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Abstract Evidence supports at least twomethods for learning
about reward and punishment and making predictions for
guiding actions. One method, calledmodel-free, progressively
acquires cached estimates of the long-run values of circum-
stances and actions from retrospective experience. The other
method, called model-based, uses representations of the envi-
ronment, expectations, and prospective calculations to make
cognitive predictions of future value. Extensive attention has
been paid to both methods in computational analyses of
instrumental learning. By contrast, although a full computa-
tional analysis has been lacking, Pavlovian learning and pre-
diction has typically been presumed to be solely model-free.
Here, we revise that presumption and review compelling
evidence from Pavlovian revaluation experiments showing
that Pavlovian predictions can involve their own form of
model-based evaluation. In model-based Pavlovian evalua-
tion, prevailing states of the body and brain influence value
computations, and thereby produce powerful incentive moti-
vations that can sometimes be quite new. We consider the
consequences of this revised Pavlovian view for the compu-
tational landscape of prediction, response, and choice.We also
revisit differences between Pavlovian and instrumental learn-
ing in the control of incentive motivation.
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Pavlovian cues often elicit motivations to pursue and consume
the rewards (or avoid the threats) with which they have been
associated. The cues are called conditioned stimuli or CSs; the
rewards or threats are called unconditioned stimuli or UCSs.
For addicts and sufferers from related compulsive urges, cue-
triggered motivations may become quite powerful and mal-
adaptive; they also underpin various lucrative industries
(Bushong, King, Camerer, & Rangel, 2010). Pavlovian learn-
ing and responding interacts in a rich and complex manner
with instrumental learning and responding, in which subjects
make choices contingent on expectations or past experience of
the outcomes to which they lead.

Computational analyses of instrumental learning (involved
in predicting which actions will be rewarded) have paid sub-
stantial attention to the critical distinction between model-free
and model-based forms of learning and computation (see
Fig. 1). Model-based strategies generate goal-directed choices
employing a model or cognitive-style representation, which is
an internal map of events and stimuli from the external world
(Daw, Niv, & Dayan, 2005; Dickinson & Balleine, 2002;
Doya, 1999). That internal model supports prospective assess-
ment of the consequences of taking particular actions. By
contrast, model-free strategies have no model of outside
events; instead, learning takes place merely by caching infor-
mation about the utilities of outcomes encountered on past
interactions with the environment. This generates direct rules
for how to behave, or propensities for performing particular
actions, on the basis of predictions of the long-run values of
actions. Model-free values can be described as being free-
floating, since they can become detached from any specific
outcome. The model-based/model-free distinction has been
experimentally highly fruitful (Daw, Gershman, Seymour,
Dayan, & Dolan, 2011; Fermin, Yoshida, Ito, Yoshimoto, &
Doya, 2010; Gläscher, Daw, Dayan, & O’Doherty, 2010;
Wunderlich, Dayan, & Dolan, 2012). For example, model-
based mechanisms are held to produce cognitive or flexibly

P. Dayan (*)
Gatsby Computational Neuroscience Unit, University College
London, London, UK
e-mail: dayan@gatsby.ucl.ac.uk

K. C. Berridge (*)
Department of Psychology, University of Michigan, Ann Arbor, MI,
USA
e-mail: berridge@umich.edu

Cogn Affect Behav Neurosci
DOI 10.3758/s13415-014-0277-8



goal-directed instrumental behavior, whereas model-free
mechanisms have often been treated as producing automatic
instrumental stimulus–response habits (Daw et al., 2005;
though cf. Dezfouli & Balleine, 2013). There are also inter-
mediate points between model-based and model-free instru-
mental control, which we will briefly discuss below.

What makes learning Pavlovian is that the conditioned
response is directly elicited by a CS that is predictive of a
UCS, without regard to the effect of the response on the
provision or omission of that UCS (Mackintosh, 1983). This
offers the significant efficiency advantage of substituting ge-
notypic for phenotypic search, amongst a potentially huge
range of possible actions, for an action that is usually appro-
priate to a circumstance, but at the expense of inflexibility of
response in particular cases. By contrast, with instrumental
learning, computational analyses of Pavlovian learning have,
with only few exceptions (Doll, Simon, & Daw, 2012), pre-
sumed the computation of prediction to bemodel-free, leading
to simple stored caches of stimulus–value associations.

However, here we will conduct a closer inspection of model-
free and model-based alternatives specifically for Pavlovian
learning and value predictions, attempting to meld recent
insights from affective neuroscience studies of incentive mo-
tivation. We will conclude that model-based computations can
play a critical role in Pavlovian learning and motivation, and
that this generates flexibility in at least some affective/
motivational responses to a CS (Fig. 1).

In order to illuminate the contrast between model-free and
model-based predictions in Pavlovian situations, we draw on
an illustrative experiment (which we call the “Dead Sea salt”
experiment) recently performed with rats byM. J. F. Robinson
and Berridge (2013). This experiment built on many past
demonstrations that inducing a novel body need (sodium
appetite) can reveal latent learning about salty food sources.
Those sources may not have been attractive during learning,
but can be used adaptively when a sodium need state is
induced at a later time. For example, rats suddenly put into a
salt appetite state will appropriately return to, work for, or

Fig. 1 A summary comparison of computational approaches to reward
learning. The columns distinguish the two chief approaches in the com-
putational literature: model-based versus model-free. The rows show the
potential application of those approaches to instrumental versus Pavlov-
ian forms of reward learning (or, equivalently, to punishment or threat
learning). We suggest that the Pavlovian model-based cell (colored at
lower left) has hitherto been comparatively neglected, since computation-
al approaches have tended to treat Pavlovian learning as being purely
model-free. However, evidence indicates that model-based Pavlovian
learning happens and is used for mesolimbic-mediated instant

transformations of motivation value. By contrast, instrumental model-
based systems that model the value of an outcome on the basis of memory
of its hedonic experience may require retasting or reexperiencing an
outcome after revaluation in order to update the model (see the text for
discussion and alternatives). Each cell contains (a) a brief description of
its characteristic computation, (b) an example of behavioral or neural
demonstrations in the experimental literature, and (c) a distinguishing
feature bywhich it can be recognized in behavioral or neural experimental
findings. Citations: 1Dickinson & Balleine (2010); 2Daw et al. (2005);
3M. J. F. Robinson & Berridge (2013); 4Schultz et al. (1997)
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even ingest, cues previously associated with salt that had no
particular value to them when learned about earlier (Balleine,
1994; Dickinson, 1986; Fudim, 1978; Krieckhaus & Wolf,
1968; Rescorla & Freberg, 1978; Schulkin, Arnell, & Stellar,
1985; Stouffer &White, 2005; Wirsig & Grill, 1982). Sodium
need also allows Pavlovian CS stimuli related directly to salt
to undergo a hedonic transformation, to become “liked” when
reencountered in a relevant appetite state (i.e., CS alliesthesia,
similar to alliesthesia of the salty UCS; Berridge & Schulkin,
1989).

In the Dead Sea salt experiment (depicted in Fig. 2), a
distinctive Pavlovian CS (the insertion of a lever through a
wall into the chamber accompanied by a sound) was first
paired with an inescapable disgusting UCS (M. J. F.
Robinson & Berridge, 2013). The disgusting UCS was an
intra-oral squirt of a saline solution whose high sodium chlo-
ride concentration, equivalent to that in the Dead Sea (i.e.,
triple that of ordinary seawater), made it very aversive.

Simultaneously, a different CS (a lever inserted from the
opposite side of chamber accompanied by a different sound)
predicted a different, pleasant UCS squirt of sweet sucrose
solution into the mouth. The rats approached and nibbled the
sucrose-related CS lever, but duly learned to be spatially
repulsed by the salt-related CS whenever the lever appeared,
physically “turning away and sometimes pressing themselves
against the opposite wall” (p. 283), as though trying to escape
from the repulsive CS lever and keep as far away as physically
possible. This is a prime case of appetitive versus aversive
Pavlovian conditioning (Rescorla, 1988), with the escape
response being drawn from a species-typical defensive reper-
toire, and the appetitive response from an ingestive repertoire.
Such Pavlovian responses are elicited by cues that predict
their respectively valenced outcomes, albeit somewhat
adapted to the natures of both the CS and the UCS. The
Pavlovian responses here achieved no instrumental benefit,
and would likely have persisted even if this had actually
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Fig. 2 Instant transformation of a CS’s incentive salience observed in the
Dead Sea salt study (M. J. F. Robinson & Berridge, 2013). Initial aversive
Pavlovian training of CS+ with a disgusting UCS taste produces gradual
learned repulsion. The CS+ value declines negatively over successive
CS+ pairings with an NaCl UCS (learned Pavlovian values). After
training, sudden hormone injections induce a novel state of salt appetite.
The CS value is transformed instantly, to become positive on the very first
reencounter in the new appetite state (CS+ presented alone in the crucial
test, without the salty UCS being retasted). Behaviorally, rats approach
and nibble the CS+ lever, which was previously associated with the
disgusting NaCl taste as UCS, as avidly as a different CS lever that had
previously been associated with a pleasant sucrose UCS.

