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How to set the switches on this
 thing
Peter Dayan
Reinforcement learning (RL) has become a dominant

computational paradigm for modeling psychological and neural

aspects of affectively charged decision-making tasks. RL is

normally construed in terms of the interaction between a

subject and its environment, with the former emitting actions,

and the latter providing stimuli, and appetitive and aversive

reinforcement. However, there is recent emphasis on

redrawing the boundary between the two, with the organism

constructing its own notion of reward, punishment and state,

and with internal actions, such as the gating of working

memory, being treated on an equal footing with external

manipulation of the environment. We review recent work in this

area, focusing on cognitive control.
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Introduction
The theory of Bayesian decision making is formally very

straightforward. Its components are a probability distri-

bution over the possible states of the world, a set of

available actions, and the value associated with each

action under each state. The action should be chosen

which maximizes the mean value under the current state

of the world. This can be applied in everything from the

simple decision problems associated with signal detection

theory [1], to spatially and temporally complex tasks

associated with structured environments (for instance,

partially observable Markov decision processes in which

information about past sensory inputs is necessary to

disambiguate the current state [2]).

Reinforcement learning (RL; [3]) encompasses a power-

ful set of computational ideas and methods for organizing

and solving such decision-theoretic problems. It has

particularly rich links with the psychology of animal

conditioning and the neuroscience of appetitive choice.
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Indeed, as abundant reviews (many in the pages of this

journal) have noted, experimental questions in this area

are frequently couched (albeit not necessarily resolved) in

terms deriving partly from RL.

The bulk of work in neural RL assumes that the state of

the world is known transparently. It focuses on the

acquisition of knowledge that allows the values of actions

in each state to be predicted or computed, along with

algorithms that can carry out the computations concerned,

leading to value-dependent action choice. Neural RL

encompasses various techniques, particularly for domains

in which sequences of actions or trajectories must be

chosen on the basis of their long-run returns.

One notable division is between model-based (or goal-

directed) and model-free (or habitual) methods [4–6]. A

model of an environment predicts the transitions between

states that will occur when each action is taken, and also

the rewards that are likely to result from those transitions

and states. Model-based methods build such a model, and

then compute long-run values by using it to predict the

accumulated future reward associated with possible tra-

jectories [5,4]. By contrast, model-free methods learn to

predict the same quantities, that is, the expected sums of

such future rewards along trajectories, but without build-

ing a model. Instead they take advantage of the fact that

predictions of long-run values from states that are encoun-

tered successively should be consistent with other. They

should only differ according to the reinforcement deliv-

ered through the transition. Model-free learning uses any

inconsistency as a form of temporally sophisticated pre-

diction error that can correct the predictions.

Model-based and model-free methods have different

computational and statistical properties, and are instan-

tiated in at least partially different neural tissue [6–8].

There is also Pavlovian control, in which actions are

automatically elicited in the light of reinforcers or pre-

dictions of those reinforcers, whether or not those actions

are actually contingent, or even beneficial, for acquiring

the rewards or avoiding the punishments [9,10]. There are

various ways in which Pavlovian influences are exerted,

including being embedded in the neural architecture of

choice (for instance, differential neuromodulation on

direct (go), versus indirect (no-go) pathways through

the striatum; [11]), and via other manipulations of such

architectural elements [12].

RL is often used to model a rather restricted set of

decision problems. However, many others can also use-

fully be embraced. Consider, for instance, the broad set of
www.sciencedirect.com
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tasks involving the integration of noisy sensory infor-

mation over time to determine an appropriate choice. A

wealth of psychological and neural investigations has

centred around one class of policies — namely diffusion-

to-bound decision making, associated with sequential

probability ratio tests [13,14]. These and their extensions

have provided sharp hypotheses for understanding every-

thing from speed-accuracy trade-offs [15,16] to compe-

tition in pools of interacting units [17], to the activity of

neurons in area LIP during information integration [18].

