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Pavlovian predictions of future aversive outcomes lead to behavioral inhibition, suppression, and withdrawal. There is
considerable evidence for the involvement of serotonin in both the learning of these predictions and the inhibitory
consequences that ensue, although less for a causal relationship between the two. In the context of a highly simplified
model of chains of affectively charged thoughts, we interpret the combined effects of serotonin in terms of pruning a
tree of possible decisions, (i.e., eliminating those choices that have low or negative expected outcomes). We show how
a drop in behavioral inhibition, putatively resulting from an experimentally or psychiatrically influenced drop in
serotonin, could result in unexpectedly large negative prediction errors and a significant aversive shift in
reinforcement statistics. We suggest an interpretation of this finding that helps dissolve the apparent contradiction
between the fact that inhibition of serotonin reuptake is the first-line treatment of depression, although serotonin
itself is most strongly linked with aversive rather than appetitive outcomes and predictions.
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Introduction

Serotonin (5-hydroxytryptamine [5-HT]) is a neuromodu-
lator that appears to play a critical role in a wealth of
psychiatric conditions, including depression, anxiety, panic,
and obsessive compulsions. However, despite the importance
of serotonergic pharmacotherapies, notably selective seroto-
nin reuptake inhibitors (SSRIs), the roles that serotonin plays
in normal and abnormal function are still mysterious. We
start from three particular findings. First, 5-HT is involved in
the prediction of aversive events, possibly as a form of
opponent [1–3] to dopamine [4–11]. Second, 5-HT is involved
in behavioral inhibition [12–14], preventing or curtailing
ongoing actions in light of predictions of aversive outcomes.
The third finding is the collection of psychopharmacological
data implicating 5-HT in animal models of depression and
anxiety [15–17], together with the fact that depleting 5-HT
(by dietary depletion of its precursor, tryptophan) in human
subjects who have recovered from depression, can reinstate
an acute, at times fulminant, re-experience of subjective
symptoms of the disease, as assessed by various rating scales
[18–21]. Furthermore, while SSRIs are used in the treatment
of depression, genetically induced, constitutive decreases in
the efficiency of 5-HT reuptake are a risk factor for
depression [22–24]. These findings are hard to connect: the
second fact seems orthogonal to the first and third, which are
themselves in apparent contradiction. If 5-HT is really
involved in predicting aversive outcomes, then depleting it
should surely have positive rather than negative affective
consequences.

We suggest that the missing link comes from considering
the interactions between Pavlovian predictions and ongoing
action selection. The interaction is seen in conditioned
suppression [25], a standard workhorse test for aversive
predictions. Animals are trained to emit appetitive instru-
mental actions (such as pressing a lever for reward), and to
associate (by classical conditioning) a light with a shock.
Presentation of the light during instrumental performance
reduces the rate at which animals emit those responses.
Neither the theoretical nor the neurobiological status of this
interaction is completely resolved, though there is some

evidence of the involvement of 5-HT in the nucleus
accumbens in its realization [26–28].
Here, we treat a subset of the inhibitory processes

associated with Gray’s behavioral inhibition system (BIS)
[7,13,29,30] in terms of what might be called a preparatory
Pavlovian response. Consummatory Pavlovian responses are
(evolutionarily) pre-programmed reactions to the presence of
affectively significant outcomes such as food, water, or
threats. Preparatory Pavlovian responses are similarly pre-
programmed responses to predictions of those outcomes.
Even though the predictions are learned, the responses are
not, and may therefore be behaviorally inappropriate in
certain circumstances [31,32]. For our purposes, and as long
noted by Deakin and Graeff [7], the most important
preparatory Pavlovian response to a prediction of a
(sufficiently distant) threat [30] is inhibition, in the form of
withdrawal or disengagement. This explicitly links the first
two findings discussed above, as the inhibition is directly
associated with aversive predictions.
To explore the consequences of reflexive, direct inhibition

of action for learning in affective settings, together with the
repercussions when 5-HT is compromised, we built a highly
simplified model that sought to isolate these effects from
more general learning effects. More specifically, we built a
model of trains of thoughts. In our treatment, we considered
thoughts as actions that lead from one belief state to the next.
Trains of thought gained value through their connections
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with a group of terminal states that were preassigned either
positive or negative affective values. 5-HT directly inhibited
chains of thought predicted to lead toward negative terminal
states. Our model can be seen in terms of 5-HT’s pruning of a
decision tree of outcome states and choices [33,34].