Neurobiologically, mesolimbic brain activations were observed during
the combination of CS+ reencounter plus novel appetite state in dopa-
mine-related structures: ventral tegmentum, nucleus accumbens, prefron-
tal cortex, and so forth. The quantitative transformation depicted is based
on Zhang et al.’s (2009) computational model of incentive salience.
Modified from “Instant Transformation of Learned Repulsion Into Moti-
vational ‘Wanting’,” by M. J. F. Robinson and K. C. Berridge, 2013,
Current Biology, 23, pp. 282–289, copyright 2013 by Elsevier Ltd., and
from “A Neural Computational Model of Incentive Salience,” by J.
Zhang, K. C. Berridge, A. J. Tindell, K. S. Smith, and J. W. Aldridge,
2009, PLoS Computational Biology, 5, e1000437, published open access
under Creative Commons license. Adapted with permission
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decreased sucrose delivery or increased the probability of
noxious salt delivery (as in Anson, Bender, & Melvin, 1969;
Fowler & Miller, 1963; Morse, Mead, & Kelleher, 1967).

On a subsequent day, the rats were injected for the first time
ever with the drugs deoxycorticosterone and furosemide.
These mimic brain signals normally triggered by angiotensin
II and aldosterone hormones under a state of salt deprivation
(which the rats had never previously experienced). In their
new state of salt appetite, the rats were then again presented
with the lever CS, but in extinction (i.e., without the provision
of any outcome). Their Pavlovian behavior toward the CS in
the new appetite state was reassessed, as was the activation of
an immediate early gene in neurons as a signature of neural
activity (i.e., c-fos gene translation into Fos protein).

In the new condition, far from eliciting repulsion, as before,
the salt-related CS lever suddenly and specifically now be-
came nearly as strongly attractive as the sweet-related lever
(appetitive engagement with salt-associated CS increased by a
factor of more than 10, as compared with the predeprivation
training days), so that the metal CS object was avidly
approached, sniffed, grasped, and nibbled (M. J. F. Robinson
& Berridge, 2013). These novel salt-related CS responses
were again Pavlovian, achieving no instrumental benefit (the
metal lever was not salty, and pressing it had never obtained
salt). The transformation of the motivation (creating what is
known as a motivational magnet) occurred on the very first
presentations of the CS in the new state, before the newly
positive valence of the salty UCS taste had been experienced,
and so without any new learning about its altered UCS or new
CS–UCS pairing (Fig. 2). No change in behavior was seen
toward the sucrose-associated lever, nor toward a third, con-
trol, lever that predicted nothing and typically was behavior-
ally ignored. Sometimes the salt-associated CS also elicited
affective orofacial “liking” reactions in the new appetite state
that would ordinarily be elicited by a palatable taste UCS,
such as licking of the lips or paws (though the rats had never
yet tasted the concentrated NaCl as positively “liked” in their
new appetite state; M. J. F. Robinson & Berridge, 2013).

These behavioral changes consequent on first
reencountering the salt-related CS lever in the new appetite
state were not the only new observation. Neurobiologically,
activity in a collection of mesocorticolimbic brain areas was
also dramatically up-regulated by the combination of (a)
reencountering the CS+ lever simultaneously with (b) being
in the new appetite state (Fig. 2). Fos was elevated in the core
and rostral shell of the nucleus accumbens, as well as in the
ventral tegmental area (VTA) and the rostral ventral pallidum,
and in infralimbic and orbitofrontal regions of the prefrontal
cortex (M. J. F. Robinson & Berridge, 2013). At least some of
those brain areas, and particularly the neuromodulator dopa-
mine (projected from the VTA to the nucleus accumbens and
other structures), play a key role in the motivational attribution
of incentive value to Pavlovian stimuli, a process known as

incentive salience, which makes attributed stimuli (e.g., CSs
as well as UCSs) become positively “wanted.” The changes in
mesolimbic structures were not merely a function of increased
physiological drive, but rather also required the CS+ in the
new state. No significant Fos elevation at all was detected in
ventral tegmentum given just the isolated state of salt appetite
by itself, in the absence of the CS+ lever, and Fos elevation in
nucleus accumbens regions was only one-third as high (or
less), as compared to when the salt CS and appetite state were
combined together. This apparent requirement for simulta-
neous CS plus appetite state in order to activate mesolimbic
circuits maximally replicates a previous finding that firing of
neurons in ventral pallidum was also elevated only by simul-
taneous salt CS plus appetite (but again, without actually
tasting the NaCl in the deprived state; Tindell, Smith,
Berridge, & Aldridge, 2009), as compared either to the de-
prived state alone or to CS encounters alone in the normal
state. The earlier study also used a diffuse auditory CS that
could not be spatially approached, ensuring that CS value and
not elicited appetitive behavior was driving the neural activa-
tion (Tindell et al., 2009).

These new experiments helped resolve an important moti-
vational question as to whether such sudden appetitive behav-
ior toward the saltiness source was motivated simply to alle-
viate the negative distress of the salt appetite state (i.e., to
reduce aversive drive), or whether Pavlovian CSs for saltiness
actually become positively “wanted,” endowed with incentive
salience when they are reencountered in a novel, relevant
state. Pavlovian CSs that are the targets of incentive salience
capture attention, are attractive, stimulate approach, and even
elicit some forms of consumption behavior, almost as if they
had come to share some key characteristics with the food,
drug, or other reward UCSs themselves (Berridge, 2007;
Toates, 1986). We interpret the results of the Dead Sea salt
experiment as demonstrating spontaneous generation of pos-
itive Pavlovian incentive salience in a fashion that we suggest
is model-based. It also shows that the CS’s transformation of
Pavlovian motivation can be so powerful as to reverse nearly
instantly an intense earlier learned repulsion into a suddenly
positive, intense incentive “want.”

We focus on the Pavlovian reversal from repulsion to
attraction because it is an especially vivid example of state-
induced transformation in CS value. However, it is only one
exemplar of a wider and long-studied class of revaluation
changes in Pavlovian responses that we suggest demands
explanation in terms of similar model-based mechanisms,
involving stimulus–stimulus associations that preserve the
details about the identities of events that have been learned
(Bouton & Moody, 2004; Dickinson, 1986; Holland, 1990;
Holland, Lasseter, & Agarwal, 2008; Rescorla, 1988; Rizley
& Rescorla, 1972; Zener & McCurdy, 1939). In all of these
cases, individuals show that they can use learned information
about the identity of a UCS that is associated with a particular
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CS when new information is later added to that CS (e.g.,
developing a taste aversion to an absent UCS when its asso-
ciated CS later becomes paired associatively with illness;
Holland, 1990). Other related cases indicate that the incentive
salience of CSs can be similarly multiplied at the time of CS
reencounter as a result of neurobiological activations of
mesolimbic systems, induced either by sudden dopamine/
opioid pharmacological stimulation or by drug-induced neural
sensitization interposed between CS–UCS training and CS
reencounter (DiFeliceantonio & Berridge, 2012; Pecina &
Berridge, 2013; Smith, Berridge, & Aldridge, 2011; Tindell,
Berridge, Zhang, Peciña, & Aldridge, 2005; Vezina & Leyton,
2009; Wyvell & Berridge, 2000).

What is needed is a computational dissection of the way
that such Pavlovian transformations in CS-triggered motiva-
tion happen. We seek the same quality of understanding for
Pavlovian conditioning and motivation at the three levels of
computational, algorithmic, and implementational analysis
(Marr, 1982) that has emerged for instrumental conditioning
and action (Dayan & Daw, 2008; Doll et al., 2012). We take
each of these levels of analysis in turn, reassembling and
reshaping the pieces at the end.

The computational level

The computational level is concerned with the underlying
nature of tasks and the general logic or strategy involved in
performing them (Marr, 1982). Here, the task is prediction,
and we consider both model-based and model-free strategies.

A model-based strategy involves prospective cognition,
formulating and pursuing explicit possible future scenarios
based on internal representations of stimuli, situations, and
environmental circumstances1 (Daw et al. 2005; de Wit &
Dickinson, 2009; Sutton & Barto, 1998). This knowledge
jointly constitutes a model and supports the computation of
value transformations when relevant conditions change
(Tolman, 1948). Such models are straightforward to learn
(i.e., acquisition is statistically efficient). However, making
predictions can pose severe problems, since massive compu-
tations are required to perform the prospective cognition when
this involves building and searching a tree of long-run possi-
bilities extending far into the future. The leaves of the tree
report predicted future outcomes whose values are also esti-
mated by the model. Such estimates could be available in
memory gained through corresponding past experience—for
example, actually tasting salt in a novel state of sodium need.
This process of acquiring new values through relevant state

experiences is sometimes called UCS retasting (in the case of
foods) or incentive learning, in the more general instrumental
case (Balleine & Dickinson, 1991). However, in cases such as
the Dead Sea salt experiment that involve completely novel
values and motivational states, the tree-search estimates are
inevitably constrained by what is not yet known (unless
specific instructions or relevant generalization rules are pre-
scribed in advance). That is, any experienced-derived search
tree as yet contained no “leaves” corresponding to a value of
“nice saltiness.” Only nasty memories of intense saltiness
were available. A new leaf would be required somehow to
bud.

