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Abstract

Recent notions about the vigour of responding in operant conditioning suggest that the long-run average rate of reward should control
the alacrity of action in cases in which the actual cost of speed is balanced against the opportunity cost of sloth. The average reward
rate is suggested as being reported by tonic activity in the dopamine system and thereby influencing all actions, including ones that
do not themselves lead directly to the rewards. This idea is syntactically problematical for the case of punishment. Here, we broaden
the scope of the original suggestion, providing a two-factor analysis of obviated punishment in a variety of operant circumstances. We
also consider the effects of stochastically successful actions, which turn out to differ rather markedly between appetitive and aversive
cases. Finally, we study how to fit these ideas into nascent treatments that extend concepts of opponency between dopamine and
serotonin from valence to invigoration.

Introduction

Until recently, neural reinforcement learning (Daw & Doya, 2006)
focused its efforts on understanding which of a collection of actions
would be performed, rather than when or how vigorously this
should happen. Niv et al. (2005, 2007); Niv (2008) pointed out that
this overlooked a wealth of standard experimental paradigms in
which a measure of vigour such as the rate of lever pressing is
assessed. They captured the essence of the control of vigour by
considering a decision problem in which subjects choose the latency
of their actions to optimize the balance between a direct cost of
acting too quickly and an opportunity cost of acting too slowly, with
the latter arising from the delay to the next and all subsequent
rewards. In this model, the optimal latency for an action is inversely
related to the square root of the overall reward rate. Thus, higher
reward rates (stemming, for a motivational example, from the higher
value that a thirsty subject might accord water reinforcements) lead
to faster responding.
However, consider experiments on active avoidance. At best the

reward rate is zero; at worst, it could be significantly negative. Thus, it
is clear that the mathematical relationship suggested in the work on
appetitive vigour cannot be valid. Here, we generalize the underlying
decision problem to consider reinforcers that might be delivered even
if the subject fails to perform an action in time, rather than succeeding
in doing so (Cools et al., 2011). It turns out that this can also model
cases where an actual reward is only delivered if a particular action is
executed sufficiently quickly.
For the case of active avoidance, a standard treatment involves what

are known as ‘two factors’ (Mowrer, 1947; Johnson et al., 2002;
Moutoussis et al., 2008; Maia, 2010). In Reinforcement Learning
(RL) terms, subjects are assumed to learn to predict and thus fear the
looming shock (one, purportedly Pavlovian, factor), so that a transition

from an unsafe to a safe state provides an appetitive prediction error
that can reinforce the associated action (the other, instrumental,
factor). We construct a form of two-factor theory of active avoidance,
in which the benefits of safety act as surrogate rewards, and study the
parallels and differences between forms of punishment avoidance and
reward collection.
Based partly on evidence from selective lesions to regions of the

dopamine system (Salamone & Correa, 2002), (Niv et al., 2007)
suggested that it was the tonic activity of dopamine neurons that
would report the long-run average reward rate and duly exert an effect
on vigour. This would complement the effect of phasic dopamine
activity as a temporal difference prediction error for reward, which has
been suggested as controlling the learning of predictions and actions
(Montague et al., 1996; Schultz et al., 1997). Further, appetitive
Pavlovian–instrumental transfer (Estes, 1943; Rescorla & Solomon,
1967; Lovibond, 1981, 1983; Dickinson & Balleine, 1994, 2002), in
which cues predicting future rewards boost the vigour of instrumen-
tally controlled actions (even ones aimed at different rewards), is also
known to be influenced by dopamine (Smith & Dickinson, 1998;
Ikemoto & Panksepp, 1999; Dickinson et al., 2000; Wyvell &
Berridge, 2001; Lex & Hauber, 2008). Obversely, there is evidence
that serotonin suppresses vigour (i.e. boosts inhibition) in the context
of predictions of punishment (Deakin, 1983; Soubrié, 1986; Deakin &
Graeff, 1991; Graeff, 2002; Cools et al., 2008; Crockett et al., 2009;
Tops et al., 2009).
Thus, recent work looking at the influence of appetitive and

aversive Pavlovian predictions on instrumental choice (Williams &
Williams, 1969; Dayan et al., 2006a; Crockett et al., 2009; Guitart-
Masip et al., 2011b) has been undertaken in the terms of functional
opponency between dopamine and serotonin (Daw et al., 2002; Dayan
& Huys, 2009) controlling dual dimensions of valence and vigour
(Boureau & Dayan, 2011; Cools et al., 2011). Our two-factor model
of instrumental vigour in the case of punishment was constructed in
the context of these emerging analyses.
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Some of the paradigms that we model resemble fixed and variable
interval schedule tasks. However, the quantitative predictions about
the times at which the lever will be pressed are probably not correct
– we do not consider, for instance, the possibility that subjects are
choosing the time at which they switch between a slow and a fast
rate of lever pressing (Gallistel et al., 2004; Daw & Courville, 2008)
or other latent states of pressing (Eldar et al., 2011). Furthermore,
we study the properties of optimal behaviour, without considering
the effect of approximations that might emerge from limitations to
neurobiological mechanisms of representation and control. However,
the relationships between costs and optimal latencies may still be
revealing about both behavioural and neural findings. We construct
the prediction errors that would arise from optimal choices of
vigour, and then ascribe these errors to opponent neuromodulatory
systems.

Methods

Figure 1A and B depicts two semi-Markov decision processes
(SMDPs) (Puterman, 2005), associated, respectively, with reward
and punishment (generically described as ‘outcomes’). Of course,
rewards and punishments can also be combined – we discuss the
implications of this later.

Reward

The characteristic reward SMDP (Fig. 1A) involves a process that
arms a lever at time T drawn from density pT (T ). The first lever press
after time T causes an outcome of (positive) utility z to be delivered.
For clarity, we refer to utilities throughout: the convention is that
rewards have positive utility, and both punishments and costs negative
utility. Earlier lever presses lead to no return, but merely negative
utility associated with their latencies s. Following acquisition of the
outcome, there is a fixed inter-trial interval sI. Figure 1A shows two
separate trials: in the first, the subject pressed twice to get the outcome,
as the first press came before the lever had been armed; in the second,
only a single press was necessary. This is an SMDP, as choices are
only made at discrete points, but time evolves continuously. Thus
when the subject chooses a latency s, this much time elapses before
the process arrives at the next state.

The state structure of the task turns out to be a little complicated. We
start from the case that pressing the lever always leads to the outcome if
it is armed (i.e. success probability v = 1). There are two macroscopic
states, which we label 1 and 2, corresponding respectively to pre-
outcome and post-outcome. Depending on the arming distribution pT
(T ), it may also be important to capture the time s since state 1 was
entered. Thus, we label the unarmed state as the pair {1, s}. Importantly,
we assume that subjects know when state {1,0} is entered (say, by a
visual cue) and when they enter state 2, by receiving a reward (or, in the
case of punishment, a negative outcome or a signal that they are now
safe); but they do not necessarily know the arming time T.

We follow (Niv et al., 2007)’s hyperbolic cost structure for lever
pressing. A press at latency s has utility a

s þ b, where b £ 0 is a unit
utility for the press, and a £ 0 is a factor that determines the
magnitude of the hyperbolic dependence on s. Note that (Niv et al.,
2007) used )a. Their proposal was originally made for convenience; it
was not based on an assessment of, for instance, the true economic
cost of acting quickly.

