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Abstract

The basal ganglia are widely believed to be involved in the learned selection of actions. Building on
this idea, reinforcement learning (RL) theories of optimal control have had some success in explaining
the responses of their key dopaminergic afferents. While these model-free RL theories offer a compelling
account of a range of neurophysiological and behavioural data, they offer only an incomplete picture
of action control in the brain. Psychologists and behavioural neuroscientists have long appealed to the
existence of at least two separate control systems underlying the learned control of behaviour. The habit
system is closely identified with the basal ganglia, and we associate it with the model-free RL theories.
The other system, more loosely localised in prefrontal regions and without such a detailed theoretical
account, is associated with cognitively more sophisticated goal-directed actions. On the critical issue of
which system determines the ultimate output when they disagree, there is a wide range of experimental
results and sparse theoretical underpinning.

Here, we extend the RL account of neural action control by first interpreting goal-directed actions in
terms of an alternative model-based strategy for RL. Then, by considering the relative uncertainties of model-
free and model-based controllers, we offer a new and more comprehensive account of the confusing ex-
perimental results about how the systems trade off control. Our theory offers a more sharply delineated
view of the contributions of the basal ganglia to learned behavioural control.

1 Introduction

The basal ganglia, and specifically the dorsal striatum, are widely believed to be involved in aspects of
the learned selection of actions [70]. This belief has motivated, and in turn been reinforced by, a concerted
effort to understand basal ganglia function in terms of theoretical ideas from adaptive optimal control, and
particularly a branch of this called reinforcement learning (RL) [84]. Optimal control is particularly chal-
lenging, and therefore particularly interesting, in sequential tasks such as mazes, in which the rewarding
or punishing consequences of a decision may take time to play out.

One method from RL, the temporal difference (TD) learning algorithm [83], in association with the so-
called actor-critic model, has been specially important for neural modeling. This is because a key signal in



the algorithm, the TD prediction error, accurately captures many aspects of the phasic activity of midbrain
dopamine neurons in animals performing appetitive tasks [66, 53, 79]. Amongst other places, these neurons
deliver dopamine to the ventral and dorsal striatum and their afferents, where they likely control plastic-
ity [89]. In this framework [66, 67], dopaminergically controlled plasticity in the ventral striatum and its
afferents has been associated with the critic, which learns predictions of long term future reward. Dopamin-
ergically controlled plasticity in the dorsal striatum has been associated with the actor, which specifies the
subjects’ action choices.

There are many algorithmic routes toward optimal behaviour. Insight into the actual structure of control
is better provided by studying their characteristic forms of suboptimality. Indeed, a striking conjunction
between theory and experiment arises when subjects are exposed to shifts in the circumstances or con-
tingencies of a task, for instance, to motivational manipulations that devalue food reward by shifting the
subject from hunger to satiation.1 In this case, when the dorsal striatum appears to be in control of the
choices of actions, the behaviour of the subjects is indeed suboptimal in that it fails to respect the change.
Instead, subjects persist in performing actions that bring about rewards in which they are motivationally
uninterested. A simple, so-called model-free form of the actor-critic has exactly the same problem, because
it bases its decisions on stored predictions that require relearning for them to be revised in the light of the
new values of the outcomes. This characteristic is not mere happenchance – rather it critically reflects the
way the actor-critic uses such predictions to ameliorate the difficulty of choosing between actions whose
consequences for reward or punishment might otherwise be obscure due to delay.

The results of numerous behavioural experiments (reviewed in [36, 37, 39]) employing such manipulations
show that only some classes of behaviour are devaluation-insensitive in this manner, and thus that the actor-
critic is at best an incomplete theory of action selection. Other behaviours react instantly to revaluation
treatments, without the need for relearning. The two classes of behaviour are operationally defined as being
devaluation-insensitive or habitual and devaluation-sensitive or goal-directed (since devaluations change a
subject’s goals). In some cases in which a sequence of multiple actions has to be performed to attain reward,
experiments have even demonstrated behavioural inconsistencies, with subjects performing the first action
in the chain, but then omitting the second action for a reward that is not desired.

The complete set of rather rococo behavioural distinctions has led psychologists to theories involving mul-
tiple parallel routes to action [36, 37, 39, 59], and has also inspired some modelling [30, 31]. However,
there has not yet been a full computational investigation of the goal-directed route to action, or into the
competition between these parallel routes.