The other computational strategy is model-free. This is
retrospective, in the sense of operating purely using cached
values accumulated incrementally through repeated experi-
ence (Daw et al., 2005; Dickinson & Balleine, 2002; Doya,
1999; Sutton & Barto, 1998), typically via a temporal-
difference prediction error (Sutton, 1988). Such model-free
processes must make their future estimates on the basis of
reward values that have been encountered in the past, rather
than estimating the possible future. In the salt experiment
above, therefore, the cached CS prediction error value would
have been negative in the new appetite state, as it had been in
the past CS–UCS learning experiences. Model-free predic-
tions are free of any content other than value and are unaf-
fected if the environment or the individual’s state suddenly
changes, since the past associations were learned—at least
until new learning coming from reencounters with the CS
and UCS in the new state has adjusted the contents of the
cache. Model-free algorithms such as temporal-difference
learning make predictions of the long-run values of circum-
stances—that is, of the same quantities for whichmodel-based
learning builds a tree. They achieve this by bootstrapping—
that is, substituting current, possibly incorrect, estimates of the
long-run worth for true values or samples thereof. Model-free
estimation is statistically inefficient because of this
bootstrapping, since as at the outset of learning the estimates
used are themselves inaccurate. However, model-free values
are immediately available, without the need for complex
calculations.

The very different statistical and computational properties
(Dayan & Daw, 2008) of model-based versus model-free strat-
egies are a good reason to have both in the same brain. But
when they coexist, the two strategies can produce values that
disagree (Dickinson & Balleine, 2002, 2010). Such discrepan-
cies might be reconciled or resolved in various ways—for
instance, according to the relative uncertainties of the systems
(Daw et al., 2005). So, for example, a model-based strategy
might dominate in early instrumental trials, when its superior
statistical efficiency outweighs the noise associated with the
complex calculations, but a model-free strategymight dominate
once learning is sufficient to have overcome the statistical
inefficiency of bootstrapping. However, intermediate points

1 In the reinforcement-learning literature, what we are calling
circumstance is usually called a state. Here, we use the word circumstance
to avoid confusion with motivational states (such as hunger and thirst). In
general, motivational state forms part of the overall circumstance.
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between the strategies are also under active investigation, at in
an instrumental context, from viewpoints both theoretical
(Dayan, 1993; Dezfouli & Balleine, 2012; Doll et al., 2012;
Keramati, Dezfouli, & Piray, 2011; Pezzulo, Rigoli, & Chersi,
2013; Sutton & Barto, 1998) and empirical (Daw et al., 2011;
Gershman, Markman, & Otto, 2014; Simon & Daw, 2011). In
particular, model-based predictions might train model-free pre-
dictions either offline (e.g., during quiet wakefulness or sleep:
Foster & Wilson, 2006, 2007) or online (Doll, Jacobs, Sanfey,
& Frank, 2009; Gershman et al., 2014), or by providing pre-
diction errors that can directly be used (Daw et al., 2011).

Distinguishing Pavlovian model-free from model-based
learning The computational literature has often assumed that
Pavlovian learning is purely model-free (Montague, Dayan, &
Sejnowski, 1996), similar to stimulus–response habits (Suri &
Schultz, 1999). By contrast, we suggest here that a model-
based computation is required to encompass the full range of
evidence concerning Pavlovian learning and prediction. Our
chief reason is that the results from the Dead Sea salt exper-
iment and others cited above hint at a crucial model-based
feature: The computation must possess information about the
sensory/perceptual identity of Pavlovian outcomes, distinct
from mere previous values. Identity information is necessary
to appropriately predicting the value of a truly novel UCS that
has never yet been experienced (e.g., an intense saltiness
sensation as the UCS identity, distinct from previous nastiness
or niceness), and to apply that value change selectively to the
appropriate CS (i.e., the salt-associated lever) without altering
responses to other CSs (i.e., either the sucrose-associated lever
or the control CS lever that had been associated with nothing).
Identity information is also the most basic expression of a
model-based mechanism that predicts an outcome, rather than
just carrying forward a previously cached value. However, as
we noted above, an identity prediction does not by itself
suffice; it must also be connected to the modulation of value
by the current physiological state, so that the saltiness repre-
sentation of the UCS associated with CS could be predicted to
have positive value in a way that would make the CS become
attractive and appropriately “wanted.” This predictive trans-
formation is tricky, since the taste outcome’s value had always
been disgusting in the past. In particular, we must ask how this
Pavlovian value computation is sensitive to the current brain–
body state, even if novel, as the empirical results show that it is.

We note that several straightforward ways of making a CS
value computation sensitive to current state can be ruled out.
For example, UCS retasting could have allowed the outcome
to have been experienced as positively “liked” rather than as
disgusting, which would have updated any cognitive model-
based representations derived from value experiences
(Balleine & Dickinson, 1991; Dickinson & Balleine, 2010).
But in the actual experiment, prior to the crucial CS test,
neither the appetite nor the resulting pleasant value of the

saltiness UCS had been experienced. Ensuring this novelty
was one of the key intents of this experiment; it would be
harder to guarantee with food satiety, for instance, since
through alliesthesia, the subjects may have the experience of
eating foodwhilst relatively sated at the end of sustained bouts
of feeding. In the Dead Sea experiment, from a computational
view, the new value worth could only be inferred—that is,
recomputed anew on the basis of internal representations of
both the saltiness outcome and the novel motivational state
relevant to future value. We will have to turn to alternative
methods of computation that go beyond mere recall.

The algorithmic level

The algorithmic level concerns the procedures and represen-
tations that underpin computational strategies (Marr, 1982).
Psychologically, this is clearest for instrumental conditioning
(Daw et al., 2005; Dickinson & Balleine, 2002; Doya, 1999),
with a rather detailed understanding of model-free temporal-
difference learning (Sutton, 1988) and a variety of suggestions
for the nature of model-based calculations (Keramati et al.,
2011; Pezzulo et al., 2013; Sutton & Barto, 1998).

There are two main issues for Pavlovian conditioning. The
first concerns the nature of the predictions themselves, and the
second, how those predictions are translated into behavior.
Our focus is on the former concern; however, first we will
touch on general aspects of the latter, since Pavlovian re-
sponses to CSs are how the predictions are assessed.

Pavlovian responses and incentive salience

CSs that predict appetitive and aversive outcomes elicit a
range of conditioned responses. Appetitive predictors ordinar-
ily become attributed with incentive salience during original
reward learning, mediated neurobiologically by brain
mesolimbic systems. The Pavlovian attribution of incentive
salience let a targeted CS elicit surges of motivation that make
that CS and its UCS temporarily more “wanted” (Flagel et al.,
2011; Mahler & Berridge, 2012; Robinson & Berridge, 2013;
T. E. Robinson & Berridge, 1993). Incentive salience attrib-
uted to a CS can direct motivated behavior toward that CS
object or location, as in the Dead Sea salt experiment (with an
intensity level that is dynamically modifiable by state-
dependent changes in brain mesolimbic reactivity to
Pavlovian stimuli; Flagel et al., 2011; Saunders & Robinson,
2012; Yager & Robinson, 2013). Incentive salience attributed
to the internal representation of a UCS associated with an
external CS can also spur instrumental motivation to obtain
that UCS as forms of what is known as Pavlovian-to-instru-
mental transfer (PIT; Colwill & Rescorla, 1988; Dickinson &
Balleine, 2002; Dickinson & Dawson, 1987; Estes, 1943;
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Holland, 2004; Lovibond, 1981, 1983; Mahler & Berridge,
2012; Pecina & Berridge, 2013; Rescorla & Solomon, 1967).
One form is specific PIT, when instrumental actions are di-
rected at exactly the same appetitive outcome that the CS
predicts (e.g., the same sugar pellets are Pavlovian UCSs
and instrumental rewards). Another form is general PIT, in
which instrumental effort is directed to a different outcome
from the UCS associated with CS (though the outcome will
generally be a related one, such as when a CS associated with
one food spurs effort to obtain another food). In both cases, the
CS spurs a burst of increased motivated effort, even though
the CS may never previously have been associated with the
instrumental behavior (i.e., no stimulus–response habit or
association exists between the CS and the instrumental
action).

An aversive CS that predicts an outcome, such as a shock
UCS, may elicit freezing; it may also suppress any ongoing,
appetitively directed, instrumental responding for food or
another reward (Estes & Skinner, 1941; Killcross, Robbins,
& Everitt, 1997). This can be seen as an aversive form of
general PIT. Pavlovian anticipation of future punishments has
further been suggested to lead to pruning of the model-based
tree of future possibilities, potentially leading to suboptimal
model-based evaluation (Dayan & Huys, 2008; Huys et al.,
2012). Pruning is an influence over internal, cognitive actions,
rather than external, overt ones (Dayan, 2012).