We argue that the results on tryptophan depletion (TrD)
above now emerge when considering the consequences of this
reflexive behavioral inhibition on ongoing learning about the
world, and on subsequent action choice and predictions. The
most notable effect in the model is a critical bias toward
optimistic valuation. That is, states and actions with
potentially negative consequences are under-explored and
incorrectly (over)-valued because of the reflexive inhibition.
When inhibition fails, though, which is the last of the three
issues mentioned above, there are two adverse consequences.
First, the inhibition is no longer a crutch for instrumental
action choice, so subjects have to learn to avoid potentially
bad situations rather than being able to rely on this reflexive
mechanism. Second, due to a mismatch between policy and
value function, characteristic inconsistencies between the
predicted and actual values arise, with the actual values
encountered being more negative than predicted, though also
actually more realistic. This mismatch between policy and
value function also leads to an overall reduction in rewards
obtained. Boosting 5-HT in the model again restores the
status quo. Of course, this highly simplified model cannot
possibly, by itself, accommodate all the diverse and confusing
roles of 5-HT. Nevertheless, it replicates some prominent
behavioral and pharmacological facets of depression and
anxiety in humans and animal models, which we return to in
the Discussion.

The next section defines the model of trains of thought
more formally. The Results section considers normal (hence
biased) learning, and the consequences of impairments to 5-
HT processing. We save for the Discussion a broader
discussion of data and theories pertaining to 5-HT.

Methods

The Model: Trains of Thought
Figure 1 illustrates our underlying model of trains of

thought. It is intended to emphasize a role for 5-HT in
behavioral inhibition, and is therefore couched at an abstract
level. Throughout, we will equate thoughts with actions, and
revisit the more general action setting later. We initially focus
on the effect of one inhibitory reflexive action in the context
of otherwise fixed actions (a fixed policy).

A train of thoughts starts at one of a set of internal belief
states (Iþ, I�), may proceed through more such states, and
ends in one of set of terminal outcome states (Oþ, O�). The

connectivity between belief states is sparse, with states Iþ
leading preferentially to other states in Iþ and outcome states
Oþwith positive values; and states I� leading preferentially to
other states in I� and outcome states O� with negative values
(red arrows), though each could also lead to states of opposite
‘‘sign’’ (black arrows in Figure 1). In addition, trains of
thought can be inhibited by 5-HT (see below). In this simple
model, the value of an internal state is the average value of
the terminal states to which it ultimately leads.
More formally, the model is a form of Markov decision

process (see [35]), with four sets of sparsely interconnected
states (I6, O6). Two sets, Oþ and O� (each with 100 elements
in the simulation) are associated respectively with positive
(r(s) � 0, s 2 Oþ) and negative affective values (r(s) � 0, s 2 O�);
both are drawn from suitably truncated 0-mean, unit
variance, Gaussian distributions (see inset histograms in
Figure 1) and are terminal states. The other sets, Iþ and I�
(each with 400 elements), contain internal states and are not
associated with immediate affective values (r(s)¼0, 8s
2 I�[ Iþ).

Serotonergic Inhibition
A policy is a (probabilistic) mapping from states to actions

a ‹ p(s) and defines the transition matrix between the states
in the model. For simplicity, we consider a fixed, basic, policy
p0. In this, each element of Iþ effectively has eight outgoing
connections: three to other (randomly chosen) elements in Iþ;
three to randomly chosen elements in Oþ; and one each to
randomly chosen elements in I� and O�. Similarly, each
element of I� has eight outgoing connections: three to other
(randomly chosen) elements in I�; three to randomly chosen
elements in O�; and one each to randomly chosen elements in
Iþ and Oþ. Thoughts are modelled as actions a following these

Figure 1. Markov Models of Thought

The abstract state space is divided into the four blocks shown. The right
two, Oþ and O�, are associated with direct affective values r(s) (inset
histograms); the left two, I� and Iþ, are internal. Transitions between
(belief) states are determined by actions (thoughts). We initially focus on
a fixed policy, leading to the transition between states shown in the
figure: states in each internal block Iþ and I� preferentially connect with
each other and their respective outcome states Oþ and O�. However,
each state has links to states in the other block. The model is
approximately balanced as a whole, with an equal number of positive
and negative states.
doi:10.1371/journal.pcbi.0040004.g001
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Author Summary

Serotonin is an evolutionarily ancient neuromodulator probably best
known for its role in psychiatric disorders. However, that role has
long appeared contradictory to its role in normal function, and
indeed its various roles in normal affective behaviors have been hard
to reconcile. Here, we model two predominant functions of normal
serotonin function in a highly simplified reinforcement learning
model and show how these may explain some of its complex roles
in depression and anxiety.
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connections, labelled by the identities of the states to which
they lead. Text S1 gives details of a more complex environ-
ment in which we explicitly explore effects of impulsivity.