From the perspective of RL, such sequential probability

ratio tests offer a formally beautiful, but brittle, policy for

acting in a very restricted class of partially observable

Markov decision problem [19]. As soon as some basic

conditions are violated, for instance if the signal to noise

ratio of the information being integrated is variable or there

is a short deadline for producing a response, broader ideas

must be used, such as theory derived from RL principles.

This observation has been used to capture neurophysio-

logical observations such as urgency signals that have been

seen in LIP [20�]. It has even been extended as far as

information integration in schizophrenia [21].

Nevertheless, we will argue that even this expanded view

of RL is limited, because it retains a neat boundary between

organism and environment. We briefly review recent work

that offers extensions to all three components of Bayesian

decision theory: the definition of value, the nature of the

state; and closely related to this, the menu of possible

actions. First, one of the claims of the field of intrinsically

motivated RL [22�] is that value lies within the subject and

not outside. That is, there is no pathway communicating

positive or negative values directly from the environment,

it is only stimuli of different sorts that are received. Second

and third, the internal neural computations that result in

state representations and external actions can themselves

be described as involving decisions — for example,

whether or not to preserve a stimulus in (metabolically

expensive) working memory [23,24�,25�,26�], how to set

parameters associated with speed-accuracy tradeoffs [27],

or even how deep a tree of states and actions to build in

order to assess model-based choice [28].

When is a reward a reward?
One of the central ideas in the field of intrinsic motivation

[29] is the apparently postmodern notion that rewards and

punishments are constructions of the subject rather than

products of the environment. One reason for this is to

license factors such as curiosity [30] or play as determin-

ing appropriate behaviour, even though, on the face of it,

they would seem to work against maximizing reward.

This reason can in fact be criticized [31] on the grounds

that curiosity is actually a perfectly normal facet of control

in the face of uncertainty — rewards associated with it are

forms of bonus [32,33] that allow agents to trade explora-

tion of potential opportunities afforded by a partially

known environment against exploitation of existing
www.sciencedirect.com
knowledge. Certain observing [34] or information seeking

[35] actions that provide data on the state in the world

(e.g. the location of the agent in a maze) rather than the

state of the world (the overall connectivity of the maze)

can also be seen in this light, although it is then less clear

why these would persist even when they are clearly

deleterious [36]. Importantly, the uncertainty about the

world that is associated with curiosity and exploration is

always relative to the subject’s knowledge. Thus it intro-

duces an internal, inevitably subjective, element to sig-

nals associated with reward.

The second reason for the intrinsic nature of reward is

that it is best seen as being in the eye of the beholder. The

environment might afford different sorts of nutrient or

fluid depending on actions; whether these are rewarding

is a function of the nature and state of the subject. Indeed,

in the fields of psychology and neuroscience, the depen-

dence of reward on the motivational state of the subject

has of course long been recognized (see [37] for discus-

sion), including such extreme examples as top-down

modulation associated with the exertion of self-control

[38]. Indeed that model-based and model-free systems

are differentially sensitive to motivational manipulations

underpins many of the tests seeking to discriminate

which is in control over behaviour [6,39]. Even brain

stimulation reward shows motivational-state dependence

as a function of electrode placement [40], arguing for a

topographic mapping of motivational factors.

Critically, the seemingly clean normativity of the familiar

description of decision-making problems sketched at the

outset is complicated by this flexibility and at least three

other major factors. First, many subjects have a particular

difficulty in predicting the values that outcomes will have

under motivational states they do not currently occupy

[41�]. Second, subjects find it challenging to create uni-

tary values from multidimensional characteristics of the

outcomes of choices (even when it is as simple as only

having different probabilities and magnitudes), and thus

to realize a stable basis for comparison [42]. Third,

stability is also challenged by the observation that values

adapt rapidly to local statistics [43]. With the value aspect

of Bayesian decisions being evidently so labile, the key

task ahead lies at the next level up — determining the

principles of the mutability itself.