Pavlovian values

As we noted, the Dead Sea salt experiment suggests that the
identity of the UCS (i.e., its saltiness) is predicted by the CS,
distinct from the associated previous values (i.e.,
disgustingness). Once such a model-based mechanism is pos-
ited for Pavlovian learning it may be recognized as potentially
playing a role in many CS-triggered incentive responses.
Related UCS identity representations of sucrose reward, drug
reward, and so forth, all might be implicated in Pavlovian CS
ampl i f ica t ions of mot iva t ion induced by many
neurobiological/physiological manipulations, ranging from
permanent drug-induced sensitization to sudden brain stimu-
lations of mesolimbic brain structures that magnify cue-
triggered “wanting” (e.g., dopamine/opioid drug stimulation
of amygdala or nucleus accumbens).

In the Dead Sea salt experiment, the consequences of the
prediction of identity can go one stage further, to conditioned
alliesthesia (Toates, 1986), in which the CS is subject to the
same physiological modulation as its UCS. Indeed, the
Pavlovian lever/sound CS presentation sometimes elicited
positive orofacial “liking” reactions in the new appetite state,
much as the taste of salt UCS itself later would on the same
day (M. J. F. Robinson & Berridge, 2013). By contrast, if a
model-free or pure valence-based Pavlovian mechanism had
controlled responding, the mechanism would have continued

to generate only disgust gapes and avoidance of the lever CS.
Model-based control is also consistent with findings that
Pavlovian blocking (i.e., the ability of an already-learned CS
to prevent new learning to a second CS that begins to be
simultaneously paired with the same UCS) dissipates when
the identity of the blocked CS’s UCS changes, but its valence
remains matched (McDannald, Lucantonio, Burke, Niv, &
Schoenbaum, 2011).

However, CS revaluation is not ubiquitous. For example,
sometimes in devaluation experiments, an originally appeti-
tive CS persists in stimulating appetitive efforts after its UCS
has been made worthless, consistent with model-free evalua-
tion. This is especially well documented in taste aversion
conditioning experiments involving overtraining of the food-
seeking response prior to UCS devaluation. Although we will
discuss some differences later, there are further similarities
between Pavlovian and instrumental effects of extensive train-
ing. For instance, it has been observed (Holland et al., 2008)
that the predictive capacities of first-order appetitive CSs
(which are directly associated with UCSs) are immediately
affected by UCS revaluation, whereas second-order CSs
(whose associations are established via first order CSs) are
less influenced (Holland & Rescorla, 1975; Rescorla, 1973,
1974). Such results suggested that first order CSs establish
stimulus–stimulus associations (i.e., identity predictions),
whereas second order CSs instead directly elicit responses
engendered during conditioning (via stimulus–response asso-
ciations). Indeed a related gradient of increasing CS resistance
may apply to from UCS-proximal to distal CSs in Pavlovian
serial associations, and from outcome-proximal to -distal ac-
tions in instrumental circumstances (Balleine, Garner,
Gonzalez, & Dickinson, 1995; Corbit & Balleine, 2003;
Smith et al., 2011; Tindell et al., 2005).

The characteristic of model-free values of being tied to
value but not identity of any specific outcome is especially
evident in other paradigms. For instance in some situations,
the absence of a negative-valenced event may be treated by an
individual as similar to the occurrence of a positive-valenced
event (Dickinson & Balleine, 2002; Dickinson & Dearing,
1979; Ganesan & Pearce, 1988; Holland, 2004).

Pavlovian models

Having shown that model-based Pavlovian prediction can
occur, we next consider what sort of model might be involved.

Stimulus substitution as the most elemental model-based
mechanism One simple form of model-based or sensory pre-
diction that has not been considered from an instrumental
viewpoint is Pavlov’s original notion of stimulus substitution.
In this, the predicting CS comes to take on for the subject at
least some of the sensory properties or qualities of the UCS it
predicts, via direct activation of UCS-appropriate brain
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sensory regions (Pavlov, 1927); and the CS could then natu-
rally come to take on some of the outcome’s incentive prop-
erties. Something akin to stimulus substitution is suggested
when responses that are directed to the CSs resemble re-
sponses to the UCS (e.g., pigeons pecking a key in a different
way when it predicts food rather than water; Jenkins &Moore,
1973), and perhaps also some aspects of the progressive
instinctive drift evident in Pavlovian misbehavior, in which
subjects come to manipulate the CS in some crucial ways as if
it shares properties with the UCS (e.g., as when a pig roots a
small CS object in a way that would normally be directed at a
UCS piece of food; Breland & Breland, 1961; Dayan, Niv,
Seymour, & Daw, 2006). Note, though that substitution is
never complete or literal: the CS is never actually mistaken
for its UCS, and instead the nature of a Pavlovian response is
always channeled by the CS identity as well as the UCS
identity (Holland, 1977; Tomie, 1996). For example, a hungry
rat that learns that the sudden appearance of another rat as CS
predicts quick arrival of a food UCS, does not try to eat its
fellow rat but rather responds with effusive approach, engage-
ment, social grooming and related positive social behaviors
(Timberlake & Grant, 1975). Such cases reflect CS substitu-
tion of UCS stimulus incentive properties rather than strict
identity processes (Bindra, 1978; Toates, 1986). In short, the
CS does not evoke a UCS hallucination.

Stimulus substitution might be seen as one of the simplest
steps away from a pure valence expectation, involving a very
simple associative (or mediating; Dwyer, Mackintosh, &
Boakes, 1998) prediction (Dickinson, 2012). However, it is
an efficient representational method to achieve some of the
computational benefits of model-based predictions without
requiring sophisticated previsioning machinery that depends
on such processes as working memory. At the least, it is an
important hint that there may be more than one Pavlovian
model-based mechanism.

Defocusing of modeled UCS identity representation Another
way to reconcile the facts that CSs can sometimes admit
instantaneous revaluation (as in the Dead Sea salt study), yet
sometimes resist it (as in overtraining prior to taste aversion in
the studies mentioned above), is to view the representation of
the predicted UCS as flexible, and able to change over ex-
tended learning. We call this hypothesized process model-
based UCS defocusing. For instance, over the course of ex-
tensive training, the UCS representation might become gen-
eralized, blurred or otherwise partially merged with represen-
tations of other related outcomes. This defocusing might lead
to simple representations that afford generalization by
dropping or de-emphasizing some of the particular sensory
details of the UCS. Defocusing would be similar to basic
concept learning of a category that contains multiple exem-
plars, such as of “tasty food,”whose representation evolves to
be distinct from the unique identity of any particular example.

For a more intuitive view of defocusing, imagine the com-
mon experience of walking down a street as mealtime ap-
proaches and suddenly encountering the odor of food cooking
inside a nearby building. Usually you guess the identity of
what is being cooked, but sometimes you cannot. The food
smell may be too complex or subtle or unfamiliar for you to
recognize the precise identity of its UCS. In such a case, you
have merely a defocused representation of the food UCS. But
still you might feel suddenly as hungry as if you knew the
UCS identity, and perhaps quite willing—even eager—at that
moment to eat whatever it is that you smell, despite the lack of
focus or any detailed identity knowledge in your UCS
representation.

The implications of UCS defocusing are quite profound for
the interpretation of experiments into devaluation insensitivi-
ty. Instead of resulting exclusively frommodel-free or habitual
control as result of overtraining, persistence of responding to a
CS could at least partly remain model-based. But if extensive
training led a model’s representation of the UCS outcome to
defocus, that defocused representation might escape any de-
valuation that depended on recalling the UCS’s precise
sensory-identity details (e.g., Pavlovian taste aversion condi-
tioning). The defocused representation could still support
appetitive responding (at least until the UCS was actually
obtained), despite the reduction in value of the actual
UCS—of which the subject might still show full awareness
if tested differently. Thus, dropping the particular identity taste
representation of, say, fresh watermelon CS, which has now
been paired with visceral illness as UCS, may leave a vaguer
representation of juicy pleasant food that could still motivate
appetitive effort until the previously delicious watermelon is
finally retasted as now disgusting (Balleine & Dickinson,
1991; Dickinson & Balleine, 2010). This defocusing effect
might especially result when the manipulations used to reval-
ue an outcome are essentially associative or learned, as distin-
guished from the physiological manipulation by appetite
states, drugs, or brain activations that might more directly
change CS value in parallel with UCS value, similar to the
CS result for Dead Sea saltiness (Berridge, 2012; Zhang,
Berridge, Tindell, Smith, & Aldridge, 2009). That difference
may be because associative revaluations (e.g., Pavlovian taste
aversions) layer on multiple and competing associations to the
same food UCS, whereas physiological/brain states (e.g., salt
appetite or addictive drugs) may more directly engage reval-
uation circuitry, and perhaps more readily revalue a CS’s
ability to trigger incentive salience (Berridge, 2012).