To isolate the effect of 5-HT in inhibiting actions in
aversive situations, we consider the highly simplified proposal
that serotonin stochastically terminates trains of thoughts
when these reach aversive states. More specifically, under
serotonergic influence the transition probabilities are modi-
fied in a manner that depends on states’ values. We let the
probability of continuing a train of thought (of continuing
along the fixed policy p0) be dependent (and inversely related
to) the value V(s) of a state:

p5HTðsÞ ¼ minð1; expða5HTVðsÞÞÞ ð1Þ

where a5HT is a multiplicative factor that scales the impact of
5-HT (see Figure 2). When thoughts are not continued
(inhibited), they stop and restart in a randomly chosen state I
(though see below for relaxations of this). The more
disastrous the potential sequelæ of state s, the more negative
Vp(s), and so the less likely the chain was to be continued. On
the other hand, even slightly positive values would essentially
veto any termination. This introduces an asymmetry into the
model defined by the simple base policy. Other possibilities
for the information reported by 5-HT and for the dynamic
interaction between 5-HT and dopamine are considered in
the discussion, and the fixed base policy p0 is relaxed below.

Learning
The value of each state represents the expected reward

obtainable from that state when following a particular policy.
Under the fixed policy p0, dynamic programming techniques
[35] allow the value function Vp(s) over states s to be written,
and solved for, concisely as: Vp(s) ¼ r(s), s 2 O6 , and

VpðsÞ ¼ c
X
a

psðaÞVpðaÞ ¼ c
X
s9

psðs9ÞVpðs9Þ ð2Þ

where c is a discount factor (c ¼ 0.9 in our simulations).
Dynamic programming also uses a Qpðs; aÞ function [36] over
states and thoughts defined for those actions that exist by

Qpðs; aÞ ¼ cVpðaÞ: ð3Þ

Optimal values V*(s) and Q*(s,a) are those value functions
associated with any policy p�s ðaÞ that maximizes the long-run
affective outcomes of the train.
While it is not possible to use these techniques directly to

evaluate the value function under serotonergic influence (the
inhibition depends on the value function itself and thus
represents a nonlinear interaction), the temporal difference
learning rule [35] can be used to acquire estimates Vpða5HTÞ

est ðsÞ
of the values Vpða5HTÞðsÞ of states under serotonergically
modified policies pða5HTÞ. The temporal difference learning
rule specifies an online learning rule for which the change in
the estimated value Vp

estðsÞ based on taking action a at state s
and therefore arriving deterministically at s9 ¼ a(s) is:

DVpða5HTÞ
est ðsÞ¼ e

�VpðaÞ
est ðsÞ if train inhibited

rðaÞþcVpða5HTÞ
est ðs9Þ�Vpða5HTÞ

est ðsÞ otherwise

8<
:

ð4Þ

where the learning rate e¼ 0.05. A slightly simpler alternative
rule suggests that learning of Vpða5HTÞ

est ðsÞ is itself prevented by
termination:

DVpða5HTÞ
est ðsÞ ¼ e

0 if train inhibited

rðaÞþcVpða5HTÞ
est ðaÞ�Vpða5HTÞ

est ðsÞ otherwise:

(

ð5Þ

That Vpða5HTÞ
est does not change under this rule given

termination implies that learning is only slowed for these
states, rather than being biased toward zero. We generally
report results from this variant.
In the sequel, we show values after substantial learning

(20,000 trains), plus the consequences of manipulating
serotonin (by manipulating a5HT) once the values are already
acquired.