The case that (Niv et al., 2007) studied is roughly equivalent to
setting T = 0 (i.e. arming the lever immediately), and then choosing
the latency of the first lever press s1 to optimize the average rate of
utility (i.e. reward minus the sum of punishment and cost) per unit

time. This choice is sometimes called a policy. The whole task can
then be characterized as a Markov decision problem, where the only
choice of action (i.e. a choice of latency) is at state {1,0}, without any
further choice at the post-outcome state (state 2). The theory of
average utility rate optimization for Markov decision problems
(Puterman, 2005) tells us to choose the latency to maximize a
quantity known as the optimal differential Q-value of that latency at
the start state, so s�1 ¼ argmaxsfQ � ðf1; 0g; sÞg, where

Q�ðf1; 0g; sÞ ¼ a
s
þ bþ z� q�sþ V �ð2Þ: ð1Þ

Here, V *(2) is the differential value of state 2 given the optimal
overall policy (the asterisks are used to imply optimality). We use
V*(2) rather than Q*(2), as there is no choice of action at state 2.
Differential Q-values differ from conventional Q-values (Watkins,
1989) in that they are only meaningful relative to each other [so one
can arbitrarily be set to 0; we choose to set V*(2) = 0 to satisfy some
technical conditions] and that they take explicit account of the passage
of time (via the term q*s), rather than have this be only implicit in a
discount factor. Further, q* is the optimal average rate of utility per
unit time, defined as

q� ¼ lim
t!1

e
1
t

ntzþ
Xxt

i¼1

a
s�i
þ b

� � !" #
ð2Þ

where nt is the number of outcomes accrued in time t, xt is the number
of presses attempted, and s�i are the latencies of all those presses. That
q* is optimal depends on the latencies being chosen optimally. q*
thus depends on the policy as well as the utility z; it obviously also
depends on the costs of acting.
The two forces controlling the optimal latency in Eqn 1 are the

explicit contribution to the utility of acting quickly (a ⁄ s) and the
opportunity cost of acting slowly ()q*s). The rationale for the latter is
that, by dedicating time s to the press, an average total utility
worth q*s is missed. Optimizing Q*({1,0},s) with respect to s (Niv
et al., 2007) revealed that

s� ¼
ffiffiffiffiffiffiffi�a
q�

r
ð3Þ

showing, as mentioned above, that the optimal latency decreases as the
average utility rate q* goes up. If, for instance, the subject is made
thirsty, the immediate utility z of a drop of juice increases, so
q* increases, and the latency of the press decreases.
Of course, q* also depends on s*, in this case as

q� ¼
zþ a

s� þ b
s� þ sI

ð4Þ

making the problem recursive. There are various techniques for finding
the optimal solution (Mahadevan, 1996; Puterman, 2005). For this
article, we concentrate on properties of the optimal solution; this is not
to say that realistic methods for solving for the optimal policy, or its
near approximations are not also of great interest. In order to compute
the solutions, we discretize continuous variables such as the latency s,
and thus solve a finite state approximation to the full, continuous,
problem (and find maxima rather than suprema).
In the case (as in variable interval schedules) that the arming time

T is stochastic, drawn from a density pT (T ), Eqn 1 changes. First, it is
necessary to take account of the possibility that more than one lever
press will be necessary (as in the left trial of Fig. 1A). This means that
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there are differential Q-values Q ({1, s}, s) for latencies s starting at
states {1, s} with s > 0. Second, such values become expectations
over the future. There are two possibilities – either T > (s + s), which
means that the press will fail (as the lever is not armed by the time the
press finishes), and the problem will then continue from state
{1, s + s}; or T £ (s + s), in which case the press will succeed, the
reward will be delivered, and a transition to state 2 will occur. In both
cases, the probabilities of these happening are conditional on T > s, as
considering Q ({1, s},s) at state {1, s} implies that pressing prior to s
has been unsuccessful. Note that, for suitably regular distributions,
the slope of this conditional distribution at s = 0, namely

lim
ds!0

PT ðdsþs>T jT>sÞ
ds

n o
, is known as the hazard function. Thus

Q�ðf1; sg; sÞ ¼ a
s
þ b� q�sþ PT ðT > ðsþ sÞjT > sÞV �ðf1; sþ sgÞ

þ PT ðT � ðsþ sÞjT > sÞðzþ V �ð2ÞÞ ð5Þ

whereV �ðf1; sþ sgÞ ¼ max
s0
fQ�ðf1; sþ sg; s0Þg quantifies the value

of state {1, s + s} on the basis of the best possible latency that could

be chosen there. The presence of the term involving this quantity
makes the problem as a whole recursive, but again solvable by the
various dynamic programming methods mentioned above.
The last case for reward concerns the effect of setting the

probability that a press succeeds even if the lever is armed, to be
v < 1. The problem changes character rather dramatically, as the state
in the world (i.e. whether or not the lever is armed) is not known by
the subject whereas, by contrast, for v = 1, the subject always knows
that the lever is not armed when choosing s. The subject just has
information about arming from the passage of time s, and from
observations of past unsuccessful attempts to press (the lack of success
is discovered at times s1 = s1, s2 = s1 + s2, s3 = s1 + s2 + s3,...).
Formally, the problem becomes a partially observable SMDP; see
(Daw et al., 2006) for a similar issue in the case of prediction without
control.
In brief, the solution to this partially observable SMDP involves

augmenting state 1 with a belief b 2 ½0; 1� that the lever is armed. The
evolution of b goes as follows. First, b starts off at 0 at the moment
of transition from the post-outcome state (2) back to the pre-outcome
state (1), as the subject knows that the lever is not initially armed.
Consider the first lever press s1. If this succeeds, then the outcome is
delivered, and the state makes a transition to the post-outcome state
(2), at which b is irrelevant. If, however, the lever press does not lead
to reward, then this is either because the lever has not yet
been armed, which has probability PT (T > s1), or because the

lever has been armed [which has probability PT (T £ s1)], but the
press failed (which has probability 1)v). Thus, the belief in the latter
option [b(s1)] becomes

bðs1Þ ¼
ð1� vÞPT ðT � s1Þ

ð1� vÞPT ðT � s1Þ þ PT ðT > s1Þ
ð6Þ

Now, imagine that the subject is at state b(s) after some time s
without receiving an outcome in a trial, then executes a press with
latency s, and still does not receive the outcome. Then, by a similar
process of reasoning, its new belief that the lever is armed, which, for
convenience, we write as b (s, s), becomes

b ðs; sÞ ¼ bðsÞ þ ð1� bðsÞÞ 1� vÞPT ðs < T � sþ sð Þ
ð1� vÞPT ðs < T � sþ sÞ þ PT ðT > sþ sÞ

ð7Þ

With use of this quantity, the differential Q-values become functions
of three continuous variables s, s, b rather than just two, but satisfy a
similar, although slightly more complex, recursive relationship. If we
temporarily define Pþðs; sÞ ¼ vðbðsÞ þ ð1� bðsÞÞPT ðT � ðsþ sÞj
T > sÞÞ as the total probability of success of the lever press of
latency s from state {1, s}, then we have:

Q�ðf1; s; bðsÞg; sÞ ¼ a
s
þ b� q�sþ

ð1� Pþðs; sÞÞV �ðf1; sþ s; bðs; sÞgÞ þ Pþðs; sÞðzþ V �ð2ÞÞ
ð8Þ

where, as above,

V �ðf1; sþ s; bðs; sÞgÞ ¼ max
s0
ðfQ�ðf1; sþ s; bðs; sÞg; s0Þg

It is convenient to note that, if we describe any deterministic policy
p as the latency sp(s) of the lever press starting at state {s, b(s)} within
a trial (assuming that this exists), then we can evaluate the utility rate

qp as �rpð0; 0Þ=�t pð0; 0Þ, where

�tpðs;bðsÞÞ¼ spðsÞþ 1�Pþðs;sÞð Þ�tp sþspðsÞ;bðs;spðsÞÞð ÞþPþðs;sÞsI

ð9Þ

is the average recurrence time between transitions from post-outcome
to pre-outcome, and
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Fig. 1. SMDPs associated with reward (A) and punishment avoidance (B). (A) A lever is armed according to distribution PT (T ) such that the first successful lever
press after time T leads to a reward (an outcome with positive utility; bottom black bar). There is then a fixed inter-trial interval of length sI, after which the next trial
starts. Both pre-outcome (state 1) and post-outcome (state 2) states are explicitly signalled. Here, the first lever press in the first trial did not lead to the outcome, as
the lever was not armed; the second press was productive. In the second trial, the subject achieved the outcome from the first time that the lever was pressed. Subjects
choose the latency s of each lever press (which need not be the same, and can even depend on the time s within each trial). The overall passage of time is captured by
t. Lever pressing may be only stochastically successful – with probability v. (B) A punishment (i.e. an outcome with negative utility) is scheduled for time T [drawn
from PT (T)] and will be delivered unless a lever press precedes it. The first punishment is obviated (dotted line on the arming process) by the earlier lever press; the
second punishment is delivered because the lever press latency s exceeded the arming time T. There is again a fixed inter-trial interval sI.
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�rpðs; bðsÞÞ ¼ a
spðsÞ þ bþ

1� Pþðs; sÞð Þ�rpðsþ spðsÞ; bðs; spðsÞÞÞ þ Pþðs; sÞz
ð10Þ

is the average net utility during this recurrent episode. Similar formulæ
hold for the special cases above with T = 0 and v = 1.