The suggestion that defocusing occurs for predictions of a
UCS should not be seen as contradicting our main proposition
that the sensory identity of outcomes is key to understanding
model-based Pavlovian learning and motivation. Instead,
defocusing is associated with the development of a sophisti-
cated, likely hierarchical, representation of the UCS and
model-based predictions thereof, which admits an enriched
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set of multiple inferences and predictions, arranged along a
spectrum of abstraction. For Pavlovian reward or threat ex-
emplars, a variety of defocused or categorical UCS represen-
tations might exist: tasty foods, quenching drinks, sexual
incentives, arousing drug reward states (e.g., amphetamine
and cocaine), hedonic/calming drug reward states (e.g., heroin
and morphine), painful events, and so on. These could be
arranged in further hierarchical layers.

The details of how this spectrum is built need future clar-
ification. However, it could proceed along the lines of
unsupervised-learning models for the development of cortical
representations of general sensory input (Hinton &
Ghahramani, 1997). Or it could be viewed as akin to the
mechanisms of cognitive abstraction in declarative model-
based systems, such as for a category of percepts (e.g., chairs
in general) derived from several specific exemplars (e.g.,
particular chairs). Even pigeons can form perceptual abstrac-
tions, such as visual categories of pictures that contain images
of trees or people, as relatively generalized concepts
(Herrnstein, 1990).

Defocusing might also apply to Pavlovian representations
of reward that influence instrumental behavior, such as in
general PIT, when presenting an appetitive CS spurs a burst
of instrumental effort to obtain other rewards (but rewards that
are usually categorically similar to the CS’s UCS; e.g., tasty
foods). Rather than depending on pure, model-free expecta-
tions of value, which is the conventional account of general
PIT, this could depend on a model-based, but defocused,
abstract, UCS prediction. For example, a CS for an ingestive
UCSmight trigger in different tests (a) specific PIT for its own
UCS food, supported by a highly detailed representation of a
reward’s unique sensory identity (e.g., a saltiness representa-
tion for the Dead Sea salt CS transformation). The food CS
might also trigger (b)a defocused, model-based, PIT for a
different food UCS based on a more abstract representation
similar to a basic concept (e.g., a tasty food lacking sensory
details that produces persistent “miswanting” after specific
UCS devaluation). This defocused model would produce
general PIT patterns of CS-triggered motivation for other food
UCSs that belong to the same defocused class as its own UCS,
but would not do so for categorically different UCSs that are
quite different (e.g., nonfood rewards such as noncaloric
liquids, drugs, sex, etc.). Next, (c) a nearly completely
defocused representation of an outcome could simply indicate
that it has good or bad valence (allowing predicted omission
of a good or bad outcome to be treated similarly to the
predicted occurrence of a bad or good outcome, respectively;
as reflected in some tests of associative blocking). This would
be close to (d) a true model-free, general PIT for a
noningestive reward, such as drug reward, sex reward, and
so forth. Both options (c) and (d) would generate equal inten-
sities of general PIT for other food UCSs and for noningestive
UCSs. However, option (c) might still retain other model-

based features that could be exposed by different tests.
Indeed, future PIT experiments might usefully explore the
possibility that there are multiple, simultaneous repre-
sentations for the same outcome, but at different degrees
of defocusing. One way to do this would be to manip-
ulate physiological states, for instance of hunger versus
thirst, and then extend the range of instrumental choices
in PIT experiments to include multiple UCSs belonging
to different categories (e.g., food vs. nonfood rewards),
and modulating CS values via relevant versus irrelevant
appetites. Such PIT experiments could make more evi-
dent the difference between model-free and defocused
model-based predictions, and also elucidate the repre-
sentational hierarchy for the latter.

One might wonder whether the most defocused or abstract
UCS prediction could be just the same as pure, model-free
value. There are reasons to think not: The key distinction is
that the range and form of generalization that underpins
defocusing can be manipulated by information that is present-
ed in contexts outside the precise learning problem. Take the
case wementioned above of smelling foodwhilst out walking.
One could learn from a newspaper report that food sold on the
street in London, say, is unhygienic. Such information might
take the London UCS out of the generalization class of other
street food, and perhaps reduce the motivating value of the CS
scent of cooked food while walking London.

Extended training studies by Holland (2004) assessing PIT
after devaluation of the UCS (see also earlier examples of
persistence after devaluation, such as Wilson, Sherman, &
Holman, 1981) might be reinterpreted as a concrete example
of defocusing. As expected from the above, extending training
rendered the instrumental response resistant to devaluation.
More surprisingly, though, UCS devaluation also failed to
reduce specific PIT, the boost to the vigor of instrumental
actions aimed at obtaining the same identical UCS as predict-
ed by the Pavlovian CS. That is, presenting the CS associated
with a devalued UCS food still enhanced effort on the instru-
mental response that had previously obtained that same food
(the PIT test was conducted in extinction, without food out-
comes actually being delivered), even though proximal con-
ditioned responses to the CS, such as head entries into the food
dish, were reduced by the devaluation. This would be consis-
tent with multiple simultaneous representations of the UCS,
with the Pavlovian one that guided instrumental behavior
being defocused when accessed by instrumental learning sys-
tems, and so unaffected by the particular, identity-specific,
devaluation procedure.

Defocusing or loss of UCS identity might also relate to
Tolman’s (1949, 1955) interpretation of the original demon-
strations that extended overtraining could induce resistance to
subsequent UCS devaluation (sometimes called “habits” for
that reason). Those demonstrations showed that a suddenly
hungry rat, which had always previously been trained while
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thirsty, continued to seek the location of a water reward in a
maze, and continued to ignore the location of an alternative
food reward that now ought to be valuable (Thistlethwaite,
1952). Tolman thought that this might involve a “narrowing”
of the cognitive map. In his own words,

even though a rat’s drive be changed from thirst to
hunger, his need-push may not, for a while, change
correspondingly. The water place may still be valenced,
even though the drive as measured by our original
definition is now one of hunger. In other words, under
some conditions, rats, and men too, do not seem to have
need-pushes which correspond to their actual drives
(and also I would remark, parenthetically, they may
often experiences valences that do not correspond to
their actual values). (Tolman, 1949, p. 368)

Although habit theorists might be tempted to view the
lagging “need-push” as a model-free propensity, an alternative
based on defocusing would be to view it as a defocused
persistence of the cognitive representation of the value of
act–outcome value in the new state, until reinstructed by value
experiences relevant to that state (e.g., food becoming more
valuable during hunger), all contained in a model-based or
cognitive-style representation (Daw et al., 2005; Dickinson &
Balleine, 2002; Doya, 1999). Such retasting opportunities lead
the rat to subsequently switch to seeking food whenever in the
hunger state, and not to persist in seeking water in the maze
(Thistlethwaite, 1952). Tolman himself provided a rather
model-based account of what he meant in terms of expectan-
cies and cognitive maps in a related article: Namely, that
thirsty overtraining with the water reward

interfered with activations of the appropriate scannings
and consequent additional discriminations and expectan-
cies necessary for the development of a pragmatic per-
formance vector with respect to the food. The already
aroused strong approach-to-water performance vector
tended, as I have put it elsewhere, to narrow the rat’s
“cognitive maps.” (Tolman, 1955, p. 36)

Although not identical to UCS defocusing, a narrowing of
a cognitive map that prevents appropriate scanning of reward
expectancies to assess new value might best be viewed in
model-based terms.

Such concepts of narrowing the cognitive map or
defocusing make it harder to distinguish between model-free
and model-based control, since they argue that the model-
based system can suffer from a form of pathology that makes
its predictions resemble those of a model-free system.
However, the concepts do not challenge the fundamental
distinction between the two systems; rather, they invite a more
discriminative set of experiments, perhaps of the flavor of
those described above.

How to characterize Pavlovian model-based evaluation
computationally? Amajor computational challenge regarding
Pavlovian valuation is to capture the change in CS value in
algorithmic form. This challenge has yet to be fully met. In
fact, a primary purpose of our writing this article is to inspire
further attempts to develop better computational models for
Pavlovian CS-triggered motivations in future. As an initial
step, Zhang, Berridge, Tindell, Smith, and Aldridge (2009)
proposed a phenomenological model of CS-triggered incen-
tive salience, as the motivational transform of CS value from a
previously learned cache of prediction errors (described in the
Appendix). But, as those authors themselves agreed, much
more remains to be done.

According to the Zhang et al. (2009) account, the cached
value of previous UCS encounters is changed by a physiolog-
ical–neurobiological factor called kappa that reflects the cur-
rent brain/body state of the individual (whether the state is
novel or familiar). The current kappa value multiplies or
logarithmically transforms a temporal difference cache asso-
ciated with a CS when the cue is reencountered. That trans-
format ion opera t ion would be media ted by the
mesocorticolimbic activations that produce incentive salience.
The Zhang model succeeds in describing quantitatively the
value transformations induced by salt appetite, other appetites
and satieties, drug-induced priming of motivation, and so
forth. However, the Zhang description is purely external to
the mechanism in the sense that a kappa modification of a
UCS value memory associated with CS captures the trans-
formed motivation output, but does not provide any hypoth-
esis about the internal algorithmic process by which the trans-
formation is achieved. Essentially, the Zhang model shows
how violence must be done to any preexisting model-free
cache of learned values, such as that accumulated by a tem-
poral difference mechanism, in order to achieve the newly
transformed value that can appear in a new state. However,
our whole point here is that the accomplishment of such
Pavlovian state transformations essentially requires a model-
based mechanism, not a model-free one, implying that a quite
different computational approach will eventually be required.
A comprehensive algorithmic version of the model-based
Pavlovian computation has yet to be proposed.We hope better
candidates will be proposed in coming years to help fill this
important gap.