Manipulations After Learning
Tryptophan depletion. Given the values Vpða5HTÞ

est ðsÞ learned
under a policy p(a5HT) determined by a5HT ¼ 20, the steady-
state transitions probabilities can be calculated for any new
a5HT 6¼ 20 simply by working out the probability of inhibition
for each state. In particular, this allows a5HT to be reduced to
model a pharmacological or psychiatric reduction in seroto-
nin function. To separate the effect of this reduction from
that of learning, we only learn up to the reduction and then
look at the behavior after the reduction in the absence of
further learning.
Recall bias and reward seeking. To account for the effect of

recall biases often seen in depression, we will additionally
consider the effect of biased resampling after behavioral
inhibition. A simple way of achieving this in a manner that
relates to the affective value of states is to let

pstartðsÞ } expðbVðsÞÞ

whereby values of b , 0 will bias resampling toward states
with lower values V(s) (i.e., states in I�).
So far, only serotonergically determined inhibitory re-

sponses have been considered. Mirror to these are dopami-
nergically controlled approach responses [32], which actually
favour actions a with positive state-action values Q(s,a) (under

Figure 2. Probability of Continuing a Train of Thoughts

For values V(s) . 0, thoughts are continued with probability 1.
Conversely, when the state s has negative value, the probability of
continuation drops of as an exponential function of the value. The rate of
the exponential is set by a5HT.
doi:10.1371/journal.pcbi.0040004.g002
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a policy). The combined effect can be incorporated in a
straightforward manner by choosing action a in state s
according to a softmax

psðaÞ } expðhQðs; aÞÞ; ð6Þ

where h controls the degree of influence of the Q value. Note
that, in this simple model, instrumental and Pavlovian control
are essentially indistinguishable.

Results

Behavioral Inhibition
By construction, the environment in Figure 1 is symmetric

with respect to rewards and punishments, and so the overall
statistics of the values of states are balanced about zero.
Indeed, Figure 3A shows that for the base policy, 20,000
learning steps are ample to acquire a reasonable value Vest(s)
for the states (the remaining discrepancies from Vtrue(s), here
defined for a5HT¼ 0, arise from the stochasticity in the choice
of action together with the fixed learning rate). Critically,
there is no bias in either Vest(s) or Vtrue(s).

By contrast, Figure 3D shows the substantial bias in
Vpða5HTÞ

est ðsÞ consequent on setting a large value of a5HT ¼ 20.
In this case, low-valued states are much less well visited and
explored. The bias comes despite the use of learning rule [5],
which only slows down learning for low-value states rather
than also distorting it. Of course, in this case, the extent of

the bias depends on the initial values for the states (all of
which are set to zero in the simulation).
Figure 3E shows how frequently each of the outcome states

was reached in a run (as a function of its outcome r(s)). Since
behavioral inhibition terminates trains on their way to
potential disaster, aversive terminal states are sampled less
(shown by the red regression line), which is consistent with
the bias of the estimated value. Figures 3C and 3F show these
effects as a function of a5HT. The greater the inhibition, the
worse estimated the values are (Figure 3C), particularly for
aversive states; however, the more benign is the exploration
(Figure 3F). Learning with greater inhibition leads to a more
optimistic set of values; however, this is coupled with a more
aggressive rejection of all actions even mildly associated with
negative outcomes.

Tryptophan Depletion
Reducing the value of a5HT after learning a value function

Vpða5HTÞ
est ðsÞ under its influence can be expected to have various

consequences, as it introduces a mismatch between policy
and value function. The most obvious one is a more negative
average affective outcome (the average value of trains of
thought) in the model. This is because choices are less biased
against actions that are predicted to have aversive con-
sequences, and so the latter occur more frequently. A second
consequence is that there will be substantial adverse surprises
associated with transitions that previously were inhibited.

Figure 3. Learning with Behavioral Inhibition

(A,B) With a5HT ¼ 0, for one particular learning run, the values Vest match their true values Vtrue (inferred through dynamic programming) under an
equal-sampling exploration policy (A), and trains of thought end in terminal states O�, Oþ equally often as a function of their actual outcomes (B) (the
red line is the regression line).
(C,D) With a5HT ¼ 20, negative V values are poorly estimated (since exploration is progressively inhibited for larger a5HT), and the more negative the
value of the outcome, the less frequently that outcome gets visited over learning (D). Importantly, there is an optimistic underestimate of the negative
value of state.
(E) The root mean squared error (averaging over 20 runs) for states with positive (dotted) and negative Vtrue values as a function of a5HT. The effect of
the sampling bias is strikingly apparent, preventing accurate estimates mainly of the negatively valued states.
(F) Average reward received during learning as a function of a5HT—the benefits of behavioral inhibition are apparent.
doi:10.1371/journal.pcbi.0040004.g003
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The surprise at reaching an actual outcome can be measured
using the prediction error

