

starts, high and low level managers are competent to get it to somewhere within 2-

(2,2). Learning actually happens both top-down (which is evident on the �gures) and

bottom-up (which is not). Top-down learning relies on the small number of states

at high levels { control at level 1 is quite good even after 10 epochs. Bottom-up

learning is not immediately evident, since the �gures show the overall probability of

selecting the actions rather than the probabilities of selecting actions conditional on

a particular managerial command. However, bottom-up learning is clearly required

to get top-down learning started.

The graphs also show some potential problems. The system has some diÆculty in

learning at high levels not to select actions that are unsatis�able (eg going South at

1-(2,1). This is because their unsatis�ability has to be learnt using time-outs. No

learning happens at level 1 if the level 1-(2,1) manager speci�es action South, and the

agent moves to 1-(1,1) or 1-(2,2). One could imagine penalising a manager directly

for selecting an action that its subordinates never seem to be able to achieve, but

that might hinder them from being made to try hard enough.

Note also that the ultimate action choice in 2-(1,1) (the bottom-left square at the

level with 4� 4 states) seems to be North. One of the di�erences between Q-learning

and the actor-critic architecture (Barto, Sutton & Anderson, 1983) is that under

Q-learning, actions that have equal costs should eventually be selected with equal

probabilities, and therefore one would expect North and East to be equally favoured.

Ultimately this would actually be the case, given the learning and exploration choices

made by the agent (Barto, Bradtke & Singh, 1991). However, the learning rates

speci�ed in the appendix vary with the reciprocal of the number of epochs, and

therefore it can take a while for any substantial di�erences in the Q-values for North

and East to be erased when the agent generally follows an optimal alternative in any

case.

Figure 6 shows the e�ect of introducing more or less stochasticity into the way the

agent moves in the 16 � 16 version of the maze. With probabilities �, shown on

the graph, the moves the agent selected were discarded, and random move were

substituted. The runs for the previous graphs were done with � = 0:1. Although

making the problem less deterministic does make the performance of the system worse

(as it is bound to), the deterioration is not really signi�cant until each move has only
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Figure 5: The overall probabilities of taking di�erent actions at the di�erent levels

after 1, 10, 1000 and 5000 epochs for the (never-selected) goal at 3-(4,4) and action

choice temperature T = 1:0 (see appendix). The area of the rectangles in each square

is proportional to the overall probability of making a move in that direction. The

black circles indicate � actions. See text for discussion.
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Figure 6: The e�ect of stochasticity. With probability �, the move selected by the

agent was discarded and a random one substituted. The graph shows how this a�ects

the learning performance of the system. Not until � � 0:5 is much di�erence apparent.

The lines are averages over 50 runs with di�erent random seeds in a 16 � 16 maze,

and the haloes of points show the standard errors.

a 50% chance of being what the agent selected and 50% chance of being a random

move. Since the agent is moving on a Manhattan maze, there are often two equally

good moves, which reduces the e�ect of the uncertainty. If � = 1, the agent can

neither learn nor express the e�ect of its learning { this is why the top line is at.

If a barrier is introduced into the maze, then one of three things happens. If the

barrier respects the hierarchical division of space then learning proceeds essentially

as before, except that some of the paths are longer. If the barrier does not respect

the division of space, then, as discussed above and below, the partial observability

of the Markov chain can require di�erent actions to be speci�ed within the same

high-level state. If the action selection system is ultimately deterministic (or nearly

so, as the parameter governing the trade-o� between exploration and exploitation

comes to favour the latter), then this can cause severe problems when getting to
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the goal requires traversal of these inconsistent states (Singh, Jaakkola & Jordan,

1994; Jaakkola, Singh & Jordan, 1994). However, �gure 7 con�rms that if there is

some residual randomness in the choice of actions (as in the case that there is some

probability that a completely random action is chosen on each step) then performance

is restored. The correct alternative, as in Moore (1994) is further to divide the space

at higher levels, removing the requirement for inconsistencies in action selection.

4 Discussion

4.1 The Feudal System

The experiments here show the utility of the Feudal system, given that the state

space is divided up in a generally sensible way, but without predigested knowledge

about how levels in the hierarchy should interact. Although the resulting paths can

be suboptimal if there is a barrier, as is almost inevitable using a hierarchical division

of space, acquisition is far faster, since the Feudal structure learns and uses richer

information about how to move around the space than the at system. Acquiring this

information takes time (ie steps), and storing it takes memory { so there are costs as

well as bene�ts. This message is hardly surprising { hierarchical organisations such as

certain corporations or governments embody signi�cant rigidities and ineÆciencies.