The implementational level

Marr’s (1982) implementational level concerns the way that
the algorithms and representations are physically realized in
the brain. A wealth of data have been collected from rodents
and human and nonhuman primates as to the neural systems
involved in model-based and model-free instrumental sys-
tems; given the observation that Pavlovian systems require
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and exploit predictions of long-run utility in closely related
ways, one might hope that these results would generalize.

Very crudely, brain regions such as prefrontal cortex and
the dorsomedial striatum, as well as the hippocampus and the
default network might be involved in model-based prediction
and control (Hassabis, Kumaran, Vann, & Maguire, 2007;
Johnson & Redish, 2007; Pfeiffer & Foster, 2013; Schacter,
Addis, & Buckner, 2008; Schacter et al., 2012; Spreng, Mar,
& Kim, 2009; van der Meer, Johnson, Schmitzer-Torbert, &
Redish, 2010). The dopamine system that originates in ventral
tegmentum (VTA) and substantia nigra pars compacta (SNc),
and its striatal targets, perhaps especially in dorsolateral
neostriatum, have sometimes been suggested as being chiefly
involved in model-free learning (Balleine, 2005; Daw et al.,
2011; Dickinson & Balleine, 2002; Gläscher et al., 2010;
Hikosaka et al., 1999; Killcross & Coutureau, 2003;
Samejima, Ueda, Doya, & Kimura, 2005; Simon & Daw,
2011; Wunderlich et al., 2012). This has also been contested,
and will be examined below.

Some paradigms, notably Pavlovian–instrumental transfer
(PIT), provide an additional and more selective view. It is
known from rodents that there is a particular involvement of
circuits linking the amygdala and the accumbens in PIT, with
special roles for the basolateral nucleus of the amgydala and
possibly the shell of the accumbens in specific PIT, which is
the form of PIT related to model-based evaluation, and the
central nucleus of the amygdala and possibly the core of the
accumbens in general PIT, which some regard as closer to
model-free evaluation (Balleine, 2005; Corbit & Balleine,
2005; Corbit, Janak, & Balleine, 2007; Hall, Parkinson,
Connor, Dickinson, & Everitt, 2001; Holland & Gallagher,
2003; Mahler & Berridge, 2012). A related circuit has been
implicated in human PIT (Bray, Rangel, Shimojo, Balleine, &
O’Doherty, 2008; Prevost, Liljeholm, Tyszka, & O’Doherty,
2012; Talmi, Seymour, Dayan, & Dolan, 2008). Note, though,
our discussion above implying that general PIT might be
reinterpreted as a form of defocused, model-based, specific
PIT. Certainly general PIT undergoes similar transformations
that enhance or suppress the ability of valued CSs to trigger
“wanting” surges in response to neurochemical stimulations
of either nucleus accumbens (shell or core) or central amyg-
dala (Dickinson, Smith, & Mirenowicz, 2000; Mahler &
Berridge, 2012; Pecina & Berridge, 2013; Wassum, Ostlund,
Balleine, & Maidment, 2011; Wyvell & Berridge, 2000).
Defocusing would force us to draw rather different conclu-
sions from these various anatomical studies into the substrates
of different control systems (Balleine, 2005).

Where in the brain does Pavlovian motivational revaluation of
CS occur? The answer must accommodate the ability of
Pavlovian model-based systems to calculate the values of
predicted outcomes under current motivational states. Some
might suggest that such prospective revaluation should occur

at a cortical level, perhaps involving ventromedial regions of
prefrontal cortex. Quite a wealth of evidence indicates that
orbitofrontal and related prefrontal areas are involved in
model-based predictions of the values associated with stimuli
and their predictors, in cases in which value has been obtained
by previous experiences in relevant states (Boorman, Behrens,
Woolrich, & Rushworth, 2009; Camille, Tsuchida, & Fellows,
2011; Jones et al., 2012; McDannald et al., 2012; O’Doherty,
2011) or even in the apparently purely model-based task of
assigning value to imagined foods (Barron, Dolan, & Behrens,
2013). These areas are apparently not so involved instrumen-
tally in directly assigning preexperienced values to current
actions (Camille et al., 2011; O’Doherty, 2011), although they
can potentially support stimulus-based rather than action-
based choice (O’Doherty, 2011).

The orbitofrontal cortex was one of the areas in the rat that
was found in the Dead Sea salt experiment to have greatly up-
regulated activity in test trials following induction of salt
appetite, when the CS lever was reencountered as being
attractive in the new appetite state (M. J. F. Robinson &
Berridge, 2013). However, the fact that animals whose neo-
cortex has been surgically removed can still show revaluation
of learned relations in the face of a new salt appetite (Wirsig &
Grill, 1982) suggests that cortex (including orbitofrontal cor-
tex) is at least not necessary for this revaluation.
Preprogrammed subcortical sophistication for Pavlovian re-
valuation could be highly adaptive in realizing the most fun-
damental needs of an organism; the questions then become the
range of outcomes for which subcortical transformation is
possible (e.g., different sorts of natural appetite/thirst states,
drug-induced states or beyond) and the identity of the regula-
tory circuitry that interfaces with mesolimbic circuitry, at least
for the monitoring of natural need states (hypothalamus, etc.;
Berthoud &Morrison, 2008; Gao & Horvath, 2008; Krause &
Sakai, 2007). The potentially subcortical nature of Pavlovian
motivation transformations may have implications for the
degree of sophistication in the model-based previsioning—is
it purely temporally local for immediately paired CS–UCS
associations (e.g., depending on forms of stimulus substitu-
tion), or can it also bridge stimuli and time, as in richer forms
of secondary conditioning? How defocused are these subcor-
tical predictions? Can they contribute at all to instrumental
model-based evaluation?

Role of mesolimbic dopamine? Perhaps the most contentious
contributor to evaluation is the neuromodulator dopamine.
Dopamine neurons in the midbrain VTA project to the nucleus
accumbens (ventral striatum) and the prefrontal cortex, and
dopamine neurons in the adjacent SNc project to the
neostriatum (dorsal striatum), with various subregional pat-
terns of further localization. Many of these dopamine systems
have been implicated in reward, though argument continues
over precisely which reward-related functions are performed.
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As a brief summary of evidence, dopamine neurons projecting
to nucleus accumbens and neostriatum respond similarly to
rewards and to learned Pavlovian and instrumental cues
(Montague et al., 1996; Morris, Nevet, Arkadir, Vaadia, &
Bergman, 2006; Roesch, Calu, & Schoenbaum, 2007;
Schultz, 1998, 2006; Schultz, Dayan, & Montague, 1997),
and dopamine release in animals and humans is linked to
rewards and cues in both striatum and nucleus accumbens
(Boileau et al., 2006; Darvas & Palmiter, 2010; de la Fuente-
Fernández et al., 2002; Kishida et al., 2011; Phillips, Stuber,
Heien, Wightman, & Carelli, 2003; Roitman, Stuber, Phillips,
Wightman, & Carelli, 2004; Volkow, Wang, Fowler, &
Tomasi, 2012; Wanat, Willuhn, Clark, & Phillips, 2009;
Wise, 2009; Zaghloul et al., 2009). Animals readily learn to
emit actions in order to activate dopamine neurons in the VTA
and SNc (Nieh, Kim, Namburi, & Tye, 2013; Rossi,
Sukharnikova, Hayrapetyan, Yang, & Yin, 2013; Witten
et al., 2011). There is also a rich pattern of connections from
these structures to the ventral pallidum and to them from the
amygdala, as well as with other subcortical nuclei, such as the
lateral habenula and rostromedial tegmental nucleus (RMTg)
and the serotonergic raphe nucleus, and also pathways linking
them to the hypothalamus (Moore & Bloom, 1978; Swanson,
1982). Furthermore, the activity of dopaminergic cells, their
release of dopamine, and/or the longevity of the
neuromodulator at its targets are modulated by almost all
addictive drugs (Hyman, Malenka, & Nestler, 2006; Koob &
Volkow, 2010; Volkow et al., 2012). Finally, repeated expo-
sure to addictive drugs can more permanently sensitize
dopamine-related circuits in susceptible individuals in ways
that enhance neural responses to learned reward cues (Leyton
& Vezina, 2012; T. E. Robinson & Berridge, 2008; T. E.
Robinson & Kolb, 2004; Thomas, Kalivas, & Shaham,
2008; Vezina & Leyton, 2009; Wolf & Ferrario, 2010).