In this chapter, we first consider goal-directed control in terms of model-based methods of RL. Rather than
storing long-term values, these methods anticipate the long-term consequences of actions by searching
in a forward model of the task contingencies. Along with other authors, we locate the major substrate of
goal-directed control in the prefrontal cortex. Model-free and model-based controllers thus have distinct
anatomical substrates and employ different strategies for choosing between actions whose consequences
might take time to unfold. We then propose a theory of action choice that arbitrates between the two

1There are potentially important differences between devaluation achieved by such motivational shifts and devaluation achieved
by, for instance, food aversion treatments. In this chapter, we suppress this distinction for simplicity.
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controllers when their suggested actions disagree, proposing that competition for the control of behaviour
is based on the relative reliability of the information upon which each system depends. This offers a new
account for a body of seemingly puzzling behavioural and neuroscientific data, and a better delimited view
of the contributions of the basal ganglia to learned behaviour.

2 Decision Strategies in Reinforcement Learning

In a typical RL setting, an agent is placed in an environment (such as a maze or an operant chamber),
and allowed repeatedly to take actions (such as pressing a lever) and observe their consequences (such as
gaining food pellets). The goal is defined in terms of learning to choose actions that optimise some long-
term measure of future utility. As in a maze, where early decisions can have a huge impact on the speed
with which the goal is ultimately attained, the chief difficulty is tracking the consequences of each action
over an extended timescale.

The most straightforward strategy for optimal control is to build an internal world model detailing the imme-
diate consequences of actions, and then to search this model recursively through many stages to anticipate
and evaluate the long-term consequences of any particular choice. In psychological terms, such a model
is a form of the cognitive map stressed by Tolman [85], and studied by many others. It consists of three
components: transitions, outcomes, and utilities. The first defines how actions induce transitions between
situations (called states of the world), ie, the probability of going from one state to another when a partic-
ular action is performed (going from room A to room B when turning right). The next is the mappings of
states or actions to affectively important outcomes (such as the particular food available at some location
in a maze). The last is the mapping from each outcome to its subjective affective utility, a scalar measure of
desirability.2 Crucially, this can change depending on the animal’s state of deprivation (for instance, a food
pellet will be more desirable when an animal is hungry than when it is full). A long-term measure of utility
can simply be the sum, over a sequence of states, of the immediate utilities received in each.

Although building or learning a model is straightforward, using (ie searching) it to infer the best action
is not. For instance, in a maze, in order to decide which action to take in one room, one has to use the
world model to search through many different paths in an expanding tree of future possibilities, adding up
expected utilities to determine the value expected for each path. Clearly, comparing the consequences of
many long sequences of behaviour is practically impossible, and therefore an alternative strategy is essen-
tial. Starting as far back as the seminal contribution of Samuel [73], two main ideas have been suggested
(distinct though often used together), namely pruning and caching. Pruning involves prioritising paths and
exploring only a subset. Except in special cases, pruning introduces inaccuracy, since prizes or pitfalls may
be left undiscovered.

The alternative to pruning is caching, ie storing anticipated results of the search. In the actor-critic, a
temporal-difference algorithm [83] is used to learn cached values (long-term utilities) for each state. These

2RL treatments normally collapse the last two components, outcome identities and utilities, into a single function mapping states
to rewards; we separate them to allow for a clearer treatment of motivational manipulation, and in the light of some lesion data [18].
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can be used, in turn, to learn a cached policy indicating which action is best in each state [15, 82, 14]. 3 The
policy itself can be represented in a number of ways; in this paper, we consider a version of the actor-critic
called advantage learning [5], which specifies a policy by retrieving from storage exactly the quantities that
tree search builds on the fly. Specifically, advantage learning caches quantities called “advantages” for each
action in each state. The advantage of a particular action in a particular state represents the additional
long-term value expected for taking that action over the baseline expectation reflected in the state’s cached
value; the sum of the state value and the advantage is the predicted long-term value for taking the action
in the state.

Advantage learning, like other actor-critic methods, is model-free in that caching obviates the need for build-
ing and searching in a model. However, the key benefit from caching, that expansion of the search tree is
unnecessary, is also its key limitation. If the task is changed, for instance by altering either the transitions
(eg, blocking or opening routes in a maze, as studied by Tolman [85]) or the immediate utilities (eg, by shift-
ing the motivational state of rats pressing a lever for food, from hungry to sated), then the cached values
and policy will not change with it, unless there is an explicit opportunity for relearning of each relevant
value (which typically requires multiple experiences of the entire trajectory from decision to outcome). By
contrast, decisions derived from search in the full tree are immediately sensitive to changes in any of the
transitions or utilities given only local experience with the changed aspects themselves, since the tree search
will encounter and take into account the new contingencies.