The trouble is that eÆciently controlling structures that are more heterarchical is

even less a solved problem.

Our earlier work on the Feudal system (Dayan & Hinton, 1993) considered a nav-

igation task that was less well suited to a control hierarchy (there was a one goal

for 1000 iterations, followed by a di�erent one, and no indication that the goal had

changed or where it was, was provided to the agent). For this, the bene�ts of using

a hierarchy only accrue during exploration (at the beginning and subsequently when

the goal is moved). For a �xed goal, the high level actions will eventually become

constant, and therefore there is no need for low level tasks to be shared for di�erent

high level goals. Nevertheless, even in this case, in a 32 � 32 maze, the system was

faster than non-hierarchical Q-learning to learn where the goal was, and much faster

to learn to where it had been moved after 1000 iterations. Those results were also

based on not necessarily optimal parameters.

The most serious aw with the Feudal system is that the non-observability of the

Markov process from the perspective of the higher-level managers may require them

to produce inconsistent commands to their subordinates. Figure 8 shows an example

of this { even if the state-spaces of the sub-managers of manager � correctly carve up

the region according to the barriers, � has to issue three di�erent commands according
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Figure 7: The e�ects of a barrier. A U-shaped barrier was placed into the 16 � 16

maze isolating the rectangle of states with corners 4-(3,5), 4-(3,7), 4-(7,7) and 4-(7,5)

from all but Northwards transitions to the rest of the maze (but leaving intact all

transitions inside this rectangle). The graphs show the average number of steps per

trial over 500 epochs for di�erent values of � averaged over 40 runs with standard

error haloes. If � = 0:1, the barrier has little e�ect (it increases the ultimate average

number of steps from 16 to 20), but for smaller values of �, learning becomes unstable.

For � = 0:0425, the average for iteration 138 was 74820 steps. The agent failed to

complete 40 runs without getting stuck for � = 0:04 or lower.
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Figure 8: Counter-example for Partial Observability. Managers (�; �;  and Æ) control

the areas shown. If the goal is at D and the agent cannot cross the barrier, manager

� has to issue three di�erent commands for the three di�erent starting points A, B

and C.

to where the agent actually is. This is impossible since it fails to see the space with

the required resolution. RL solutions to partially observable Markov problems are

currently the focus of substantial investigation (Cassandra, Kaelbling & Littmann,

1994; Jaakkola, Singh & Jordan, 1994; Singh, Jaakkola & Jordan, 1994), but having

to solve an arti�cially introduced and complicated problem is hardly computationally

attractive.

Moore's (1994) Parti-Games algorithm faces a similar concern, since it seeks to divide

state-space up at as coarse a resolution as possible. It uses games-theoretic control

theory { all the experience of the agent is stored, and if, just on the basis of this

information, there appears to be a way in which the agent can fail to reach the

goal, then the space is further sub-divided until this is no longer true. The same

information about the inability of the agent to solve the problem is available in the

sub-managerial Q-values (subject to some assumptions about maximal lengths of

paths within a managerial area), and could be used to split the domains of existing

managers. To do this eÆciently, however, would probably require the agent to build

a model of the world.

There is one easily identi�able ineÆciency in the existing system. At the end point

of learning, managerial Q-values should be averages over sub-managerial Q-values,

where averages are weighted according to the frequency of occurrence of the sub-
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managerial states and proper account is taken of the extra managerial reinforcements

that induce the sub-managers to perform correctly. This should be used at least as

a statistical check as learning proceeds. This requirement also points out a further

possible problem with the hierarchical system, also stemming from the partial unob-

servability at high levels. It could well be that the task is presented in such a way

that these averages are unstable over time (eg a non-stationary distribution of start

points is used). Conventional Q-learning will converge on an optimal policy irrespec-

tive of this, whereas the high levels of the Feudal system could be forced to track

the averages as they change. There will be cases in which this leads to suboptimal

behaviour. Singh (1992c) describes a hierarchical scheme (discussed in more detail

below) in which the only role of higher levels is to speed the training of the value

function for the lowest level. His scheme operates in a domain in which this averaging

is unnecessary.

Performance was evaluated in deterministic and stochastic environments. The Feudal

system is not particularly sensitive to stochasticity in the �nal actions in the world.

However, it would be vulnerable to a di�erent sort of stochasticity { if a sub-manager

and a manager can disagree about the task the latter has set the former. This would

a�ect both learning and use.