d ¼ rðaÞ � Vpða5HTÞ
est ðsÞ ð7Þ

for the last transition of a chain from state s 2 I6 to a state
a 2 O6. We may expect negative prediction errors

d� ¼
d if d , 0
0 otherwise

�
ð8Þ

to be of special importance, because of substantial evidence
that aversive outcomes whose magnitudes and timing are
expected so they can be prepared for, have substantially less
disutility than outcomes that are more aversive than expected
(at least for physiological pains; see [37]).

Figure 4 shows the consequences of learning under full
inhibition and then wandering through state space with
reduced inhibition. The change in the average terminal
affective value as a percentage of the case during learning
that a5HT¼ 20 is shown in Figure 4A. As was already apparent
in Figure 3F (which averages over the whole course of
learning), large costs are incurred for large reductions in
inhibition. For a5HT ¼ 0, the average reward is actually
negative, which is why the curve dips below�100%. This value
is relevant, since the internal environment is approximately
symmetric in terms of the appetitive and aversive outcomes it
affords. Subjects normally experience an optimistic or rosy
view of it, by terminating any unfortunate trains of thought
(indeed, 55% of their state occupancy is in Iþ compared with
I�). Under reduced 5-HT, subjects see it more the way it really
is (the ratio becomes 50%).

Figure 4B and 4C show comparative scatter plots of the
terminal prediction errors. Here, we consider just the last
transition from an internal state to an outcome state.
Prediction errors here that are large and negative, with
substantially more aversive outcomes than expected, may be
particularly damaging. Figure 4C compares the average
terminal prediction errors for all transitions into states in
O� with no serotonergic inhibition a5HT ¼ 0, to those for the

value a5HT ¼ 20 that were used during learning. For the case
that a5HT¼ 20, the negative prediction errors are on average
very small (partly since the probability of receiving one is very
low). With reduced inhibition, the errors become dramati-
cally larger, potentially leading to enhanced global aversion.
By comparison, as one might expect, the positive prediction
errors resulting from transitions into Oþ are not greatly
affected by the inhibition (Figure 4B).

Recall Bias
Two additional effects enrich this partial picture. One,

which plays a particularly important role in the cognitive
behavioral therapy literature, is that depressed patients have
a tendency to prefer to recall aversive states or memories
[38,39]. Figure 5A shows the consequence of doing this
according to a simple softmax (see Methods). These curves, as
in Figure 4A, show the percentage average utility compared
with a5HT ¼ 20, b ¼ 0 across values of a5HT, and for b ¼�10,
�9,. . .,10. As might be expected, biasing the starting point to
I�, and, even worse, to those particular states in I� that are
most deleterious, has a big negative impact on average utility.
For a5HT¼ 0; b¼�10, occupancy of Iþ relative to I� became a
paltry 27% as subjects ruminate [40,41] negatively.

Reward Seeking
The second factor is our restriction to just inhibition of

trains of thought rather than a more fine-scale manipulation
of the relative probabilities of different thoughts. We now
relax this and explore the effect of additionally allowing
preferential transitions toward certain states. In Equation 6,
for positive values, the parameter h biases action choice
toward actions leading to positively valued states, whereas for
negative values it does the opposite (i.e., subjects prefer to
transition to negatively valued states). Figure 5B shows the
effects of h. It is apparent that rather extreme values of h can
both significantly aggravate or suppress the effect of a5HT. For
the highest positive values of h the curves reverse shape,
showing that it can be beneficial not to inhibit trains of
thought. This arises since the model of Figure 1 was chosen to