Model-free and model-based controllers actually live at two ends of a spectrum. Elaborations of the sort
explored in [30] embed some, but not all, features of a learned model into a model-free controller. It is also
common to combine both caching and pruning, i.e. to substitute cached values for unexplored paths in
partial tree search [73]. In RL it is conventional to explore such variants. However, we interpret the data on
animal behavioural choice as suggesting that a different strategy is at work, involving the cooperation and
competition of (at least) two separate and simultaneously active controllers, one model-free (and caching)
and the other model-based (and perhaps using pruning). We discuss the substantial evidence implicating
the basal ganglia in instantiating the model-free component, and the rather more flimsy evidence implicat-
ing the prefrontal cortex in the model-based component in section 4. RL theory does not offer extensive
guidance as to how to combine multiple simultaneous controllers when they disagree. However, there is
a body of work in areas such as multisensory integration arguing that combination should be based on
relative accuracy or certainty [61, 93, 32, 44]. That is, circumstances that promote one system over the other
should do so in virtue of their differential impact on the reliability of each system.

In the rest of this chapter, we first link particular forms of model-free (advantage learning) and model-
based (tree-search) controllers to habitual and goal-directed action choice respectively. We then construct a
theory of the uncertainties of the two sorts of controllers, and use it to account for, and re-interpret, animal
behavioural data. Finally, we review the evidence about their neural realizations and the complexities of
their interaction.

3Only the policy ultimately determines the decisions. However, in methods like actor-critic, it is essential to learn the values of
states in order to learn the optimal policy.
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3 Controller Competition

The difference between model-based and model-free controllers in the light of task changes mirrors venera-
ble ideas in psychology about multiple routes to action (reviewed in [39]). As we mentioned, psychologists
distinguish between habitual responses, characterised by insensitivity to manipulations of the outcome util-
ity, and goal-directed actions, which are sensitive to such manipulations. That literature takes a somewhat
subtly different view than we have described about the information relied on by each system. There, goal-
directed actions are assumed to be controlled by associations between responses and their outcomes (‘R-O’
associations); habits are envisioned to be outcome-independent because they instead rely on associations
between stimuli and responses (‘S-R’). The RL quantities discussed above (policies, values, etc.) broadly
parallel this associative learning terminology (with states in place of stimuli; actions for responses, etc.),
but they are more general and precise. For instance, it is not clear how the concept of the R-O association
applies when multiple actions and outcomes may occur sequentially or interleaved. This could be prob-
lematic, for instance, in extending to such situations a previous account of habit formation [36], which relies
on the strength of R-O contingencies.

Both goal-directed and habitual action are forms of instrumental behaviour. We will also briefly discuss an-
other class of behaviour, known as Pavlovian responses. Rather than being a chosen arbitrary action (such
as a lever press), Pavlovian behaviours are thought to be emitted automatically when an animal antici-
pates reinforcement, as in the famous example of Pavlov’s dog salivating in expectation of food. Pavlovian
responses can compete with, and thereby complicate the analysis of, instrumental choices. As with instru-
mental choices, some Pavlovian responses seem to be sensitive to motivational manipulations, whilst others
are insensitive (eg [50, 51]). Though we lack the space to develop the notion completely, we suggest that the
same underlying computational framework applies to Pavlovian as well as to instrumental behaviour.

The difference between habitual and goal-directed controllers has led to a confusing wealth of experimental
results on the way that actions are chosen when they disagree. In a typical such experiment (illustrated in
Figure 1), an animal is placed in a deprived motivational state (eg hunger), and trained to perform an action
such as pressing a lever, in order to obtain a motivationally relevant outcome such as food pellets. Normally,
obtaining reward actually requires a sequence of actions: pressing the lever to release food, and pushing
a flap on a food magazine to retrieve it. After training, the utility of the outcome is devalued. This can be
accomplished, for instance, by feeding the animal until it is sated (a motivational shift), or by conditioning
aversion to the food by pairing it with drug-induced illness. The animal is then tested to see whether it will
still perform the actions associated with the devalued food. Importantly, this test is performed in extinction
— without reward delivery — to ensure that any change in behaviour is attributable to existing knowledge
about the outcome and its utility rather than to new experience with either.4

In some circumstances — especially for actions that have been moderately trained — devaluation indeed
reduces performance of the action relative to non-devalued controls (Figure 1a,b) [2, 6]. Consistent with
the folk-psychological maxim that repetition breeds habits, with increased training, goal-directed actions