4.2 Related Work

There are innumerable suggestions and implementations of hierarchical systems even

just in the narrow �eld of connectionism (Jacobs, Jordan, Nowlan & Hinton, 1990)

and reinforcement learning, let alone in arti�cial intelligence (to name just a few:

Sacerdoti's (1973) ABSTRIPS, Korf's (1985) macro-operators, and the subsumption

architecture, Brooks, 1989; Mahadevan & Connell, 1991), cybernetics (eg Powers,

1973), and conventional control theory, and it would be impossible to do them all

justice. The themes are constant { trying to get faster search, more compact con-

trollers, or to adapt correctly to a hierarchical environment. Each discipline brings

its own assumptions and prejudices. A number of RL groups almost simultaneously

published systems that bear some similarity with the Feudal architecture, and we will

discuss them to highlight some of the alternative options. We are making no claim

that they are all the same or that one subsumes the others. Indeed this is false.

Singh (1992a;b;c) discussed two aspects of hierarchical RL systems. His �rst paper

(1992a) introduced the compositional Q-learning architecture (CQ-L) in which there

is a collection of Q-modules and a gating network (Jacobs, Jordan, Nowlan & Hinton,

1990) that selects between them. The system was designed for compositional tasks

(`get to A', `get to A and then B'), and it was intended that a single Q-module be

responsible for just one of the elemental tasks (`get to A'), and the gating network
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should choose the Q-modules in the right order to achieve the overall goal. Kaelbling

(1993) pointed out the charitable nature of this class of tasks { there need be no

penalty for using a hierarchical control structure.3 Single Q-modules just received as

input the state of the agent in the world; the gating network received both a unique

identi�er for the overall task, and also `completion bits' which reported that the agent

had completed sub-goals (eg that it had already been through A), but not the state

in the world. The gating module learnt to choose Q-modules on the basis of their

predictive accuracy (essentially minimal temporal di�erence error), and an extra bias

module learnt the di�erence between the value of a state within an elemental task and

its value within an overall composed task. This amounts to adding contributions from

the remaining elemental tasks in the sequence. During training, both elemental and

composite tasks were speci�ed, and this allowed to system to learn how to separate

out the task components and to sequence them appropriately.

It is possible to make an analogy between CQ-L and the Feudal system in which

the manager is like the gating module, the sub-managers, the Q-modules, the state

abstraction is as just described, and the bias module plays the role of the managerial

Q-values.4 The random choice of tasks for the whole architecture is the equivalent of

the managerial choice of tasks for sub-managers. Although the gating network can

choose a di�erent Q-module at every time step, its own input does not change until an

elemental task is completed, and it has no direct means of monitoring the progress of

the elemental task controllers. It does have an indirect means, namely the magnitude

of the temporal di�erence error. This makes for an interesting di�erence from the

Feudal system { even the manager does not know the satisfaction conditions of the

actions it sets, instead the elemental Q-modules have to learn them themselves. The

training methodology aids this by intermixing the composite tasks with the separate,

low level, ones of which they are built.

Singh (1992b;c) proved that a controller can use hierarchical methods based on el-

emental controllers, like the ones learnt in Singh (1992a), to lengthen its span of

temporal credit assignment. Given the existence of competent elemental controllers,

all that matters is how expensive their controls are, not what they are. Given a set of

competent sub-managers, a Feudal manager learns to operate in almost exactly this

manner. A key di�erence in Singh (1992c) is that the high-level controllers were only

used to control the learning of the value function (using `imagined' backups, as in

Sutton's (1990) DYNA scheme), and actions were always selected by the controller at

the lowest level. That this is possible relies on the compositional nature of the tasks

the agent faces.

3The same is true of the pairwise Manhattan navigation task in the absence of barriers.
4Note that the manager chooses sub-managers rather than setting them tasks, as in the Feudal

system. However, as discussed above, this is equivalent under a table-lookup scheme for representing

the Q-values.
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Aspects of other navigation systems were also mentioned above. Kaelbling (1993)

looked at a pairwise navigation task in a stochastic environment. She used a spatial

hierarchy with a network of selected landmarks at the upper level. At the lower level,

there were two controllers. First, her system employed a Q-learning system that

learnt from the environment the shortest expected paths from every point to each of

the landmarks which are neighbours of that point's own landmark. Second, it had

pairwise navigation controllers which operated between all points closest to the same

landmark. Given a start state and a goal, the higher level control system would report

on the landmark nearest to the start state, and the next landmark in the shortest

landmark-landmark route going from this one to the one nearest the goal. The low

level control system would then direct the agent towards this neighbouring landmark.