Punishment

The problem of punishment is illustrated in Fig. 1B. In this case, a
punishing outcome (of utility z, albeit with z < 0) is delivered unless
a successful lever press is emitted before the time T, drawn from
pT(T ), at which the outcome is programmed. As before, the
probability that a lever press is successful is v. Again, there are two
characteristic states (both of which are signalled): 1, pre-outcome, and
2, post-outcome, and the transition from state 2 to state 1 involves the
inter-trial interval sI. However, now, the transition from state 1 to state
2 can happen through the delivery of the punishment at time T, as well
as through a successful lever press. Furthermore, if the subject is in
state 1, then it will receive the outcome as soon as it is scheduled – so
there is never any call for partial observability, even if the probability
of success is v < 1. The process is still semi-Markov, with the
punishment also able to change the discrete state.

One question is the net utility when the lever press is chosen to
terminate at time s (starting at time s) but the outcome arrives at time
T, with s < T £ (s + s). We consider the simple case that the time-
dependent component of the utility is proportional to the length of
time that the press has been in progress before the punishment is
scheduled. That is, we make the simplification that cost accrues at
a uniform rate throughout the whole latency of the pressing action
(in fact, in just the same way as the opportunity cost), and so less has
been expended if the punishment comes early in the latency than if it
comes late. This makes the total contribution to the utility, including
the outcome itself, be

a
s

T � s
s
þ bþ z: ð11Þ

To put this another way, there is a utility per unit time of execution
of a

s2 so that the total utility if the press completes without interruption
is a

s.
Using the same reasoning as before, the optimal Q values satisfy the

recursive relationship

Q�ðf1; sg; sÞ ¼ PT ðT > ðsþ sÞjT > sÞ
� a

s
þ bþ vV �ð2Þ

þ ð1� vÞV �ðf1; sþ sgÞ � q�s
�

þ
Z s

u¼0
du pT ðT ¼ sþ ujT > sÞ

�
� a

s
u
s
þ bþ zþ V �ð2Þ � q�u

�
ð12Þ

taking account also that the opportunity cost (or, as we will see,
benefit) of time associated with the press is also restricted to the time
u = T)s, if the press is terminated early by receipt of the outcome.
The first term in Eqn 12 comes from the case that the punishment is
not programmed during the latency s, and includes the immediate
cost for the lever press and the future costs associated with the
transition to either state 2 (if the lever press is successful) or to state
{1,s + s} (if it is not). The second term evaluates the utility that

accrues when the punishment arrives before the lever press is
complete (at time s < u £ s + s). This always leads to state 2 and
outcome z, but only the fraction in Eqn 11 of the latency-dependent
cost. Note that whereas for the case of reward, the only transition to
state 2 comes from a successful lever press, here it comes either from
that or from the delivery of punishment.
As for Eqns 9 and 10, for any policy p that defines sp(s), we can

write the average rate of utility as �rpð0Þ=�tpð0Þ, where

�tpðsÞ¼PT ðT >ðsþspðsÞÞjT >sÞðspðsÞþvsIþð1�vÞ�tpðsþspðsÞÞÞþ

PT ðT �ðsþspðsÞÞjT >sÞsIþ
Z spðsÞ

u¼0
dupT ðT ¼sþujT >sÞu; and

�rpðsÞ¼PT ðT >ðsþsÞjT >sÞ a
spðsÞþbþð1�vÞ�rpðsþspðsÞÞ
� �

þZ spðsÞ

u¼0
du pT ðT ¼sþujT >sÞ a

spðsÞ
u

spðsÞþbþz
� �

Finally, note that we can set the parameters of this version of the
problem to accommodate a different form of rewarding task, in which
the subject only gets a reward (of utility R, say) if the lever is
successfully pressed before a stochastic deadline T. This then
resembles the task used by (Guitart-Masip et al., 2011a) in order to
encourage quick pressing. We do this by adding a constant R to the
value of state 2, and making z = )R resemble a punishment. In this
case, the subject will always garner a utility of R unless the
punishment happens before a lever press, in which case the net utility
associated with the outcome will be 0. We can formally still set V*(2)
= 0, but now the formula governing the average utility per recurrent
cycle becomes

�rpðsÞ ¼PT ðT > ðsþ sÞjT > sÞ a
spðsÞ þ bþ ð1� vÞ�rpðsþ spðsÞÞ þ vR
� �

þ
Z spðsÞ

u¼0
du pT ðT ¼ sþ ujT > sÞ a

spðsÞ
u

spðsÞ þ bþ zþ R
� �

Distributions

The last thing we need to specify is the distribution governing T.
This could be seen as modelling two factors – the actual arming
distribution that the experiment might involve (for instance, in a
variable interval schedule); and the uncertainty about internal timing
associated with the subjects’ own estimates (Gibbon, 1977). We
impute all the uncertainty in timing into the external variable T, and
thus ignore certain subtle issues associated with interval timing, such
as whether it is the objective or subjective (and hence stochastic)
rate of utility that we should model the animal as optimizing.
For convenience, we treat T as coming from a gamma distribution

T � cðT ; k; hÞ ¼ T k�1e�T=h

CðkÞhk . Parameter k is called the shape, and h is

the scale. C(k) is the gamma function, which generalizes the factorial

function. This distribution has mean kh and variance kh2=2.
The upper row of Fig. 2 shows three characteristic gamma

distributions that we use throughout, referred to as d l, d m and d s.

These have k = 1, 10, 103 and 0 = 1, 1 ⁄ 10, 1 ⁄ 103s respectively, so

they have the same mean of 1s, but variances of 1=2s2; 1=20s2;

1=2� 10�3s2. The lower row shows the continuation densities

pT (T = (s + u)|T > s) for three values of s (shown by the three
colours). Distribution d l, which is an exponential distribution, is called
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memoryless, as the continuation distributions are all identical,
exponential distributions. This is evidently not the case for the others.
We also consider a trivial distribution d 0 for which T = 0 determin-
istically. This is the distribution associated with (Niv et al., 2007)’s
treatment; however, it is not appropriate for the case of punishment, as
it would afford no opportunity for successful avoidance.
For the case of reward with stochastic success of the lever pressing

(i.e. v < 1), Fig. 3 uses these three distributions to illustrate the
progression of the belief b(s) that the lever has actually been armed.
Here, we consider the case that the lever is pressed at s = {0.6,
1.2, 1.8}s in the trial without leading to the reward. The bars show b(s)
at these times for v = 0.1 (red), v = 0.5 (green), and v = 0.9 (blue).
The three plots are for the three different distributions d l, d m, d s. The
bars show the combination of prior probability of arming (this is most
clear for d s, for which the prior probability is near 0 for s = 0.6
seconds and near 1 for s = 1.2, 1.8 seconds) and the likelihood
associated with having not yet obtained the reward.

Example

Figure 4 shows the inner workings of the costs for a case of reward
(z = 4) for the four distributions and when lever pressing is always
successful (v = 1). The other parameters take the values a = )1,

b = 0, sI = 1s). The upper plots show optimal differential state-action
values Q* ({1,s}, s) (coloured lines) associated with the pre-reward
state for a variety of times sk = {0, 0.6, 1.2, 1.8}s within a trial (red,
green, blue, and magenta, respectively), and optimal differential state
values V*({1,s}) (dashed black line). The coloured asterisks on the
plots show how the maximal Q* values form the optimal V* values.
The plots use sk as the origins for each line Q*({1, sk},s). The curves
are truncated for distributions d s and d 0 when the probabilities
PT(T > s) are so low that the relevant states are visited with a
probability less than around 10)10.
The lower plots in Fig. 4 show the optimal latencies s*(s) for each

starting time s. These constitute the optimal policy, and are the key
output of the model.
The different distributions shown in Fig. 4 illustrate some of the

central factors controlling vigour. Consider first d 0, for which the
lever is armed as soon as the pre-outcome state is entered (Niv et al.,
2007). In this case, only a single lever press will ever be necessary (as
it does not fail), with a latency chosen to balance the actual and
opportunity costs of the press. The values Q*({1, 0},s) for these
latencies show the two costs rather clearly – for short s, going from
the hyperbolic actual cost for s near 0, and the linear opportunity cost
for s larger. Below, we show the consequences of increasing and
decreasing these costs.
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Distribution d s is close to what we would expect for a fixed interval
schedule, as the lever is armed at almost exactly 1 s after the pre-
outcome state is entered. Once this happens in a trial, the problem is
very much like that for d 0, except that the opportunity cost is a little
less, as the delay to the outcome decreases the optimal overall utility
rate q*. Thus, the latencies s* show that, starting from s = 0, it is
optimal to wait until just after the lever is very likely to have been
armed, and then press. Starting just later in the trial, the actual time at
which it is optimal to press increases slightly [i.e. s + s*(s) increases
slightly], but there is an asymptotic latency that is marginally longer
than for d 0 because of the reduced opportunity cost of delay. The
optimal Q* values for d s show how these latencies come about.
Q*({1,0},s) (red) shows the futility of pressing before s = 1; for s > 1,
Q*({1,s},s) shows a similar pattern to those for d 0.