Dopaminergic neurons and many of their targets are mod-
ulated by neuropeptide and hormone signals such as cortico-
tropin releasing factor or ghrelin released by the hypothalamus
or the periphery that can report on current states of stress or
appetite (e.g., feeding-related) motivational state (Korotkova,
Brown, Sergeeva, Ponomarenko, & Haas, 2006; Zigman,
Jones, Lee, Saper, & Elmquist, 2006). The VTA and nucleus
accumbens were notable among the structures recruited at the
moment of salt cue reencounter during appetite in the M. J. F.
Robinson and Berridge (2013) study, raising the possibility of
dopamine activations as part of the mechanism for sudden CS
transformation from repulsive to “wanted.” That possibility is
made plausible because elevation of dopamine levels in nu-
cleus accumbens shell or core directly enhances the degree of
“wanting” triggered by reward CS above any previously
learned levels in general PIT behavior, and in limbic neuronal
firing to the CS in ventral pallidum, a chief output structure for
nucleus accumbens (Pecina & Berridge, 2013; Smith et al.,
2011; Tindell et al., 2005).

Much computational effort in the past decade focused on
understanding these roles of dopamine has focused on its
possible involvement in model-free learning, especially in
the form of a temporal-difference prediction error for future
reward that the phasic activity of dopamine neurons strikingly
resembles (Barto, 1995; Berridge, 2007; Mahler & Berridge,
2012; Montague et al., 1996; Schultz, 2006; Schultz et al.,
1997). One view suggests that a phasic dopamine pulse is the
key teaching signal for model-free prediction and action learn-
ing, as in one of reinforcement learning’s model-free learning
methods: the actor critic (Barto, Sutton, & Anderson, 1983),
Q-learning (Roesch et al., 2007; Watkins, 1989), or SARSA
(Morris et al., 2006; Rummery & Niranjan, 1994). The same
dopamine signal can act to realize incentive salience, either as
cached value or as Dead Sea type transformation (McClure,
Daw, & Montague, 2003; Zhang et al., 2009).The actor-critic
is of particular interest (Li & Daw, 2011), since, as studied in
conditioned reinforcement (Mackintosh, 1983) or escape from
fear (McAllister, McAllister, Hampton, & Scoles, 1980), it
separates out circumstance-based predictions (in the critic)
from action contingency (in the actor). There is evidence for
circumstance-based and action-based prediction errors in dis-
tinct parts of the striatum (O’Doherty et al., 2004), although
the action-based errors were value-based (associated with a
variant of a state–action prediction called a Q-value), rather
than purely action-based (as in the actor portion of the actor-
critic; Li & Daw, 2011). The fact that the critic evaluates
circumstances rather than actions under particular circum-
stances makes it a natural candidate as a model-free predictor
that can support both Pavlovian and instrumental condition-
ing, although it remains to be seen whether dual value- and
action-based routes to Pavlovian actions also exist, with the
latter being a stamped-in stimulus–response mapping (analo-
gous to the instrumental actor). Some complications do arise
from the spatial heterogeneity for valence coding that has
particularly been observed in the VTA (but see Matsumoto
& Hikosaka, 2009), with one group of dopamine neurons
being excited by unexpected punishments (rather than being
suppressed, as might naively be expected for a prediction error
for reward; Brischoux, Chakraborty, Brierley, & Ungless,
2009; Lammel, Lim, &Malenka, 2014; Lammel et al., 2012).

Equally, some tonic aspects of dopamine release have been
suggested to mediate the vigour of action (for instance, reduc-
ing reaction times) or the exertion of effort (Niv, Daw, Joel, &
Dayan, 2007; Salamone & Correa, 2002). Normal levels of
tonic dopamine release are necessary for realizing both appe-
titive and aversive preparatory motivations elicited by stimu-
lation of the accumbens (Faure, Reynolds, Richard, &
Berridge, 2008; Richard & Berridge, 2011), and are involved
in at least amplifying phasic bursts of motivation triggered by
CS encounters, such as in appetitive PIT (Corbit et al., 2007;
Murschall & Hauber, 2006). Appealingly for model-free
learning theorists, the straightforward integration over time
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of the phasic prediction error formally signals the average
reward (Daw, Kakade, & Dayan, 2002; although tonic and
phasic dopamine activity may be under somewhat separate
control—see Floresco, West, Ash, Moore, & Grace, 2003;
Goto & Grace, 2005), and it is not clear whether there is also
a model-based contribution to this average. The average re-
ward reports the opportunity cost for the passage of time, and
has thus been interpreted as being key to the instrumental
choice of vigor (Niv et al., 2007).

However, a model-free-learning interpretation of dopamine
mesolimbic function cannot be the whole story here, either
(Berridge, 2007, 2012). This is indicated by motivational
transformation results such as those of the Dead Sea salt
experiment and some others mentioned above. Thus, the
highly significant up-regulation in activity in VTA and target
structures such as nucleus accumbens triggered by the CS
following the induction of salt appetite suggest that dopamine
release might also be dramatically greater, potentially licens-
ing the excess behavior directed toward the conditioned stim-
ulus. We argued above that this revaluation is the preserve of
Pavlovian model-based reasoning, and cannot be accom-
plished by a model-free system. This then suggests that dopa-
mine release can actually reflect model-based evaluations
rather than (at least only) model-free predictions.
Similar conclusions might be drawn from the finding
that inactivating the VTA disrupts both specific and
general PIT (Corbit et al., 2007).

Does the involvement of dopamine in model-based CS
evaluations, which had traditionally been thought of instru-
mentally as being associated with model-free calculations,
again imply a critical difference between mechanisms of
Pavlovian and instrumental model-based evaluation? There
are some reasons for thinking so. For instance, Dickinson and
Balleine (2010) postulated that retasting the new value of an
outcome in any novel motivational state is necessary for
instrumental revaluation to discover its changed value, and
retasting of food while hungry in the maze was also able to
revalue seeking of food in the original Thistlethwaite (1952)
water/food revaluation experiments discussed by Tolman
(1949, 1955). This form of instrumental incentive learning
appears to be independent of dopamine, proceeding normally
under dopamine receptor blockade (Dickinson & Balleine,
2010; Dickinson et al., 2000; Wassum et al., 2011). By con-
trast, in the Pavlovian case, revaluation does not require
retasting, and is powerfully modulated by dopamine (the CS
value is suppressed by blockade, and magnified in value by
dopamine-stimulating drugs).

Furthermore, endogenous features of an individual’s dopa-
mine systems may be associated with the differences among
individuals in the way they assign motivational value to a
particular Pavlovian CS, such as a discrete distal cue that is
highly predictive of reward UCS (Flagel et al., 2011; Saunders
& Robinson, 2012; Yager & Robinson, 2013). For example,

Flagel et al. (2011) measured the release and role of dopamine
in two groups of rats: “sign-trackers,” whose motivated re-
sponses directionally targeted to the discrete are Pavlovian
CS, and “goal-trackers,” who appear to eschew targeting
Pavlovian incentive salience to that CS, and instead approach
only the dish that delivers UCS (potentially mediated also by
instrumental expectations or by habits). Only the sign-trackers
showed a substantial elevation in dopamine release to the
predictive CS that attracted them; and their behavior was most
sensitively influenced by dopamine antagonists. If the goal-
trackers are indeed more subject to instrumental model-based
or to habitual model-free, control, then this absence of dopa-
mine effects contrasts with the dopamine dependence of
Pavlovian model-based control of incentive salience that we
documented above.

In the end, despite these differences, the case is still open.
Take, for instance, instrumental incentive learning. Daw et al.
(2005) suggested that the apparent requirement for the out-
come to be retasted in order to see an effect of devaluation,
could instead reflect involvement of model-free habits that
compete with a more readily revalued model for behavioral
control. Their idea is that instrumental model-based prospec-
tive evaluation, just like Pavlovian prospective evaluation, has
access to the new value of the UCS. However, because of the
change in motivational state, the instrumental evaluation is
also aware that it is less certain about this value because
novelty promotes uncertainty. Retasting duly reduces that
uncertainty. By contrast, model-free predictions know about
neither the new value nor the associated new uncertainty.
Thus, if model-free and model-based systems compete ac-
cording to their relative certainties, the model-free habit, and
thus devaluation insensitivity, will dominate until retasting.
However, Pavlovian model-based predictions might be less
uncertain than instrumental ones, since they do not have to
incorporate an assessment of the contingency between action
and outcome, and so may more easily best their model-free
counterparts. Thus, there might still be only one model-based
knowledge system, but two control systems or different ways
of translating knowledge into action: instrumental act–out-
come performance (disrupted by uncertainty) and Pavlovian
motivation (less affected by uncertainty in this instance). The
route by which this model-based information takes its
Pavlovian effects could involve corticolimbic inputs from
prefrontal cortex to the midbrain dopamine system. Potential
experiments might test this idea, for instance by manipulating
such inputs and examining whether instant CS revaluation
effects such as the Dead Sea salt study still obtain.