Figure 4. Reduced Inhibition

These graphs show statistics of the effect of learning V values with a5HT¼ 20, and then suffering from reduced serotonin a5HT , 20 during sampling of
thoughts. For a given thought environment, these are calculated in closed form, without estimation error.
(A) As is also evident in Figure 3F, the average affective return is greatly reduced from the value with a5HT¼20; in fact, for the extreme value of a5HT¼0,
it becomes slightly negative (reflecting a small sample bias in the particular collection of outcomes).
(B,C) Normalized outcome prediction errors at the time of transition to Oþ (B) or O� (C) for a5HT ¼ 20 against a5HT ¼ 0. These reflect the individual
probability that each terminal transition goes to r(s) from V(s9) for s 2 O and s9 2 I, including all the probabilistic contingencies of termination, etc. They
are normalized for the two values of a5HT. Terminations in Oþ are largely unaffected by the change in inhibition; terminations in O� with negative
consequences have greatly increased negative prediction error.
doi:10.1371/journal.pcbi.0040004.g004
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have the extreme property that there is always the possibility
of avoidance (in that all the states in I� admit at least one
action that leads to Iþ), and inhibiting trains of thought
removes this outcome. A different, and rather counter-
intuitive, interaction between inhibition and reward seeking
obtains in environments where rewards are hidden behind
punishments (see Text S1 and Figure S1).

Discussion

We studied a very simple Markov decision process model
of affectively charged thoughts, and showed various aspects
of the influence of behavioral inhibition on the experience of
appetitive and aversive outcomes, predictions, and predic-
tion errors. The model formalises behavioral inhibition as a
Pavlovian control process that arrests internally directed
thoughts (and likewise externally directed actions) that are
predicted to lead to aversive consequences. Overall this is
favourable, leads to enhanced average rewards, and is related
to adaptive pruning [33,34]. However, the consequences can
also be deleterious [31,32]. Compromising inhibition in the
model has two related consequences. First, the values of
states are revealed to be overly optimistic. Second, control is
disturbed, with aversive chains being insufficiently dese-
lected.

While this work shows how several prominent aspects of
serotonin’s manifold putative functions and effects can be
reconciled within a unifying framework, we acknowledge that
we have neglected a wide range of other issues, and certainly
do not claim that this is an exhaustive account of the data.
There is also an interesting alternative view of 5-HT, such as
that due to [42] who suggested that it is involved in
controlling the appropriate timescale of behavior by deter-
mining the discount factor for future affective outcomes
(parameter c in Equation 2). In this theory, 5-HT depletion
reduces the effective value of c, making subjects appear more

impulsive [43–45]. Our model captures impulsivity through
reduced 5-HT more directly, suggesting that actions that are
comparatively worse lose direct inhibition that was previously
restraining them, and are therefore more likely to be
executed.

Behavioral Inhibition System
We suggested that this form of behavioral inhibition arises

through predictions of aversive outcomes, tied to serotonin’s
putative role in reporting aversive prediction errors as an
opponent to dopamine. This comes directly from the
original notions of behavioral inhibition and serotonergic
effects from Gray, Deakin, Graeff, and their colleagues
[6,7,13,29,30]; however, it is perhaps best seen as a subset of
the current version of Gray’s BIS [29]. One salient difference
is that BIS is suggested as being primarily engaged by conflict,
rather than ongoing predictions of future aversive outcomes.
Of course, a main source of conflict is that between approach
and avoidance, with the latter coming from these aversive
predictions. An interesting consequence of dividing the
prediction of the value of future outcomes between two
separate opponent systems is that it is indeed possible to
have simultaneous appetitive and aversive expectations, as
opposed to just one combined net prediction. Although we
used the net prediction to control inhibition, it would be
interesting to explore other possibilities associated with the
BIS view, such as that any aversive prediction could arrest
ongoing action, even if outweighed by appetitive predictions.
Further, rather than have the aversive predictive values of

states lead to termination of trains of thought, it is possible
that the negative prediction error (d� from Equation 8), which
Daw et al. [10] suggested is being reported by phasic
serotonin, could be responsible instead. Alternatively, in the
mirror reflection of the proposal that a tonic dopaminergic
signal reports average reward (and controllable/avoidable
punishment) and energises behavior [46,47], it could be that a
more tonic serotonergic signal, averaging aversion over
longer time horizons and favoring quiescence, could be
responsible.
Another difference between our account and the full BIS is

that, in the latter, although actions are indeed inhibited in
the face of conflict, the BIS is then suggested as initiating a
set of behaviors (such as exploration or risk assessment) to
resolve that conflict. The set of preparatory Pavlovian actions
associated with aversive predictions appears to be more
refined than that associated with appetitive predictions
(mostly just approach), with a wide range of different
defensive possibilities being selected between according to
the nature and proximity of the threat [30,48]. One class of
these is even laid out along columns of the dorsal
periacqueductal gray (PAG [49]). Nevertheless, any of these
defensive manoeuvres would interrupt the ongoing chain of
actions, and this is what we modelled. Risk assessment and
exploration are of most obvious use in the face of
uncertainty and ignorance, whereas conditioned suppression,
and thus the sort of inhibition that we consider, remains
even after substantial learning. It would certainly be worth
going one stage further, modelling the interruption in terms
of a switch between different Markov decision problems, with
new information changing the transition and payoff struc-
tures.