The values and policy for distribution d m resemble smoother
versions of those for d s. Here, T is less deterministic, and thus the
possibility that the lever is not armed adds to the actual cost of
pressing the lever quickly to balance out the (also increased)
opportunity cost. This collectively results in slower lever pressing,
and, indeed, the chance of having to press the lever more than once
(which is around 8% for these parameters).

Finally, distribution d l is a standard, exponentially distributed,
variable interval schedule. This is memoryless in the sense that the
distribution of times that the lever will be armed after time s in the trial
if it is not already armed at s is independent of s. Thus, we expect
V*({1,s}) and s*(s) to be independent of s (as indeed is apparent in
Fig. 4). Now, even though the mean arming time is still 1s, as also for
d m and d s, the optimal latency at s = 0 is rather greater, and yet there
is still a 20% chance that more than one lever press will be necessary.

Results

We consider a collection of timing tasks with three key characteristics.
First, the latency to press a lever determines the cost (falling off in a
hyperbolic manner), so that faster pressing is more costly. Second, the

time at which the lever is planned to be pressed has a bearing on
whether and when a reward or punishment is delivered. Finally, lever
pressing is not always successful – there is a chance of 1)v that it fails
to deliver reward or avoid punishment on any given press. We
separate our consideration into the cases of reward and punishment;
although these can, of course, also be mixed.
TheMethods section described these processes in detail, showing the

provenance of optimal solutions whose nature is illustrated here. The
state and state-action predictions to which this leads will engender a set
of tonic, quasi-tonic and phasic prediction error signals; these are also
described later, and ascribed to opponent neuromodulatory systems.

Rewards

Figure 1A shows the standard model for reward, in which delivery is
conditional on the lever having been ‘armed’. This happens after a
time T that can either be 0 (we call this case distribution d 0) or can be
stochastic, drawn from a density pT (T ). For convenience, we use the
gamma distributions shown in Fig. 2, which we call d l, d m, and d s,
with the labels reflecting their variances. If the lever is pressed when it
is not armed, it has no effect, and so the subject just has to press it
again later in the hope that it has by then been armed. We first consider
the case that the lever is deterministically successful.
Figure 5 shows example results for this case, for the four

distributions mentioned, for three different utilities for the actual
outcome: z = 2 (red), z = 4 (green), and z = 8 (blue), and across
different values of parameter a, which determines the utility per
inverse second (so that the utility of latency s is a ⁄ s). Here, we set the
unit utility of the press is set to b = 0, and the inter-trial interval to
sI = 1s.
The top row shows the optimal latencies [called s�1 � s�ð0Þ, as

these are the latencies starting at time s = 0 during a trial] for the
lever press as a function of a, for the various conditions. The middle
row shows the optimal rate of utility (q*) that results. The bottom
row shows the relationship between q* and s�1.
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For all of the distributions, when the cost of acting quickly is so
great that (i) the lever is sure to be armed by the time that the lever is
pressed, and (ii) the latency outweighs the inter-trial interval (i.e.

s�1 	 sI ), then we have s�1 ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�aÞ=q�

p
(as in Eqn 3, and from (Niv

et al., 2007)) and q� ’ z=s�1 (because one outcome, worth z, is acquired

each s�1 þ sI ’ s�1 seconds). Putting these together, s�1 ’ �a=z, as is

evident in the linear relationships for large costs in the top row.
Furthermore, the bottom row of plots demonstrate the relationship that s�1
is consistent with being roughly proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a=q�

p
.

When the utility per inverse latency a is nearer 0, the different
characteristics of the distributions become apparent. For d 0, it is
possible to press and collect rewards very frequently (although the
utility rate cannot be greater than z ⁄ sI ; for d s, there is little point in
pressing before about 1s, as is apparent even for the most valuable
outcome z = 8; blue). The precise dependence of s�1 on a depends on
the exact characteristics of the distributions. The bottom row shows
the relationship in a slightly different way – unlike for the case of d 0,
for distributions d l, d m and d s, even as the (optimal) utility rate grows
(as z gets bigger and a gets nearer 0), the optimal latency s�1 is distant
from 0.

Figure 6 shows the effect of making lever pressing only partially
successful, that is, setting v < 1. The stacked bar plots show the
optimal latencies of each of four lever presses (from bottom to top),
assuming that all previous ones had been unsuccessful, for v = {0.1,
0.5, 0.9} (and, for comparison, for v = 1, for which there is only a
single latency). The plots exhibit a competition between two effects:
when v is low, the overall rate of utility is small, whence the
opportunity cost of acting slowly is also limited. Thus, long latencies
are favoured. However, when pressing is only stochastically success-
ful, the subjects will be unsure whether or not the lever has been
armed (formally, the decision problem becomes partially observable).
Then, as seen in Fig. 3, the smaller the probability of success, the
more sure the subject will be that the lever is armed, despite an
unsuccessful press. This tends to hasten lever pressing. The ‘V’-shape
in the latencies for d l and d m show this well. With respect to d l, even
though arming is memoryless, the belief inference process is not – it is
cumulative – and so the latencies of successive lever presses are not
identical.
Figure 7 generalizes this result to a range of values of a and v. It has

the same format as Fig. 5, showing the latency s�1 of the first lever
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press, except that all of the curves are for z = 4 (which was the green
trace in Fig. 5, repeated here as the black dashed lines). In Fig. 7, the
colours signify different values of v, with v = 0.1 in red, v = 0.5 in
green, and v = 0.9 in blue. For small values of v, the utility associated
with collecting the reward gets very large, and so it becomes barely
worthwhile – the latencies increase dramatically. If there was also a
unit utility of each press (i.e. parameter b < 0), then, depending on z,
the rewards could be avoided altogether. Again, for latencies that are
sufficiently large that the lever is sure to be armed, the optimum is
roughly

s�1 ’
1� v

v2
�a

zþ b=v2

The term z + b ⁄ v2 is the average net (latency-independent) utility
per cycle. If this is negative, then it is not worth trying to press the
lever at all. Otherwise, if b = 0, the linear dependence that we
remarked upon earlier changes from s�1 ’ � a

z to s�1 ’ � a
z

� �
�

1�v
v2 , which becomes an extremely steep function of )a ⁄ z as v fi 0.