As the state of the agent changed (including a stochastic component), this process

was repeated { so the agent did not need actually to go through the landmarks { it

was always being routed towards the next one in sequence. When the agent was in the

domain of the landmark closest to the goal, the low level used the pairwise navigation

system to get there. Kaelbling (1993) used a manually designed decomposition of

space, but now (personal communication) has a system that learns a decomposition.

The whole process can be recursed to generate a multi-level system.

If one imagined that each of the divisions of space in the feudal system had an

associated landmark, then the Feudal pairwise navigation system can be seen as

instantiating something like Kaelbling's system, although the learning is di�erent. If

there are only two levels and the goal does not lie within the current state, then the

choice of action at the top level amounts to a directive to head for the top level state

which the agent believes to be next on the route to the goal. As soon as the agent

leaves the domain of the �rst high level state, a new action is selected at the high

level, and the agent heads for the succeeding high level area { the continual routing

towards the subsequent landmark. Learning around the goal is di�erent in the Feudal

system, as is the hierarchical decomposition of the representation of the goal.

Lin (1993) performed complexity analysis for goal �nding in a deterministic single-

goal navigation system, again using landmarks (which he calls abstract states). He

considered the regime in which it is possible explicitly to train the low level controllers

initially (this requires a local `reset' operator which takes the agent from a landmark

to a random state within its domain), and then learns how to sequence them together.

Unlike Kaelbling's (1993) system, the ultimate control requires the system explicitly

to go through each of the landmarks on the route to a goal (which in general would

lead to longer paths), however, this is a function of the instantiation rather than

the architecture. Lin showed how adopting a hierarchy can dramatically lessen the

complexity of �nding paths to the goal. Unfortunately, although deeper hierarchies

lead to reduced complexity (at least up to a point), they also tend to lead to worse

paths.
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Jameson's (1992) system, described briey above, solved the temporal credit assign-

ment problem that the pole-balancer faces, which arises from the possibility that the

cart to which the pole is attached can drift slowly towards end-stops. No explicit

spatial abstraction was employed, rather a high-level controller (ie the manager) was

clocked at an explicitly slower rate than the low-level controller (the sub-manager),

forcing its commands to be based on di�erent information. Only the sub-manager ac-

tually controlled the pole; the manager provided direct task input to the sub-manager

through a component of its state, in a similar manner to the Feudal system. His sys-

tems used the actor-critic architecture of Barto, Sutton & Anderson (1983) with a

multi-layer perceptron representation (Anderson, 1986), and he also looked at the

utility of learning world models.

Jameson tried two versions. In the �rst, all the reinforcement for the sub-manager

came from the manager - and was explicitly the squared di�erence of the angle of

the pole from a reference signal (ie command or task) provided by the manager. The

sub-manager thereby had no temporal credit assignment problem because it received

a direct error signal { although it did have to learn the relationship between the task

input and the reinforcement provided. This error signal does not completely respect

the original hierarchical intent, which might be to have the sub-manager worry about

the pole falling over in the short term and the manager worry about the slow drift.

Rather, if the pole starts to fall over, the sub-manager must take an unrecoverable

reinforcement penalty during the time that it must deliberately move the pole further

away from the managerial reference signal such that it can ultimately return it there.

Jameson's second system, which he called response induction learning, changes this

by providing the sub-manager with direct reinforcement from the world rather than

reinforcement from the manager. If it nevertheless still received a task input from the

manager, it would have no incentive to do anything with it, since its reinforcement did

not depend on it. Jameson therefore explicitly encouraged hierarchical behaviour by

explicitly encouraging the sub-manager's critic (the state value function) to depend

on the manager's task request.

Lin (1993) raised the important question of high level actions that (ideally) should

never terminate { such as keeping the pole in balance. Jameson's (1992) system shows

that this should not be a particular problem for hierarchical control systems.

There are other hierarchical architectures for RL that are further removed from the

Feudal system. Ring (1993) describes one such system which implements a bottom-

up construction of a hierarchy. High-level actions are constructed by a process of

disambiguating cases in which particular lower level actions apparently sometimes

should and sometimes should not follow each other, on the basis of the reinforcement

of their consequences (cf chunking, Rosenbloom, Laird & Newell, 1989). Ring tried

his algorithm in partially observable Markov chains, for which a main task for the
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agent is (implicitly) working out where it is, on the basis of the recent history of

perceptual and motor actions. The agent does not have to distinguish states except

in as much as they have di�erent requirements for action (Whitehead & Ballard,

1990), and the result of the learning process is something like the Update Graph

of Rivest and Schapire (1987; 1989), except that states are not disambiguated unless

there is a requirement to do so which comes from the need to maximise reinforcement.