4Of course, the reward omission itself causes a reduction in responding; to control for this, responding is compared to another
group that is also tested in extinction but without having experienced devaluation of the outcome.
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Figure 1: The stages in a typical devaluation experiment, together with a qualitative illustration of the
results (based on data from, e.g., [12, 40]). Drawings from [38].

often become devaluation-insensitive, ie, habitual (Figure 1c) [1, 40]. However, there are a number of ad-
ditional interacting factors, and hitherto no satisfactory explanation uniting them. For instance, magazine
entries (the action more proximal to reward) can resist habitisation even while leverpresses become habit-
ual [60] (Figure 1a). Devaluation sensitivity also persists despite overtraining for actions trained in more
complex tasks involving multiple possible responses and outcomes [23, 49]. Table 1 summarises some of
the important factors influencing devaluation sensitivity in experiments.

There is a further phenomenon that complicates interpreting these data with a two-controller model. If the
reward is relatively novel (in particular, if it has never been experienced in the devalued state, eg while
sated or after pairing with illness), then the outcome-sensitive actions subdivide further. Some actions are
affected immediately by devaluation (Figure 1a), while other actions are affected by devaluation only if the
animal is exposed to the outcome in the devalued state prior to the instrumental test [7, 6] (Figure 1b).
This extra experience is called incentive learning, under the assumption (which we challenge below) that the
re-exposure allows learning about the reduced utility (‘incentive’) of the outcome. Note that both of these
categories differ from habits, which are usually devaluation-insensitive regardless of incentive learning
[40] (Figure 1c). Remarkably, both profiles of devaluation sensitivity can be observed simultaneously in
different behaviours occurring in sequence. For instance, in classic experiments by Balleine [6], magazine
flap responses were immediately affected by devaluation, but contemporaneously recorded leverpresses
were sensitive only after re-exposure. Similarly, in an experiment in which an animal had to carry out a
sequence of two instrumental actions (a chain-pull and a leverpress) to obtain reinforcement, the proximal
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devaluation sensitivity devaluation insensitivity
moderate training extensive training

multiple responses/outcomes single response/outcome
incentive learning no incentive learning

action proximal to reward action distal from reward

Table 1: Some factors promoting devaluation sensitivity vs. insensitivity in behavioural experiments.

action was instantly devaluation-sensitive while the distal one required incentive learning [12].

We now offer an account of this apparent proliferation of behavioural categories, suggesting that they arise
directly from the nature of the competition between the goal-directed and habitual controllers.

Uncertainty-based arbitration

As we have described it, decision-making within both the caching and tree-search systems depends on
predicted action values. That is, the two systems employ different methods for estimating the same un-
derlying quantities. The two estimation methods may therefore be more or less accurate under different
circumstances. Here we propose that the experimental circumstances promoting devaluation sensitivity or
insensitivity (Table 1) are those for which model search or caching, respectively, are relatively more accu-
rate.

More concretely, we assume that arbitration between the two systems is based on the relative accuracy of
their estimation methods. This raises the question of how these can be judged – it is known that such ac-
curacies are extremely difficult to quantify [80, 57, 58]. One measure that arises naturally in many cases of
competition in machine learning and neuroscience is uncertainty [61, 93, 32, 44]. Both systems’ estimates of
the action values have uncertainty (defined as the variances, ie expected squared errors, in the estimates)
because the controllers have only limited experience on top of impoverished prior information.5 We assume
that the controllers themselves estimate the uncertainty in their action value predictions. This is compu-
tationally very difficult, but various approximations have been proposed [35, 34, 63]. The actor-critic can
cache uncertainty information together with the cached values and advantages [35]. Instead of caching
values, the model-based system stores an estimated world model, which is itself uncertain, and uses it to
generate projected trajectories through the tree and accumulate action values over them. Uncertainty in the
action values can be accumulated during this search based on the uncertainty in the estimates of the transi-
tions, outcomes and utilities [34, 63]. This process is illustrated for a simple leverpressing task in Figure 2a,
which shows how search proceeds forward through a sequence of anticipated states, and their values and
uncertainties then propagate back up the tree.