More generally, there is increasing evidence for rich inter-
actions between model-free and model-based predictions
(Daw et al., 2011; Gershman et al., 2014; Simon & Daw,
2011). For instance, the activation of VTA dopamine neurons
to a saltiness-related CS, if observed in salt appetite condi-
tions, could arise from a model-based system as part of the

Cogn Affect Behav Neurosci



way that this putatively trains model-free predictions (Doll
et al., 2009; Foster & Wilson, 2006, 2007; Gershman et al.,
2014). There may still be differences in detail—for instance,
model-based influences over dopamine may involve the VTA
more than the SNc. These remain to be explored.

Synthesis

We started with an experimental example of instant CS revalu-
ation in the light of prevailing motivational states that poses an
important challenge to standard computational accounts of learn-
ing and performance in Pavlovian conditioning. Our suggested
answer is in one way rather simple: directly importing model-
based features that are standard explanations in instrumental
conditioning into what have been sometimes treated as
purely model-free Pavlovian systems—that is, including
for Pavlovian predictions what has long been recognized
for instrumental instrumental predictions. The revalua-
tion is exactly what a model-based system ideally could
produce—that is, reporting the current value of a pre-
dicted outcome. Key questions that remain include the
circumstances under which this recomputation would
seize control, the neural mechanisms responsible, and
how direct CS modulation is achieved without necessar-
ily requiring tasting of an altered UCS.

However, looked at more closely, things get more interest-
ingly complicated in at least two ways. First, the nature of the
computations and algorithms underlying Pavlovian model-
based predictions remain open for investigation and future
modeling. We discussed evidence hinting that these might
not be completely shared with instrumental model-
based predictions. The apparently embellished scope of
Pavlovian model-based calculation includes such things
as instant revaluation, in both normal and decorticate
subjects, putatively involving sensory-identity represen-
tations of a UCS and the possibility of defocusing that
representation into a categorical one along the spectrum
between specific and general predictions. These ideas
enrich our picture of model-based systems (potentially
even applying in some respects to instrumental model-
based mechanisms).

Second, consider the conclusion that the results of the salt
appetite experiment or other mesolimbic manipulations of cue-
triggered incentive salience indeed depend on model-based cal-
culations. This implies that Pavlovian model- and identity-based
predictions burrow directly into what has previously been
thought of as the neurobiological heart of model-free and purely
valence-based predictions (i.e., a temporal difference prediction
error mechanism)—namely, dopamine activity and release in
nucleus accumbens and related mesostriatal and mesolimbic
circuitry. It therefore becomes pressing to reexamine more

closely the role of dopamine brain systems in reward learning
and motivation. That might include tipping the balance between
model-based and model-free Pavlovian predictions. Such issues
might be studied, for instance, using manipulations such as the
reversible pre- and infralimbic lesions or dorsomedial and dor-
solateral neostriatal manipulations (Balleine & O’Doherty, 2010;
DiFeliceantonio, Mabrouk, Kennedy, & Berridge, 2012;
Killcross & Coutureau, 2003; Smith, Virkud, Deisseroth, &
Graybiel, 2012) that have been so revealing for instrumental
conditioning.

In summary, the present computational analysis invites a
blurring between model-free and model-based systems and
between Pavlovian and instrumental predictions. What is
clearly left is that there is significant advantage to having
structurally different methods of making predictions in a
single brain; that there is a critical role for pre-programming
in at least some methods for making predictions; that the
attention to Pavlovian model-based predictions makes even
more acute the question of the multifarious nature of exactly
what might be predicted; and finally that all these issues are
played out over a range of cortical and sub-cortical neural
systems whose nature and rich interactions are presently be-
coming ever more apparent.
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Appendix: Model-free and model-based computations

In this appendix, we provide a very brief description of two
classes of computational approaches to instant Pavlovian re-
valuation. One is the algorithmic suggestion from Zhang et al.
(2009), and the other comes from the computational frame-
work of reinforcement learning (Sutton, 1988).

Both methods start from the observation that the value V(st,
m) of a circumstance st, which is signaled by a CS under a
motivational statem, is intended to be the expected long-term,
discounted future utility available starting from that circum-
stance:

V st;mð Þ ¼ E
X

τ ¼ 0

γτr st þ τ ;mð Þ
" #

;

where γ is a temporal-discount factor and r(s,m) is the net
utility in state m of any UCS that is provided under
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circumstance s. If we only consider a single state m and write
rt = r(st,m), and drop the expectation for simplicity, then we
have

V st;mð Þ ¼ rt þ γrtþ1 þ γ2rtþ2 þ…≜rt þ γV stþ1;mð Þ;
ðA1Þ

where the last equality holds if the prediction at the next time
step is correct. This is a consistency condition. Model-free
temporal-difference learning (Sutton, 1988) uses the discrep-
ancy between the right and left sides of this equation,

δt ¼ rt þ γV stþ1;mð Þ − V st;mð Þ;

as a prediction error signal to criticize the original estimate,
and so specifies

V st;mð Þ←V st;mð Þ þ δt; ðA2Þ

where is a learning rate. Albeit in the absence of consider-
ation of revaluation experiments, McClure et al. (2003) sug-
gested that δt has the correct properties to act as an incentive
salience signal. Importantly, the quantities rt,st,st + 1 that
determine δt are all available directly from the input; this is
why temporal-difference learning can proceed without a mod-
el of the world. However, it is apparent that δt is tied to a
particular motivational state. If the state changes fromm to em ,
the model-free learning mechanism provides no hint as to how
to change V(st,m) to V st;emð Þ .

The kappa transformation of prediction error cache
into incentive salience

The kappa transformation accomplishes an instant revaluation
of a Pavlovian CS (Zhang et al., 2009). It is based on modu-
lating a particular sort of cached model-free prediction by a
factor called κ. According to one version, the incentive sa-

lience value eV st;emð Þ of a Pavlovian CS that defines the
circumstance st at the moment of reencounter is instantly
adapted from Eq. A1 to

eV st;em
� �

¼ rt � κþ γV st þ 1;mð Þ; ðA3Þ

where κ is a dynamic physiological factor that provides a
phenomenological model of the effect of the new state em of
the brain and body associated with that outcome. Given suit-
able values for the various factors, it is possible to explain the
results for experiments that exhibit instant revaluation.

Model-based learning and representations of outcome

The model-free learning rule of Eq. A2 has two key characteris-
tics. First, it is written purely in terms of utilities or estimates of
the sums of those utilities, and so retains no information about the

UCS identities that underlie them. This is its central model-free
characteristic. Second, it ensures that the prediction is of the full,
long-term reward consistent with starting from that circumstance.
This is why themodel-free system is formally no less patient than
the model-based system.

Equation A3 is implicitly at variance with both of these
characteristics. First, in order for the κ transformation to
operate correctly, it is essential that the identity of the reward
that is immediately expected be known, so that its appropriate
κ can be applied. This is more information thanmere utility. In
fact, it is necessary for κ m;emð Þ to be a function of both the
original m and current em motivational states for the value
transformation to be correct. Second, it is necessary to be able
to split off the immediate expected utility r_t from the full,
model-free, prediction V(s_t,m) of Eq. A1, and also to be able
to know which next circumstance st + 1 must also be possible to
expect, in order to compute the γV(st + 1,m) component in the
equation. That is, it is necessary to know the function r(s,m) as
well as the transition function Txy = P(st + 1 = y|st = x) (where the
latter is appropriate to a dynamic structure called aMarkov chain
[Puterman, 2009], which puts the stochasticity back into Eq.A1),
which indicates how likely each successor state y is, starting from
state x. These exactly constitute a model of the domain.

If one had such a model, one could write Eq. A1 in the new
state em exactly as

V st;em
� �

¼ r st;em
� �

þ
X

stþ1

Tststþ1r stþ1;em
� �

þ
X

stþ2

T2
ststþ1

r stþ2;em
� �

þ ::::

ðA4Þ
The subfield of model-based reinforcement learning

(Sutton & Barto, 1998) provides a number of methods for
evaluating Eq. A4 explicitly—for instance, by direct construc-
tion or imagination of the sum over future possibilities for st+1
and st + 2, via Tstst þ 1

and T2
stst þ 1

, and so forth. It is because

the model can use a current estimate of the transition model
Tstst þ 1

that it can report correctly the effect of changes in the
transition contingencies in the environment. Equally, because
the model knows the identity of the outcomes associated with
the circumstances st+τ, it can report the utilities r st þ τ ;emð Þ
according to the current motivational state (as in the Dead Sea
salt experiment), provided that cortical structures such as the
orbitofrontal cortex or subcortical mechanisms do not need
learning in state em (either by retasting or instrumental incen-
tive learning) for such reports to be accurate.

Equation A3 can be seen as a heuristic method for calcu-
lating an approximate model-based prediction in which
model-free values are used to replace the utility contributions
from all imagined circumstances beyond st + 1. This heuristic
leads to a method that lies somewhere betweenmodel-free and
model-based, and is essential for searching substantial-sized
domains (which, indeed, is common in planning for games
such as chess; Campbell, Hoane, & Hsu, 2002).
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