Punishments

We assume that the utility of lever pressing itself is the same for the
case of punishments; however, the structure of the task is quite
different. In particular, a punishment is delivered if a successful lever
press is not emitted before the arming time, whereas above, rewards
could only be collected by a successful lever press after the given time.
As discussed by (Cools et al., 2011), this provides a potentially strong
instrumental incentive for haste – delaying pressing the lever too long
brings the possibility of acquiring the large punishment. In some
cases, this is balanced by the sort of opportunity benefit of delay or
sloth discussed by (Dayan & Huys, 2009; Boureau & Dayan, 2011;
Cools et al., 2011), in that, even though acting quickly might safely
avoid the current punishment, it also brings forward the advent of the
next and subsequent possible punishments – therefore, delaying can
make perfect sense. More formulaically, the term –q*s in the

definition of the state-action values (see Methods) is actually positive,
encouraging slow pressing. This is exactly opposite to its effect for the
case of reward, for which it encourages fast pressing. Note addition-
ally that the subjects are never in doubt as to whether the lever is
‘armed’ (as they will receive the punishment as soon as it is), and so
the problem does not suffer from the sort of partial observability that
we saw for rewards.
Figure 8 shows how these factors play out for various different

probabilities of success of lever pressing, using distributions d l, d m, d s

and success probabilities as for Fig. 6. Distribution d 0 is not
meaningful in the punishment context, as the subject would receive
the punishment before having had the chance to act to avoid it. For
illustrative purposes, the punishment is moderately unpleasant
(z = )4) and the utility per inverse time is rather modest (a = )0.05).
Consider first d s, for which the time of the punishment is rather

circumscribed. For low v, that is, rather uncontrollable punishment, the
latency of the first lever press is actually shorter than for larger v – this
is to allow for the possibility of pressing again relatively cheaply if this
first press fails. Conversely, as the time of the punishment nears, for
low v, it is not economic to press the lever quickly enough to have the
chance of beating the punishment, as the lever press is likely to be
unsuccessful. By contrast, for high v, lever pressing gets more frenetic
as the punishment time approaches, as it is worth trying to avoid.
However, again, after some time, the cost of the lever press that is
sufficiently fast to avoid the punishment gets so great that it is better
just to wait and suffer z.
The optimal latencies associated with distribution d l are quite

different. This distribution is memoryless, so that the policy is the
same no matter when the choice is made (this is different from the case
of reward). Thus, the latencies are all the same for a given probability
v. However, they increase as the probability of success decreases. This
is because the cost of acting quickly is balanced against the benefit in
terms of reducing the chance of being shocked. As v decreases, the
benefit decreases too, and so the balance point is moved in the
direction of slower responding. Indeed, if we choose the time sI to
cancel out the effect of the opportunity cost (by making it decrease if
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the post-outcome state is entered more quickly, and increase if the
post-outcome state is entered more slowly), lower probabilities v can
still lead to longer latencies because of this effect. The latencies for
distribution d m are intermediate between those for d s and d l.
Figure 9 shows the optimal first latencies and utility rates as a

function of a for three values of the punishment: z = )2 (red); z = )4
(green), and z = )8 (blue) – for the three distributions d l, d m, d s. The
comparison with the case of reward (Fig. 5) is rather stark. Whereas
for rewards, when b = 0, it is always worth pressing the lever in the
end provided that z > 0, this is not true for punishments. If the
punishment is weak such that the cure is worse than the disease – that
is, the cost of pressing the lever sufficiently quickly is greater than the
benefit in terms of punishment foregone – then the latency becomes
effectively infinite (shown by the vertical lines), and the subject just
waits for the punishment. The value of a at which this happens scales
with z; for d s, it happens when a = z [although the plots in the figure
are derived from a density pT (T ) that is slightly smoother than a delta
function and so the critical value is millimetrically displaced]. This
behaviour is also readily apparent in the plot of s�1 against q*. As
sI = 1s, and all of the distributions specify that the punishment comes

after 1s on average, the rate of utility given infinite sloth is z
2 utils ⁄ s.

Thus, it is only worth pressing the lever more quickly if the net cost
leads to a less negative utility rate than this.

Prediction errors and neuromodulation

One point of the modelling in this article is to make predictions for the
activity of neuromodulatory systems. In view of results on the phasic
and tonic activity of dopamine cells from (Montague et al., 1996;
Schultz et al., 1997) and (Niv et al., 2007), we consider the total
prediction errors associated with the various possible outcomes.
Although it would be interesting to study the course of learning, we
confine ourselves to considering optimal choices, for which the same
prediction errors would arise from conventional temporal difference
(TD) learning (Sutton, 1988; Montague et al., 1996), and both
Q)learning (Watkins, 1989; Roesch et al., 2007) and the so-called
SARSA rule (Rummery & Niranjan, 1994; Morris et al., 2006). We
then attempt to relate these prediction errors to the activity of selected
parts of the neural substrate. We concentrate on the case of punishment,
as the resulting questions are sharper. Note again that these prediction
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errors are tied to the optimal latencies; if, for instance, subjects press
more than they should, then the expectations about the activity will not
be correct, at least in detail.

Figure 10 shows prediction errors for the first few lever presses
s�1; s

�
2; . . . for the three distributions d l, d m, d s and three values of

v = 0.1, 0.5, 0.9. These are exactly the lever presses whose latencies
are reported in Fig. 8. We make the simplifying assumption that the
prediction errors only arise when the lever press terminates, rather than
being continuous throughout its execution. This is exactly the way in
which prediction errors for a particular set of temporally extended
actions (called options (Sutton et al., 1999)) have been treated (Duik
et al., 2010). We ignore any additional prediction errors that may arise
in between terminations.

Each press can terminate in one of three ways: (i) finishing
successfully in arranging a transition to the post-outcome state (blue
‘+’; left-hand axis); or (ii) finishing, but without this transition being
successful (blue ‘x’; left-hand axis); or (iii) the punishment arriving
while the lever is in the process of being pressed (green lines; right-
hand axis). In the last of these cases, the punishment could come at
any time (between s�i�1and s�i ¼ s�i�1 þ s�i ), and so the prediction
errors are indexed by the time s. The cyan ‘o’s (left-hand axis) show
the weighted integrals of these terms, quantifying the net contribution
for the possibility that the punishment might arrive before the lever
press finishes. If we weight the blue points by their probabilities of
occurring, then the sum of those plus the cyan points is 0 at every
termination of a lever press, as this is what defines the Q* and
V* values. The blue asterisk (at s = 0; left-hand axis) shows the initial
value V*({1,0}) [as it is commonly found, at least in the phasic
activity of dopamine cells, that prediction errors at the start of trials are
reported relative to a 0 baseline; e.g. (Roesch et al., 2007; Morris
et al., 2006; Fiorillo et al., 2003; Tobler et al., 2005)].

The total prediction errors are distinctly different for the different
cases. In particular, for d l, for ineffective presses (v = 0.1), when the
press terminates but does not succeed, the prediction error (blue ‘x’) is
actually positive. This is because the punishment has at least been
successfully postponed. Likewise, if a punishment is provided (green
lines), then the later it comes over the course of the lever press, the less

negative the prediction error – again from the opportunity benefit of
sloth – that is, time having passed.When pressing ismore successful, the
opportunity benefit is smaller (as the average utility rate is less negative)
and so fails to outweigh the cost associated with having had to be
pressing the lever for longer. Thus, the green lines reverse their slopes.
For d s, the punishment is overwhelmingly likely to arrive at s = 1.

Again, being forced to press the lever early to have the chance of
avoiding the punishment successfully has the attendant cost of
bringing forward the next opportunity to suffer punishment. It
therefore competes with the necessity to press the lever more quickly
on subsequent occasions in the trial so that success is likely to be
achieved before s = 1. For v = 0.1, the net expected success is low,
and therefore the prediction errors are more positive when the lever
press succeeds than they are negative when it fails. For v = 0.9, the
converse is true. They are evenly balanced for v = 0.5. This effect is
not apparent for d l and d m, as for v = 0.9, there is still a substantially
greater chance of actually getting the punishment during the time
committed to a lever press, and so a successful lever press remains
surprising.
The final issue is to estimate how these net prediction errors are

represented in neural activity. One of (Niv et al., 2007)’s main claims
for the case of reward was that the average utility rate q* is
represented by the tonic activity of dopamine neurons, in a way that
could influence vigour. This would allow an implementation of
the optimal latency being s� ¼

ffiffiffiffiffi
�a
q�

q
, appropriate for v = 1 and

distribution d 0. This putative relationship with dopamine was based
on a variety of results, such as those discussed in (Salamone & Correa,
2002), noting also that tonic and phasic dopamine activity could be
subject to different regulation (Goto & Grace, 2005; Goto et al.,
2007). This would allow phasic activity to retain its conventional role
as a temporal difference prediction error (Sutton & Barto, 1998) for
future reward (Montague et al., 1996; Schultz et al., 1997).
However, various factors complicate such assignments for the case of

punishment. How is utility rate represented in the case of aversive
outcomes; and how do these long-run quantities relate to immediate
facets associated with ever-changing predictions and delivery of
punishment? The complexity is that the neuromodulatory substrate
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for the representation of punishment is subject to significant debate – it
is unclear whether it is one of the actions of a different neuromodulator
such as serotonin (Deakin, 1983; Deakin & Graeff, 1991; Daw et al.,
2002; Cools et al., 2008, 2011; Dayan & Huys, 2009; Schweimer &
Ungless, 2010; Boureau & Dayan, 2011), dips below baseline of
dopaminergic activity (Frank et al., 2004), the elevated activity of some
among the population of dopamine neurons (Mirenowicz & Schultz,
1996; Joshua et al., 2008; Matsumoto & Hikosaka, 2009), or an
anatomically distinct set thereof (Brischoux et al., 2009; Lammel et al.,
2011).
First, a wealth of experiments involving tryptophan depletion