5We distinguish internal from external uncertainty. External uncertainty results from actual stochasticity in the world (as when
a lever-press pays off with 50% probability). Internal uncertainty is the Bayesian counterpart to the confidence interval in classical
statistics, quantifying ignorance rather than stochasticity (as when an animal cannot reliably distinguish between payoff rates between
40% and 60% due to having only observed a few lever-presses). In differentially assessing the two controllers, it is internal uncertainty
that is important.
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Figure 2: (a) Value and uncertainty propagation in tree search. Illustrated is a simple instrumental con-
ditioning task in which a rat must press a lever and then push a flap, opening a food magazine to receive
reward. Two paths through the tree (of many) are explored, and derived action values are shown with error
bars representing uncertainty. Not directly depicted is uncertainty about the transitions (which state will
result from an action), which is one reason that uncertainty about values grows moving up the tree, away
from the rewards. (b) Uncertainty as a function of training for the cache and tree-search systems. Above,
for actions proximal to reward, the tree is consistently more reliable than the cache, because it is more data-
efficient, though the magnitude of this advantage declines with training. Below, for actions more distal
from reward, the tree system is subject to additional uncertainty as a result of accumulated computational
inaccuracy, allowing the cache system to surpass its reliability after some training.
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The critical question for uncertainty-based competition is what makes one system more or less uncertain
than the other. The tree based system stores all relevant information about past experience in its world
model, and an exhaustive tree search can optimally incorporate all this information in constructing a value
estimate. The caching system avoids searching in a world model, a shortcut that necessitates that new infor-
mation be incorporated into its state estimates by a more haphazard and inefficient process of bootstrapping,
or training each value estimate in terms of other estimates. Thus early in training (when data are scarce)
cached values are only distantly related to their ultimate settings [80], and the more data-efficient tree sys-
tem has an advantage in accuracy. This advantage is enhanced in more complex, data-intensive tasks, such
as when there are multiple responses and outcomes, but wanes as experience accumulates (Figure 2b, top).

Why should the caching system ever dominate, if an unlimited tree-search system is strictly more accurate
[57]? We assume that the tree search system has limitations of its own, for instance, that it is not capable of
exhaustively searching all paths through the tree to derive accurate action values. In this case, it must rely
on some approximation such as pruning (exploring only a subset of paths) or using a simplified approxi-
mation to the probability distribution over future states resulting from each contemplated action. This will
introduce inaccuracy, which will compound over each step of search. Since the caching system requires no
such approximation, its estimates would then be relatively advantaged for actions farther from the goal (ie,
those that the goal-directed system must use deeper search to evaluate; Figure 2b, bottom). Which system is
more reliable at evaluating any particular action then depends on the balance of the effects of inexperience
and task complexity (favouring the tree system early in training and in complex tasks) against search depth
(favouring the habit system for actions more distal from reward). Such a scheme unites and explains most
of the experimental results concerning factors influencing outcome sensitivity, summarised in Table 1.

It remains for us to account for the effect of incentive learning. The key observation is that uncertainty in
the habit system’s value estimates is also cached, and thus (analogous to the value estimates themselves)
insensitive to changes in confidence about the outcome utility. We assume that a devaluation without
re-exposure immediately reduces the goal-directed system’s utility estimate, and more importantly, for
outcomes that have not been experienced in the new devalued state, that the change is also accompanied by
increased uncertainty about the estimate of the new utility. Through the search process, the goal-directed
system would immediately compute reduced values for actions leading to the devalued state, but also
increased uncertainties about those values. This introduces an additional factor favouring the habit system,
since because of caching, its uncertainties are (incorrectly) unaffected by devaluation. For actions that are
only weakly under goal directed control (eg, more distal ones), devaluation without re-exposure can thus
tip the balance in favour of the habit system. Performance of these actions would then be insensitive to
devaluation, until a re-exposure treatment restored certainty in the goal-directed system’s utility estimate,
allowing it to reassert control. In contrast, the goal-directed system would retain control of those actions it
most staunchly dominates (such as those more proximal to reward, or in tasks with multiple actions and
outcomes) allowing them to adjust to devaluation without need for re-exposure. This pattern is consistent
with the experimental data, explaining the difference between distal and proximal responsivity patterns
depicted in Figure 1a,b [12] and similar differences in the effect of incentive learning when there are multiple
versus single actions and outcomes [8, 72].
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4 The Neural Substrate

We have so far concentrated mainly on a psychological picture of the controllers and their interaction. We
now turn to the neural substrate, first of the two separate systems, and then their arbitration.

The core data anchoring the actor-critic model in the basal ganglia are recordings of midbrain dopamine
neurons in primates engaged in appetitive learning tasks [76, 77]. The phasic responses of these neurons
— to unpredicted but not predicted primary rewards, for example, and to cues signaling reward — closely
resemble the TD error signal for reward prediction, which is used in the actor-critic to learn both values
and policies. The correspondence between the TD signal and the neuronal responses has been worked out
in detail [53, 66, 79, 56, 27]. Expanding from this identification of dopamine as a teaching signal, the actor-
critic model proposes that dopamine targets — particularly in the striatum — are the sites of value and
policy learning [53, 66, 81, 30]. Although much debated [52, 87], there is evidence suggesting that phasic
dopamine is involved in appetitive but not aversive learning [65]. It has been, however, suggested that
dorsal raphe serotonin complements this function in aversive learning, playing a similar role for predictions
of punishment [28].