Ring's system would not build a hierarchy in fully observable deterministic Markov

chains, since the lack of ambiguity obviates the need for disambiguation. From the

perspective of this paper, the lack of top-down control would limit the use for things

like changed tasks in the same domain.

Watkins (1989) discussed the case of supervisory control. Managers shared some

elements of their state-space with sub-managers, and could continually issue com-

mands. For this sort of control, the sub-managerial decision problems can become

non-Markovian too. This happens because the manager's command is incorporated

as part of the state-space of the sub-managers { and it can change according to infor-

mation to which the sub-managers are not privy. Watkins discussed ways in which

the problem this raises can be mitigated { including having the sub-manager build a

model of its manager. These have yet to be tested.

Using hierarchies is one way of addressing some of the problems of search and rep-

resentational complexity. Although we �nd it natural to solve tasks in a hierarchical

way, the resulting sub-optimalities can be signi�cant { for instance, one might expect

few evolved systems to respect any strong hierarchical constraints. This paper has

explored a reinforcement learning system inspired by feudal notions of control. It has

shown its utility and discussed some problems in the context of a maze task, and

related it to other recent hierarchical reinforcement learning systems. All of these

together barely scratch the surface of the space of layered control systems.
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Appendix

This appendix describes Feudal learning explicitly and gives the values used for the

various parameters.

Following Barto, Bradtke & Singh (1991), for a state i (at one level) and managerial

command z (we will refer to the state as i; z) after k iterations, de�ne

fk(i; z) = min
u2U(i;z)

Qk(i; z; u)

where U(i; z) is the set of possible actions at state i; z (N,S,E or W unless the goal

lies within the domain of the state in which case the only possible action is �) and

Qk(i; z; u) is the Q-value (Watkins, 1989).

Let 0 < �k(i; z; u) < 1 be the learning rate for action u at state i; z after k iterations.

If this action is selected at this state for iteration k + 1, then

Qk+1(i; z; u) = [1� �k(i; z; u)]Qk(i; z; u) + �k(i; z; u)[c+ fk(hsuc(i; z; u))] (1)

where c is the immediate cost of doing action u and hsuc is generally the state the

controlled Markov process enters after doing this action. Both hsuc and c are more

complicated for the Feudal architecture depending on whether and why there is a

state transition observed at a given level. Speci�cally, if j is the next state of the

chain observed at a given level, and ci;z is the total number of steps observed at that

level since the last state change, and @ is a special state for which (abusing notation

somewhat) fk(@; ?) = 0, then:

Condition c hsuc

agent gets to the goal 0 @

z was successfully executed ci;z @

z was unsuccessfully executed 10+ci;z i

managerial state is unchanged ci;z j

time-out at the level of i ci;z i

Action u 2 U(i; z) is selected with Boltzmann probability

pk(u) =
e
�Qk(i;z;u)=Tl(g)

X

v2U(i;z)

e
�Qk(i;z;v)=Tl(g)

where Tl(g) is a temperature parameter indexed by the current goal g and l counts

the overall number of steps the agent has used in getting to that goal over the whole
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course of learning. T updates according to:

T0(g) = TMax

Tl+1(g) = TMin + �(Tl(g)� TMin)

where exactly the same parameters as in Barto, Bradtke & Singh (1991) were used {

� = 0:992, TMax = 75 and TMin = 0:5. Making T a function of the goal is sub-optimal,

since, as seen in �gure 5, the agent learns a substantial amount about how to get

to one goal from its experience navigating to another. Provided that all settings of

T allow the agent to try all actions at all states in�nitely often, its choice does not

a�ect the convergence theory for Q-learning (Watkins, 1989; Watkins & Dayan, 1992;

Tsitsiklis, 1993; Jaakkola, Jordan & Singh, 1994).

The learning rates �k were taken to be global functions of the iteration:

�k =
�0�

� + n

where n counts the number of epochs (sets of 20 trials), and �0 = 0:5 and � = 50.

For at Q-learning, as in Barto, Bradtke & Singh (1991), each state-action pair had

its own learning rate, with �0 = 0:5 and � = 300. The Feudal systems used a

lower � since n counts whole epochs, which might potentially involve thousands of

state-action pairs.
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