[reviewed, for instance, in (Cools et al., 2008, 2011)] certainly
implicate serotonin in the processing of aversive information.
Unfortunately, although recordings have been made from raphe
neurons of awake behaving animals (Jacobs & Fornal, 1997, 1999;
Jacobs et al., 2002; Nakamura et al., 2008; Ranade & Mainen, 2009;
Bromberg-Martin et al., 2010; Miyazaki et al., 2011a) (albeit with
recent investigations considering delays and not punishments), it is
well-nigh impossible to discriminate serotonergic from non-seroto-
nergic cells in these nuclei (Allers & Sharp, 2003; Kocsis et al., 2006),
and there is evidence for substantial heterogeneity in the behavioural
correlates of true serotonergic neurons (Lowry, 2002). These confu-
sions extend to the findings about functional magnetic resonance
imaging signals in human experiments investigating gains and losses,
which often show correlations between blood oxygen level-dependent
signals in structures such as the ventral striatum that are targets of
neuromodulatory systems, and prediction error signals (McClure
et al., 2003; O’Doherty et al., 2003; Haruno et al., 2004; Seymour
et al., 2004; Tom et al., 2007; Delgado et al., 2008). However, the
blood oxygen level-dependent signal sometimes increases and some-
times decreases with the prediction error for future punishment, for
reasons that have not been fully understood; and there may also be
anatomical differentiation of reward and punishment in the striatum
that is not always examined (Reynolds & Berridge, 2002; Seymour
et al., 2007).
Second, it is important to take account of evidence associated with

two-factor theories (Mowrer, 1947) suggesting that a good way to
interpret results in active avoidance is to consider that outcomes are
measured against the prospect of punishment. That is, achieving safety
becomes a surrogate reward, represented by normal systems involved
in appetitive learning. Modern reinforcement learning theories based
on these principles (Johnson et al., 2002; Moutoussis et al., 2008;
Maia, 2010) can account for many of the perplexing results, including
those involving manipulations of dopamine [e.g. (Beninger et al.,
1980)], which suggest the importance of this neuromodulator for
learning of the avoidance response.
Given such uncertainties, it is not possible to be completely

confident about the neural realization of prediction errors such as those
in Fig. 10. We await electrophysiological or even cyclic voltammetry
in experiments of this sort. However, for concreteness, Fig. 11
suggests one possible assignment to the neuromodulators dopamine
(upper axis) and serotonin (lower axis), assuming that they are acting
as opponents. Some of the many issues associated with opponency are
reviewed extensively in (Daw et al., 2002; Cools et al., 2008, 2011;
Dayan & Huys, 2009; Boureau & Dayan, 2011), and we will not
rehearse those arguments here. Key to understanding this opponency,
however, is that the net prediction error only constrains the difference
between two signals. We suggest that various factors may be added to
both signals, leaving the prediction error the same, but allowing for
other important effects.
Each graph in Fig. 11 is for one distribution and one probability of

success of the lever pressing, and shows five signals, which we describe

in turn.Wework with the case that b = 0. First, the dashed lines indicate
the tonic activity or concentration of dopamine (DA; red) and serotonin
(5HT ; blue). We describe these as being tonic because they are constant
across the whole trial. For average case utility learning, the net tonic
signal should be the average rate of utility, q*, which is always negative
for cases such as this, in which there is at best punishment, which is
costly to avoid. Given opponency, we will have q� ¼ DA� 5HT .
However, in keeping with the two-factor notion above, the dashed lines
reflect the possibility that a common factor – related to the net rate of
avoidable punishment – is added to both signals. This means that there is
an increase above baseline in the tonic dopamine signal, associated with
the possible benefit of safety. This is even though, as a pure case of active
avoidance, there is no reward.
One obvious possibility for the magnitude of this common signal is

the mean rate of potentially avoidable punishment �z=�t �, where �t � is
the mean time for a whole trial (from one transition from the post-
outcome to the pre-outcome states to the next such transition) when
following the optimal policy. This would imply that

DA ¼ q� � z
�t�

ð13Þ

5HT ¼ � z
�t�

ð14Þ

As q* is closer to 0 when punishments are more competently
avoided, the tonic dopamine signal reflects the net chance of success.
In this version, the serotonergic signal is much less sensitive to
success, only depending on it weakly via its effect on the average trial
length. Note that alternative baselines that themselves take account of
how much of that punishment can actually be expected to be avoided
might also be possible.
Second, the solid blue line shows the utility per unit time of

the ongoing lever press (which has been added to the baseline
5HT shown by the dashed blue line). This makes a total of

d5HTi ¼ 5HT � a

ðs�i Þ
2 ; ð15Þ

that we call quasi-tonic, as it has a persistent character, but changes at
the times of choices. As is evident, it can take many different values
over the course of a single trial (which is why it is not tonic), but it
remains at a constant level over the course of a single latency (and so
is not phasic). This quasi-tonic signal can be integrated over either a
complete or an interrupted lever press to make the appropriate
contribution to the total prediction error. As it is a cost, and inspired by
findings about the association between the firing of neurons in the
raphe and motor activity (Jacobs & Fornal, 1997, 1999; Jacobs et al.,
2002) and other heterogeneous behavioural events (Ranade & Mainen,
2009) [but see (Bromberg-Martin et al., 2010)], we suggest that this is
represented as an additional serotonergic signal. In Fig. 11, this signal
is most dramatic for d s, high v and as s fi 1, when the imperative is
for very quick presses (duly justified by their likely success). Indeed,
some of the values are truncated to fit on the plots.
Third, the red and blue bars show putative phasic dopamine and

serotonin responses, respectively. These reflect abrupt changes to
ongoing predictions that arise when aspects of the state change. Such
stimulus-locked, and very brief, burst-like responses are well charac-
terized for the case of dopamine (Schultz & Dickinson, 2000); apart
from effects at the time of an actual punishment to an anaesthetized
subject (Schweimer & Ungless, 2010), they are less clear for the case
of serotonin. Again, two-factor theory suggests that there will be a
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baseline for the signals coming from the possibility of getting the
punishment. There are two obvious baselines. Figure 11 reflects the
first, which is that the baseline is the cost of potentially avoidable
punishment, z, but applied to the differential state values V* and state-
action values Q*. Temporal difference signals are differential,
associated with the change over time in predicted values. Thus, a
baseline applied to these predictions would reveal itself only at the
onset of the task. That is, the initial signals would be

DA0 ¼ V �ðf1; 0gÞ � z ð16Þ

5HT0 ¼ � z ð17Þ

Thus, as for the tonic dopamine signal, the fact of the avoidable
punishment gives rise to a positive phasic dopamine signal. We can
understand this by comparison with the familiar phasic prediction error
responses associated with reward (Montague et al., 1996; Schultz et al.,
1997). There, the prospect of future reward turns gives rise to a positive
signal at the onset of an early reliable predictive cue. Here, the future
reward is replaced by future safety (i.e. a transition from a state in which
punishment is possible to one in which it has at least been postponed);
this onset dopamine response is tied to that event. Nevertheless, under
opponency, the net value at the outset is still V*({1,0}), once the
simultaneous serotonergic activity is taken into account. If presses are
routinely successful, then this net value is only very mildly negative
(reflecting the cost of the active avoidance lever press).