Who controls the controllers?
In decision-theoretic terms, notions such as intrinsic

motivation redraw the boundary between organism and

environment, placing the values of choices in the former

rather than the latter. How about other components of a

decision problem, namely the nature of state and the

menu of possible actions?

State is indeed itself an intrinsic rather than extrinsic

construct. This has a critical impact in at least two rather
Current Opinion in Neurobiology 2012, 22:1068–1074
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opposite respects. First, organisms are bombarded by

huge amounts of information, only a tiny fraction of which

is relevant to any decision being made. This means that

they face a problem of filtering or attention [44,45�],
whittling down the data deluge to its meaningful

elements. Which elements this should include is, of

course, a function of the (possibly incompletely known)

task.

Second, despite its bulk, the information in the current

sensory input itself is frequently insufficient to decide

what to do. Rather, information from the past is necessary

to construct a notion of state that is adequately predictive

of the values of actions. This is formally very well under-

stood in the context of partially observable Markov

decision problems [2], which leads to the solution of

storing judiciously selected aspects of the history of past

inputs (and possibly past actions) to disambiguate the

future. This contingent storage can be readily identified

with gated persistent working memory [24�,46].

These two classes of neurocomputational operations for

creating the intrinsic state were described in terms of

decisions themselves. That is, focusing on one input

channel, or storing a stimulus in working memory, are

elective choices. These choices have an impact on the

efficacy of the organism’s actions in its environment, and

so the rewards and punishment it receives. It therefore

becomes compelling to think [25�] of these, and indeed

many other, internal choices associated with cognition

itself in just the same terms as external actions. Internal

choices may also be associated with a set of additional

computational costs [47�], for instance if persistent

activity underlying working memory is metabolically

expensive.

This overall claim has two facets, one descriptive; the

other mechanistic. The weaker, descriptive, notion is that

it is helpful to consider the problems of cognition itself in

decision-theoretic terms. Given structural and functional

assumptions, such as the (actually notional; [48]) capacity

of working memory, or the time it takes to gate infor-

mation into it, it is possible to quantify the costs and

benefits of particular neural algorithms. We could thus

assess the quality of fit of subjects to their cognitive

environments, and, concomitantly, how this environment

is fit to the external decision-making problems [49�].
Ideas like this are abroad, for instance in trying to under-

stand task switching (MT Todd, PhD thesis, Princeton

University, 2012), where the costs of maintaining a pre-

pared task might tip the balance between employing

proactive (i.e. pre-prepared) versus reactive (i.e. unpre-

pared) control [50]. Normative formulations of paradigms

such as the stop-signal reaction time task [51] should

facilitate the process of uncovering the functional con-

straints and costs that limit prompt and flexible actions.

‘Meta-learning’, that is, the setting of parameters in such
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policies as diffusion-to-bound decision-makers [27,16], or

parameters that control exploration [52] can be similarly

accommodated. One could also at least superficially

encompass classes of policy informed by concepts from

supervised, rather than reinforcement, learning [53].

The stronger, mechanistic, claim is that the methods for

learning and expressing policies associated with RL

(potentially including model-free, model-based and Pav-

lovian processes) are as applicable to internal as external

actions. The seminal suggestions along these lines were

originally made by Todd Braver, Jonathan Cohen,

Michael Frank, Randy O’Reilly, and their colleagues,

particularly focused on the role of working memory in

cognitive control [54,55�,24�,56,25�,23,57]. They consider

an architecture in which prefrontal cortex can manipulate

sensory and motor processing in other parts of the brain on

the basis of information associated with the task that is

maintained in persistent activity. Roughly, storing infor-

mation changes the internal state, and so changes the

prevailing mapping from input to external actions, and

also internal ones. Effects on the future trajectory of

external actions lead to rewards and punishments that

can criticize and thus improve the original, internal,

storage action.