The separation between the two learning functions in the actor-critic parallels a fundamental division in the
functional anatomy of the basal ganglia. Although there are many finer distinctions, a division of the stria-
tum into dorsal and ventral subregions is well established anatomically, pharmacologically, physiologically,
and even in functional neuroimaging. (For extensive references, see [88], who propose that the distinction
is more accurately described as dorsolateral versus ventromedial.) The ventral striatum receives (and in-
directly reciprocates) projections from limbic structures such as orbitofrontal cortex, and is implicated in
reward and motivation [19]. Much of the dorsal striatum, by contrast, is connected with motor cortices and
is itself implicated in learned motor control [3, 70]. Dopamine neurons are analogously grouped, into the
ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) [55].

The actor-critic model thus suggests that the dopamine projection from VTA, which targets ventral stria-
tum and other limbic areas, supports the learning of state values, while that from SNc to dorsal striatum
supports policy learning (Figure 3). An early observation influential in this identification is the little ap-
parent difference between the activities of VTA and SNc dopamine neurons [78], despite their association
with functionally quite disparate striatal territories. This negative finding is expected under the actor-critic,
since values and policies share a common TD error signal. This overall functional mapping recently re-
ceived more direct support in rodent neurophysiological [26] and human fMRI experiments [67] explicitly
designed to exercise the two learning functions differentially. This proposal is also more consistent with
anatomical data reviewed recently by Joel et al. [54] than is an alternative proposed mapping of actor and
critic functions to different striatal subterritories [53].

Lesions of the dorsolateral striatum seem to abolish habitual control [92], as would be expected under
the model. That is, even extensively trained actions show devaluation sensitivity in animals with such
lesions. According to the model, the values cached in the ventral striatum are associated with states (and not
actions), and so they would also be appropriate to drive Pavlovian responses (which typically anticipate
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Figure 3: Suggested anatomical substrates of actor/critic model in midbrain and striatum.6

outcomes whose delivery is dependent on the state but not the animal’s actions) as well as to support
instrumental learning more dorsally. Indeed, lesions implicate the ventral striatum in some Pavlovian
responses and in Pavlovian-instrumental interactions [47, 20]. Though this has been spottily tested, under
our model, these are expected to be the devaluation-insensitive aspects of Pavlovian conditioning, since they
originate from cached values. (As with instrumental choices, we expect devaluation-sensitive Pavlovian
responses to originate in a model-based system.)

In contrast to the rather well specified habitual controller, there is much less data on the nature and sub-
strates of outcome-sensitive, goal-directed actions [36, 37]. Broadly, one would expect this sort of planning
function to be associated with prefrontal cortex, for a host of neuropsychological and neurophysiologi-
cal reasons [69, 64, 21]. This general impression is supported by more specific studies of instrumental
behaviour: Lesions of rat prelimbic cortex (a subarea of medial prefrontal cortex) abolish devaluation sen-
sitivity for undertrained behaviours that would normally be goal-directed [10, 24, 60]. The full pattern of
results suggests involvement of this area in representation or evaluation of the world model.

As described in Section 2, model-based planning also relies directly on information about outcomes and
their utilities. Electrophysiological, lesion and imaging data implicate areas such as the orbitofrontal re-
gion of prefrontal cortex [75, 86, 68], gustatory insular cortex [10, 11], and basolateral amygdala [75, 17] in
learning and representing these. Notably, lesions in all of these areas also abolish devaluation sensitivity
[10, 45, 11, 13, 18], and further behavioural assays (eg, [17, 18]) support the interpretation that, in terms of
our theory, these areas are involved in the mapping from states to outcomes, or outcomes to utilities, rather

6Figure adapted from The Rat Brain in Stereotaxic Coordinates, Compact Third Editon, Paxinos and Watson, copyright 1996, reprinted
with permission from Elsevier.
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than in the tree itself.

The lesion results we have discussed have broader implications for the organisation of control, in that they
demonstrate the apparent possibility of separately disabling either the goal-directed or habitual controller,
leaving the other intact. The results suggest a measure of independence between the systems, and indicate
that both systems are capable of specifying actions even when they would not normally be in control (for
instance that the habit system can control even moderately trained behaviour if the goal-directed system is
disabled).