According to this baseline scheme, subsequent success and failure of
lever pressing only implicate either dopamine (red bars) or serotonin
(blue bars), but not both, at the termination times s�1; s

�
2; . . ..In the case of

success, the two-factor manoeuvre of referring outcomes to a baseline
expectation of getting the shock (i.e. z) makes the transition to safety
appear like an immediate reward worth )z. The resulting contributions
to the overall prediction error in Fig. 10 are thus:

success : DAi ¼ � V � f1; s�i�1g
� �

ð18Þ

failure : 5HTi ¼ �V � f1; s�i g
� �

þ V � f1; s�i�1g
� �

ð19Þ

These exhibit rather complex effects for the different distributions
and probabilities of success. Of particular note is that the serotonergic
signals are almost always very small. For d l, they are 0, as the
memoryless nature of the problem implies that the values V*({1, s})
are constant (and we are assuming that b = 0). However, even for
d m and d s, these signals are rarely substantial. For low v, this is partly
because there is little expectation that the press will succeed, and
therefore little change in V*({1, s}) when it fails. Even for higher v,
5HTi becomes large only when the punishment goes from being
reasonably to unreasonably avoidable; this happens punctately only
for d s, for which the time of the punishment is well constrained.
Finally, the cyan bars show the signal associated with the actual

delivery of punishment. For convenience, these are shown halfway
through the presses concerned (i.e. at times s�i�1 þ

s�i
2 , although they

would really be time-locked to the punishment itself. Note that this
term is constant across the time of the lever press, as the linear
variation in the full prediction error shown in the green lines in Fig. 10
is absorbed into the integral of the quasi-tonic solid blue line which
comprises the sum of the baseline cost 5HT associated with the
serotonergic component of the overall rate of utility, and the vigour
utility per unit time � a

ðs�1Þ
2. Given the two-factor baseline of )z, this

term is the value associated with the time of the preceding lever press

5HT pun
i ¼ �zþ V � f1; s�i�1g

� �
ð20Þ

These terms therefore show the evolution of the subject’s expected
values. Crudely, these values approach 0 as the expectation of
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Fig. 11. Putative dopaminergic (DA; red; upper half) and serotonergic (5HT; blue and cyan; lower half) signals associated with the prediction errors of Fig. 10 for
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when the punishment arrives. These are displayed at time s�i�1 þ
s�i
2 , halfway through the relevant lever press; however, they would actually be time-locked to the

punishment itself.
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punishment rises (most evident in d m), although the net utility of
future expected avoidance are also included, giving rise to the more
complex dependencies evident for d s.

Discussion

We analysed optimizing appetitive and aversive vigour in a set of
tasks that generalize those studied by (Niv et al., 2007). Their tasks
implied that there would be an opportunity cost for the passage of
time; in our tasks, there was also a direct instrumental effect of speed.
Further, we considered the consequences of only stochastically
successful lever pressing. Finally, we suggested how the resulting
rather complex collection of appetitive and aversive prediction errors
might be represented by tonic, quasi-tonic and phasic aspects of
dopaminergic and serotonergic neuromodulation.
The starting point for these models was analysis suggesting that, in

appetitive circumstances, vigour should depend on the average rate of
utility (Niv et al., 2007). We have seen that the picture is significantly
richer in the case of variable interval schedules for reward or stochastic
punishment times. As one might expect, when rewards or punishments
are postponed (T	0) and acting quickly is costly, latencies are long.
However, if actions can fail, then it may be worth trying to act more
hastily, in order to preserve the possibility of trying again relatively
cheaply. In the case of reward, in the unrealistic case that there is no
unit utility of an action, but only a vigour utility that decreases with
latency, an action will always ultimately be emitted. However, for the
case of punishment, it may be better to suffer the consequences than to
act sufficiently quickly to avert them.
For the case of active avoidance, the apparent paradox for the

previous theory was that the average rate of utility is negative, and
would therefore be incapable of determining vigour according to that
theory’s central result. In fact, this relationship is actually true – if
acting quickly leads to the post-outcome state being reached more
rapidly, it can also imply reaching the next pre-outcome state more
quickly, and thus an earlier chance of future punishment. Thus, there is
indeed an opportunity benefit for sloth that should make subjects slow
down. This is, however, balanced against the immediate instrumental
benefit for the action, which can dominate. This amounts to an
interesting form of instrumental approach–avoidance conflict, where
speedy approach itself is engendered by a need to be sure to avoid the
immediate punishment, whereas sloth (which can be seen as a form of
avoidance) comes from the need to avoid subsequent punishments. If
rewards were also available (e.g. at the post-outcome state), then this
would have the effect of increasing the average rate of utility, and thus
decreasing the latency of any avoidance action through the contribu-
tion of the term )q*s to the state-action values. However, if different
outcomes were indeed mixed, it would be important to take account of
the surprising lability and adaptation in their subjective utilities (Vlaev
et al., 2009).
Unfortunately, I am not aware of any existing paradigms that

systematically explore the effect on reaction times in an active
avoidance task of either changing the probability of success of each
action or manipulating the inter-trial interval in such a way that any
benefit of sloth would be apparent. They would, however, be
straightforward to test, at least in human subjects. It would be
interesting to look for the rather detailed signatures of optimal
behaviour evident in the effects in Figs 6 and 8 on successive lever
press latencies of the success probability v.
The various contingencies in the active avoidance task lead to a

varied collection of prediction errors that evolve in regular and
revealing ways over the course of each trial. This is even true after

learning is complete, particularly when lever pressing is only partially
successful. In assigning parts of the prediction errors to various facets
of the activity and concentration of dopamine and serotonin, we have
been inspired by a wide range of evidence, notably on appetitive
aspects of phasic dopamine (Montague et al., 1996; Schultz et al.,
1997), vigour associations of tonic dopamine in the context of reward
(Salamone & Correa, 2002; Niv et al., 2007), and two-factor theories
of active avoidance (Mowrer, 1947; Moutoussis et al., 2008; Maia,
2010), but have nevertheless had to make some significant specula-
tions, particularly about opponency between serotonin and dopamine
(Deakin, 1983; Deakin & Graeff, 1991; Daw et al., 2002; Cools et al.,
2008, 2011; Dayan & Huys, 2009; Boureau & Dayan, 2011). Even
then, we have passed over a huge wealth of issues discussed in these
reviews, including other influential views of serotonin, such as its
potential role in temporal discounting (Tanaka et al., 2004, 2007;
Doya, 2008; Schweighofer et al., 2008).
One constraint on this speculation comes from richer analyses of the

relationship between Pavlovian and instrumental influences on action
(Breland & Breland, 1961; Panksepp, 1998; Dickinson & Balleine,
2002; Dayan et al., 2006b; Crockett et al., 2009; Boureau & Dayan,
2011; Cools et al., 2011). Crudely, stimuli associated with rewards
lead to vigorous approach and engagement, at least partly under the
influence of dopamine in the nucleus accumbens (Ikemoto &
Panksepp, 1999; Lex & Hauber, 2008). Conversely, stimuli associated
with punishments lead to a rich set of species-specific defensive
actions (Bolles, 1970) that notably include forms of behavioural
inhibition influenced by serotonin (Deakin, 1983; Soubrié, 1986;
Deakin & Graeff, 1991; Graeff, 2002; Cools et al., 2008; Tops et al.,
2009). Active defensive responses have themselves been associated
with the accumbens (Reynolds & Berridge, 2002), and dopamine is
also known to play a role (Faure et al., 2008). One might also see the
competition between ergotropic (work-directed, energy-expending)
and trophotropic (internally directed, energy-conserving) behaviours
in similar opponent terms, with the latter under serotonergic influence
(Ellison, 1979; Handley & McBlane, 1991; Tops et al., 2009; Boureau
& Dayan, 2011).
These appetitive and aversive responses are Pavlovian in the sense

that they are emitted without regard to their actual consequences. In
the appetitive case, even if rewards are not delivered in trials on which
engagement and approach occur, then subjects cannot in general help
themselves, but still engage and approach, at least to some extent
(Sheffield, 1965; Williams & Williams, 1969). Concomitantly, in the
aversive case of active avoidance, this would imply that behavioural
inhibition engendered by the prediction of punishment would work
against the subjects’ need to act quickly to avoid the punishment
(hence the investigations in (Crockett et al., 2009; Guitart-Masip
et al., 2011b), with the latter suggesting that conventional prediction
errors are only seen in the face of a potential requirement to act). One
can interpret two-factor theories of avoidance (Mowrer, 1947; Johnson
et al., 2002; Moutoussis et al., 2008; Maia, 2010) as suggesting the
resolution to this problem of measuring the worth of outcomes against
the prospect of punishment. That is, achieving safety becomes a
surrogate reward.
To put this another way, phasic dopamine could report on all

improvements in state, whether these are based on the potential for
gaining reward or the potential for avoiding punishment. Likewise,
tonic dopamine could report on the appetitive utility rate associated
either with reward or with the potential for avoiding punishment. In
the aversive cases, these signals are relative to a baseline provided by
phasic and tonic serotonin. The result, as pictured in Fig. 11, can be
seen as partly reconciling the original theory of dopamine–serotonin
opponency, which suggested that tonic dopamine might report average
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rate of punishment (Daw et al., 2002), with the more recent suggestion
that it might report the average rate of reward (Niv et al., 2007).