Figure 5. Reward Seeking and Recall Bias

Both plots are in the same form as Figure 4A, showing the percentage
utilities compared with the standard learning case a5HT ¼ 20, as a
function of a5HT (the emboldened blue curve is exactly that in Figure 4A).
(A) Given a mood-dependent bias on the starting state, with
pstartðsÞ}expðbVðsÞÞ, the plots show the consequences of various values
of b. Negative b, favoring low value states, leads to substantially negative
average outcomes.
(B) Instrumental control of action choice, a putative model of
dopaminergic effects, can also either exacerbate or improve the
outcomes, depending on the value of the parameter h governing a
softmax choice of actions.
doi:10.1371/journal.pcbi.0040004.g005
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Tryptophan Depletion
One of our central results is the effect of an acute

reduction in a5HT after learning with elevated a5HT has taken
place. In our model, this leads to a decrease in behavioral
inhibition of actions leading to negative states. Although
specific effects might arise from local manipulations of 5-HT
concentrations or receptor responsivity, key data come from
the systemic manipulation associated with acute TrD [50], in
which plasma levels of tryptophan and, at least in animals,
central nervous system levels of serotonin, are drastically
reduced (by up to 90%). Although the particular chains of
thoughts analysed here have not been the subject of
experimental scrutiny, there is by now a considerable body
of literature on the effects of TrD on normal human
functioning. In broad agreement with our results, various
effects have been related to decreased reward processing
[39,51,52], decreased behavioral inhibition [44,53–57], rumi-
nation [21], facial fear recognition [58], and, more indirectly,
increased aggressiveness [54,59,60].

Perhaps of most direct relevance to our implementation
are the results of a recent study which decoupled rewards
from correct performance of an action from the outcomes of
the actions [61]. This study actually involved a sophisticated
assessment of the effects of TrD on reversal learning.
However, one way of viewing a portion of the results stems
from an abstract representation of the task. Subjects had to
press one of two buttons (A or B) in response to one of two
stimuli (also called A and B), with presses associated with A
leading to a symbolic reward and presses associated with B
leading to a symbolic punishment. Critically, these outcomes
were independent of the rectitude of the subjects’ responses,
so they couldn’t avoid the punishment by making errors. In
this case, subjects more often failed to press button B
correctly than button A, and this difference disappeared after
TrD. This is directly consistent with the present interpreta-
tion of serotoninergic inhibition of actions that lead to
aversive outcomes.

Famously, TrD does not have a uniform effect on all
subjects. There is an important genetic polymorphism in the
5-HT reuptake mechanism, with subjects having the less
efficient version generally showing greater effects [52,57,62–
66]. For this to be consistent with our formulation, the
difference in functional 5-HT levels before and after TrD has
to be greater in the subjects with less efficient reuptake. This
in turn might most simply be due to increased levels of 5-HT
(and behavioral inhibition) throughout development in
carriers of the short 5HTTLPR allele. Perhaps related to this
is the finding that TrD produces a dose-dependent relapse of
depressive symptomatology in formerly depressed patients
[18–20,41], or in patients with risk factors such as a family
history of depression [63] (although the three-way interaction
between TrD, 5HTTLPR, and past depression is hard to fit
into this framework [67]).