There is no direct evidence as to the neural basis of arbitration between the systems, though there have been
suggestions that this function may be integrated into either system rather than being anatomically separate.
Thus Redgrave and colleagues [71] propose that the basal ganglia may select between control systems (as
well as between habitual actions). The converse view is that the prefrontal planning system performs the
arbitration, by overriding or gating habitual control. Killcross and Coutereau [60] deploy this suggestion
to explain their finding (paradoxical under the conventional anatomical mapping that we have described)
that lesions of rat infralimbic cortex (another subarea of medial prefrontal cortex) disrupt control by the
habit system, rather than by the goal-directed system [60, 25].

5 Discussion

We have offered a new framework for interpreting behavioural and physiological evidence regarding mul-
tiple routes to action, which contacts and enriches theories of RL and its neural substrates. We presented a
bipartite model of action control, in which the predominant actor-critic model of dopaminergic and basal
ganglia function (which is seen as the model of habitual control) is accompanied by a second, cortical sys-
tem, which is capable of learning a model of the world and searching in it to plan actions. When the
controllers differ in the actions they prefer, we have suggested that their relative certainties control which
action gets executed, and have used this to explain the wealth of data as to circumstances promoting or
inhibiting devaluation sensitivity, including the puzzling findings of incentive learning. Also, unlike some
previous models in which goal-directed and habitual control are rather entangled [37, 30], the new model is
consonant with lesion studies that suggest that the two behavioural systems are relatively dissociable and
independent [60, 25, 92].

The standard account of incentive learning is different from the one we have presented. We view the goal-
directed system as always being capable of immediate devaluation. The need for further learning arises
because re-exposure restores control to this system over the habitual system. By contrast, the standard
view [6, 9, 39] holds that the relevant actions are under the control of the goal-directed system throughout
the incentive learning treatment, with re-exposure changing the value ascribed within this system. Imme-
diate devaluation sensitivity for magazine entries is then explained by assuming that these are actually not
controlled by the goal-directed or habitual systems, but are instead Pavlovian responses, controlled by a
separate, Pavlovian evaluator whose utilities are immediately devaluable [41]. A main feature of our theory
is the elimination of this appeal to a third system. Our account of these data is thus more parsimonious,
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and also more directly applicable to Balleine et al.’s [12] demonstration of immediate devaluation even for
unambiguously instrumental responses.

Various experimental studies could arbitrate between the two views of these issues. Notably, because we
view non-devaluability prior to incentive learning as resulting from habitual rather than goal-directed con-
trol, we predict that lesions disabling the habit system [60] should render instrumental actions immediately
susceptible to devaluation, eliminating the need for re-exposure. (The standard view predicts no such ef-
fect.) Further, in our view, the crucial aspect of re-exposure in an incentive learning experiment is its effect
on uncertainty about the utility of an outcome rather than, as normally assumed, on the estimate of the
utility itself. This may explain why incentive learning is dopamine-independent [43] — other, Pavlovian
experiments testing manipulations of uncertainty instead implicate another neuromodulator, acetylcholine
[48, 33]. We suggest that some of the same brain areas implicated in those studies may also play a role in
incentive learning.

The model also has testable ramifications for the effects of devaluation on the responses of dopamine neu-
rons. Dopamine responses to cues originate in the cached values, and should thus be insensitive to post-
training changes in outcome value (eg, due to shifts in deprivation state). In contrast, dopamine responses
to primary reward may be directly sensitive to devaluation, since they are based on the reward’s observed
utility. Neither of these predictions has been directly tested. However, the magnitude of the dopamine
response to a cue has been shown to be correlated with the latency of a behavioural response triggered
by that cue [74], and this has been taken as evidence that the dopamine responses carry motivational in-
formation. Our theory would indeed expect correlations between trial-to-trial fluctuations in dopamine
responding and behavioural vigour (for habitual actions), since in advantage learning, both are controlled
by the cached values. What has not been established is what systematic factors (if any) drove the fluc-
tuations measured in the experiment [74]; one possibility is that the dopamine response is modulated by
the animal’s overall drive, which is a more generalised form of motivation that is independent of outcome
expectancy and thus could be reported even by a system ignorant of the identity or utility of the outcome.