One of the test-beds for this notion has been the so-called

12AX task [24�]. Subjects see a sequence of letters or an

occasional number ‘1’ or ‘2’. They have to respond in a

special way at the end of the subsequence ‘AX’ if the most

recent number they saw was a ‘1’; or at the end of ‘BY’ if

the most recent number they saw was a ‘2’. In terms of

gated working memory, this can be solved using two

levels of storage — the most recent number (‘1’ or ‘2’),

and depending on this, the last letter if it was ‘A’ or ‘B’.

This then enables the final action to be chosen appro-

priately given a subsequent ‘X’ or ‘Y’. This is a simple

example of a partially observable problem — it is imposs-

ible to decide what to do given only the currently

observed letter or number. The original investigations

of this task involved a hard-wired policy with internal and

external actions that ran along the lines of gating [24�];
more recently, it has been shown that modified [25�] and

standard [26�] forms of model-free RL can be used to

acquire such a policy. Gated working memory has been

extended to hierarchical RL [58–61], with segregated

cortico-striatal circuits interacting with each other in a

layered manner. This provides a link to work on structural

hierarchies in the realization of cognitive control by dorsal

areas of prefrontal cortex [62,63�,64–67]. In turn, these are

tied with psychological ideas about hierarchical control

schemas [68] and general theories of computational [69]

and neural [70,71�] hierarchical RL. These latter methods

actually realize a third form of intrinsic reward, associated

with the attainment of subgoals, that is, the way that more

abstract, higher-level, actions criticize more concrete,

lower-level ones [72�].
www.sciencedirect.com
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Much of this work involves model-free forms of RL, which

certainly seems more obviously to avoid any thorny

regresses associated with explaining complex methods

for choosing external actions with equally complex

methods for choosing internal actions. However, one press-

ing direction for future research is to understand in a

hierarchical architecture how model-free policies might

realize model-based calculations of values, and even of the

uncertainties about those values that putatively determine

arbitration between model-based and model-free choice

[5]. This would then provide a substrate for model-based

selection of both internal and external actions. It could also

inform the workings of other associates of model-based

control [73], such as instructed control [74,75], or indeed

top-down control in the context of cognitive architectures

such as ACT-R [76,77]. In a more elaborated hierarchy, it

might even be that model-free control at one level depends

on model-based control at a lower level.

Tasks exploring the relationship between model-free

and model-based control [78–80] and the perversion or

palliation of either by putative Pavlovian influences [81]

are under active development. One interesting prospect

is that in these interactions will be found the basis of new

ways of looking at neurological and psychiatric dysfunc-

tion [82,83].

A rather separate direction for the instantiation of model-

based control comes from its reduction to inference in a

special form of belief net [84,85]. The idea is that the very

same probabilistic computational operations that hier-

archically arranged sensory processing cortical areas are

believed to do to model and represent complex input,

might also be performed by hierarchically arranged pre-

frontal and premotor cortical areas to model and realize

complex behavioural plans. This certainly offers a much

more straightforward link to some aspects of hierarchical

control [70], and thus to a deeper understanding of the

functional structure of cognitive control [71�].

Conclusions
Abbott [86] titled a chapter in a book on problems in

systems neuroscience ‘Where are the Switches on This

Thing’. His examples were drawn from neural systems

other than those we have considered; however, he was

really asking about how what we have considered as

cognitive actions such as selection and gating are realized,

by neuromodulation (dismissed there to rather short

order, although favoured by some of the models here;

[55�]), inhibition or gain control.

In these terms, we have considered instead how such

switches should be set. We considered new thinking on

both senses of ‘how’: what the switch-setting should

achieve; and the process by which the switches might

come to be set correctly. These involved redrawing the

interface between inside the agent and outside in the
www.sciencedirect.com
environment, placing reward inside, even though it is

normally outside, but treating the switches as if they are

outside, when they are normally inside.
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