Figure 11 also goes beyond (Niv et al., 2007) in assigning the time-
dependent component of the utility of the lever pressing to a quasi-
tonic serotonergic signal. The assumption is that this is integrated over
time – for instance, by receptors or even in the tissue – with its integral
forming a central component of the prediction error. There is recent
evidence for the release of serotonin while animals had to wait during
a delay period (Miyazaki et al., 2011b), which could be the
consequence of such quasi-tonic activity. However, we should note
that the activity of neurons in the raphe shows a range of responses
during delays in reward-related tasks, including both activation and
suppression (Nakamura et al., 2008; Ranade & Mainen, 2009;
Bromberg-Martin et al., 2010; Miyazaki et al., 2011a). In particular,
(Bromberg-Martin et al., 2010) note that the raising or lowering of
what we could consider to be quasi-tonic activity of raphe neurons
during a delay period was correlated with their excitation to a
subsequent reward or non-reward; however, as it is impossible to
know which, if any, of these neurons were serotonergic (Allers &
Sharp, 2003; Kocsis et al., 2006), and frank punishments were not
employed, it is hard to draw firm conclusions with respect to our task.

The role of these baselines raises a structural question about the
framing of a task. If there are both rewards and punishments, should
the baseline be associated with the worst possible punishment, the
most likely punishment, the average negative reinforcement per
recurrent cycle, or some other quantity? How should controllability
influence the baseline (Huys & Dayan, 2009) – should only
punishments that can be avoided be able to influence it? In fact, this
would make sense of the transient behaviour of dopamine in learned
helplessness, as measured by microdialysis (Bland et al., 2003). Given
results on the dramatic effects of re-framing tasks (Tversky &
Kahneman, 1981), it seems likely that there is no single answer to this
question – it will depend on context and circumstance. This could
therefore help to explain some of the apparent inconsistencies referred
to above concerning the involvement of dopamine and serotonin in
aversive and appetitive cases. However, it does not resolve other
questions, such as the distinct groups of dopamine neurons. Certainly,
framing-like manipulations of the baseline might have a powerful
effect on the way in which Pavlovian mechanisms might offer a form
of crutch for instrumental behaviour (Dayan & Huys, 2008) – that is,
by engaging dopamine or serotonin appropriately, vigour and sloth
could be automatic rather than having to be learnt. Of course, such
Pavlovian influences might complicate our predictions, for instance if
they took effect after rather than before the selection of instrumentally
optimal behaviour.

Another set of paradigms that could be explored with a variant of
the framework described here is differential reinforcement of low rates
of responding (DRL) (Kramer & Rilling, 1970), which is the dual of
active avoidance. In DRL, animals are typically rewarded provided
that they can refrain for a given period from executing the action that
will lead to the reward. Given timing uncertainty, there will be an
optimal action latency; we could seek to model dopaminergic and
serotonergic activity associated with the wait and the ultimate
execution. Tasks such as those used by (Nakamura et al., 2008;
Ranade & Mainen, 2009; Miyazaki et al., 2011a,b) to examine
serotonin release and the activity of raphe neurons can involve delay
periods, making this an attractive target. Serotonin depletion is known
to affect the ability to wait that these paradigms require (Eagle et al.,
2009); it also impairs performance in DRL (Wogar et al., 1992;
Fletcher, 1995).

One issue that the prediction errors of Fig. 11 are likely to get
wrong is that, apart from at the onset of a trial, the phasic

dopaminergic (red bars) and serotonergic (blue bars) never occur at
the same time. A transition to safety from a successful press leads to a
phasic dopamine signal; a failed press or actual punishment leads to a
phasic serotonin signal. However, when less reward is delivered than
expected, there is ample evidence that the activity of dopamine cells
dips below baseline, and substantial theories resulting from this
explaining asymmetric findings about learning in patients with
dopamine deficiency (Frank et al., 2004; Frank, 2005) or normal
subjects with different genetic endowments concerned with dopamine
processing (Frank et al., 2007; Frank & Hutchison, 2009). This
suggests that there might be an additional baseline.
We only studied optimal behaviour, and the prediction errors that

would result from the associated optimal values of states. Most aspects
of behaviour change continuously with small changes to the
parameters, and so would change continuously with small approxi-
mations to optimality. Some (e.g. the exact number of unsuccessful
lever presses before a punishment) would be more sensitive. The tasks
do certainly pose a panoply of learning problems. (Niv, 2008)
described a form of temporal difference-based learning for acquiring
responding for the case of distribution d 0, and this should also work
for the cases that we have studied here. Exploring different latencies
would, of course, be important to find optima; one might discover that
a (possibly Pavlovian-induced) reluctance to sample long latencies in
the face of impending shocks could make for a systematic bias
shortening of the latencies as compared with the optimum. Exploration
would also complicate the predictions about neuromodulatory coding,
as there is evidence of phasic activation of dopamine neurons
reporting forms of bonuses associated with exploration (Kakade &
Dayan, 2002).
Our tasks place a potentially substantial burden on the represen-

tations that the subjects form about the task, notably the partial
observability in the case of reward with stochastically successful lever
pressing, and disentangling externally imposed randomness in timing
from noise in internal timing mechanisms. Of course, the source of
noise in timing need not matter for the predictions that we can make
about behaviour. It would certainly be important to explore the effects
of different sorts of suboptimality, such as noisy temporal choices,
particularly in any attempt to fit human or animal decision-making.
One issue that emerges from consideration of dopaminergic

manipulation in active avoidance and, indeed, the escape from fear
paradigm (Moutoussis et al., 2008) is that there is an asymmetry
between the roles of dopamine and serotonin in aversion, with the
former playing a central role in both value and action learning, but the
latter only in the acquisition of values. One rationale for this is that
when there are very many possible actions, finding out that executing
one led to punishment is very weak information about what to do,
whereas finding out that it led to reward, or to safety, is very strong
information (Dayan & Huys, 2009).
Of course, there are known to be multiple neural systems

controlling action (Dickinson & Balleine, 2002; Daw et al., 2005;
Daw & Doya, 2006; Samejima & Doya, 2007). One of these systems,
implicated in model-free reinforcement learning or habitual respond-
ing, has historically been closely associated with the neuromodulators
and regions such as the dorsolateral striatum (Killcross & Coutureau,
2003; Balleine, 2005). (Niv, 2008)’s temporal difference learning
method associated with d 0 is model-free in this sense. Conversely, a
second system, implicated in model-based reinforcement learning or
goal-directed behaviour, has been associated with prefrontal process-
ing and the dorsomedial striatum. These systems are believed to
cooperate and compete in ways that are only just starting to be
investigated (Gläscher et al., 2010; Daw et al., 2011; Simon & Daw,
2011). The exact nature of their interaction could have an important
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bearing on the predictions that we might make for the behaviour of
neuromodulatory systems in the tasks that we describe here, if
different parts of the signals arise from different systems.
One important direction in which the model requires improvement

to be more directly testable is in its conceptualization of action. Along
with (Niv et al., 2007), we assumed that each lever press may be
significantly costly, and so will be spared if possible. This may be the
case for some actions, but certainly not all. An alternative suggested in
the literature would be to have the subjects switch between two
different rates of lever pressing (Gallistel et al., 2004), or indeed more
complex patterns of responding (Eldar et al., 2011); it would certainly
be possible to adapt our analysis accordingly. There are very many
detailed studies of operant timing [from seminal work such as (Catania
& Reynolds, 1968) to modern analyses such as (Williams et al.,
2009a,b,c)], which would be attractive targets. There are also
structurally different schedules of reward or punishment that do not
fit quite so easily into the current scheme, such as the extended
working time required in (Arvanitogiannis & Shizgal, 2008; Breton
et al., 2009), but that would also be of great interest to capture.
In conclusion, even the simplest of active avoidance tasks poses a

set of fascinating and powerful constraints on the nature of optimal
behaviour, and the forms of prediction error that arise. These
results, and the predictions and speculations with which they are
associated, take us nicely beyond conventional neural reinforcement
learning.
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