In common with other theories, our account of the goal-directed system is sketchy. The existing data are
radically insufficient to verify whether devaluation-sensitive behaviours are actually products of a full,
model-based search system, due to the extreme simplicity of the tasks used. There are many different algo-
rithms for model learning and planning, and many shortcuts or hybrids that have advantages over either
the actor/critic or full model search. Some of the earliest work on RL suggested that pruning and caching be
combined, with cached values standing in for unexplored subtrees [73]; more recently, uncertainty has been
used to decide where to make this substitution [16]. Applied to the model, these ideas would suggest a rich
interaction between the goal-directed and habitual controllers — perhaps richer than the relative indepen-
dence suggested by the lesion studies. Another hybrid is the successor representation [29], which was used
in a previous RL model of goal-directed action [30]. This algorithm uses caching, but of expected outcome
identities rather than policies or values. Because of this, it can adapt immediately to outcome devaluations
such as those in the experiments discussed here, but not to manipulations changing the transition structure
of the task (as by rearranging walls in a maze) that would invalidate the cached outcomes. The latter sort of
manipulation was pioneered by Tolman [85], but has seen little testing in modern times. Understanding the
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capabilities and limitations of the goal-directed system will require much more experimentation studying
how organisms can react to different sorts of contingency changes in more complicated sequential decision
tasks.

Also, we are at the earliest stages of understanding the factors governing uncertainty in the two systems
and the way this influences arbitration. For instance, an alternative to our suggestion that inaccuracy ac-
cumulates due to approximate tree search is that whether exact or approximate, tree search incurs costs of
energetic or computational resources (again accumulating over each step). This could, for deeper searches,
outweigh the cost of potentially reduced utility that would result from abandoning the search altogether
and falling back on the less accurate caching system. A distinct possibility for differential uncertainty that
would favour the cache is that the two systems might be tuned to differing expectations about how quickly
the estimated aspects of the world (transitions, utilities) are changing. The possibility of change is an ongo-
ing source of uncertainty, and a system that assumed faster change would be more uncertain asymptotically
but quicker to adapt in situations when the world actually changed (as for the Kalman filter, [4]). The goal-
directed system, whose comparative advantage is most apparent when there is only little data, could have
a built-in bias for transience, and therefore high asymptotic uncertainties, whereas the habit system, which
anyway requires more substantial training, might have a built-in bias for stability and correspondingly
lower asymptotic uncertainties. Finally, although we have spoken as though arbitration is all-or-nothing, it
is a straightforward and reasonable extension to assume behaviour is based on both controllers’ predicted
values, with contributions weighted by their uncertainty.

Another crucial issue for future work is connecting the well-understood theory of discrete, sequential deci-
sions (which we have drawn on here as an idealisation) with the realistic experimental situation, in which
animals are free to emit responses in continuous time and analysis typically focuses on the rates with which
they do so. A more careful treatment of these issues will be required before we can address a further factor
known to influence devaluation, which has to do with how payoffs are scheduled as a function of respond-
ing (interval vs. ratio schedules, [42]). This issue is, at present, better explained under a previous account
of habit formation [36].

Though we have not specifically discussed the circumstances under which Pavlovian responses should be
sensitive to devaluation [50, 51], we expect the same considerations to apply as for instrumental action. The
predictions triggering Pavlovian responses, like those driving choices, might originate either from model
search or from cached values, with corresponding sensitivity or insensitivity to outcome devaluation. By
eliminating the appeal to a separate and qualitatively different Pavlovian motivational system, our model
opens the possibility of a unified account of Pavlovian and instrumental behaviours, in which both share a
common forward model and common cached values. A major task for the future is to appraise this model
in the light of the (equally complex) data on devaluation sensitivity in Pavlovian conditioning. Do the
same factors impact Pavlovian as instrumental devaluation? Are the systems really shared? And if not,
how do they interact? Of special relevance will be two paradigms that couple Pavlovian and instrumental
conditioning (and also involve dopamine and ventral striatum), Pavlovian-instrumental transfer [62] and
conditioned reinforcement [90].

Finally, what of the basal ganglia? We suggest that the new theory delimits more precisely the role of the
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dorsal striatum in habitual behaviour, and also the roles of dopamine and of the ventral striatum’s value
predictions in learning those habits. We have not discussed dopamine’s additional on-line, energising effect
on behaviour (as in Pavlovian-instrumental transfer [43]). This likely also involves values learned in the
ventral striatum, if only through their influence over the dopamine projection to the dorsal habit areas [46].
Rounding out the cornucopia of open concerns is the observation that the evaluation of search trees in the
goal-directed system may tax working memory [24]. This suggests the unexplored possibility that even the
goal-directed system may be affected by dopamine (and by striatal influences on it), which is thought to
have a specific role in prefrontal mnemonic function [91, 22].
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