There is a significant body of work on the effects of
serotonergic manipulations on affective processing, partic-
ularly on processing of facial expressions [58,68–70]. It is
difficult to interpret this work in our context for several
reasons: first, there have often been effects on recognition of
specific aversive facial expressions (e.g., fear) but not others
(e.g., disgust). Our model does not speak to these distinctions.
Second, in these tasks, subjects identify stimuli by pressing a

button. Thus, there is a Pavlovian association between certain
buttons and the aversive stimuli, and, interpreting these tasks
in the same framework as we interpreted the work of Cools et
al. [61], one might predict that TrD would increase rather
than decrease accuracy. The precise effect, however, would
depend on the relative strength of the instructed and the
reflexive Pavlovian response, and on the antagonism between
the responses. Indeed, both aspects have been found: acute
manipulation of serotonin increased recognition accuracy of
fearful faces with increasing serotonin [58,68,70], whereas a
more chronic increase in 5-HT (via SSRIs) yields a decrease in
recollection of negative memories [69]. Furthermore, while
the exact relationship between behavioral inhibition and
amygdala activation still needs clarification, it is additionally
possible that increased amygdala activation may relate to
perceptual mood congruency effects [38]: after disinhibition,
thoughts often visit negative states, and it is possible that this
may affect prior expectations about stimulus which in turn
could speed up processing of negatively valenced informa-
tion.
TrD (or indeed SSRIs) have not previously been used in

tasks like the Markov decision problem of the type we
discussed. A direct prediction of the model is that subjects
trained under TrD would explore states less when tested in a
normal regime, while those trained under SSRIs would do so
more (assuming that SSRIs indeed elevate 5-HT levels).
Similar predictions hold for subjects with short or long
alleles of the 5-HT reuptake mechanism on these tasks. This
would essentially represent a generalisation of the findings by
Cools et al. [61] to the domain of sequential decisions. The
tasks could use external, observable actions; more directly, it
would also be useful to monitor the execution of affective
trains of thought, and study the perturbation of this under
serotonergic manipulations. In designing such studies, it is
important to bear in mind the potentially opponent
instrumental and Pavlovian effects, in just the same way that
boosting dopamine and monitoring the effects on negative
automaintenance may be confusing. Note that although there
are various important datasets as to the effects of TrD on
simple probabilistic and delay-discounting tasks [51,52,56,71–
75], these studies do not encompass the sorts of behavioral
chains that we propose 5-HT to be able to halt.

Dopamine and Serotonin
One of the backdrops for the present theory was the

extensive modeling of phasic dopamine as a prediction error
for future reward, and the results that (1) the baseline firing
rates of dopamine cells are insufficient to report prediction
errors for negative rewards (i.e., punishments); (2) the ample
psychological evidence for the existence of a pair of systems,
one associated with appetitive outcomes and the other with
aversive outcomes; and (3) the evidence that at least some
aspects of 5-HT and dopamine are in mutual opposition.
Indeed, based on these data and the theories of Deakin and
Graeff [6,7], Daw et al. [10] suggested that serotonin rather
than dopamine reports negative prediction errors based on
an antagonism between serotonin and dopamine at both a
behavioral and pharmacological level. For example, in
rodents, 5-HT antagonises the general excitatory effects of
dopamine [4], the self-administration of amphetamine and
intracranial self-stimulation [76,77], the effects of dopamine
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on appetitive learning [8], and the potentiation of appetitive
learning by amphetamine [78].

However, pure opponency is far too simple. For instance,
there is by now extensive evidence that 5-HT modulates
dopaminergic activity both through receptors in the ventral
tegmental area and by modulation of distal release sites, and
that this modulation can occur in both inhibitory and
excitatory directions [4,77,79–89]. Even the rise in 5-HT due
to SSRIs has overall pro-dopaminergic effects, both at
behavioral and physiological levels [81,90–92], and there is
one report that DA antagonists reverse the antidepressant
effect of SSRIs [93]. Further, there is evidence that DA itself is
released in many aversive circumstances [94,95], and is
involved in aversively motivated behaviors like avoidance
[96–98].

In our terms, apart from the aspects of the interaction of
dopamine and 5-HT that were explored in Figures 5B and S2,
there are a couple of other effects. First, inhibition in our
model has the consequence of increasing the average
expected reward. As such, tonic dopamine, which has been
suggested to report such a quantity [46,47,99–101], would be
increased when 5-HT is boosted, and potentially vice versa
[88,92]. This would compete with the more direct effect that
5-HT inhibits actions, and particularly inhibits actions
supported by dopaminergic predictions or rewards
[8,78,102], and thus high levels of 5-HT might also depress
levels of tonic dopamine, more in line with accounts that
stress the opponent role of dopamine and serotonin
[4,10,103].

The second complexity (Boureau, personal communica-
tion) is that active defense (such as active avoidance) requires
energizing, and indeed appears to be controlled by the
(presumably dopaminergically reported) appetitive outcome
of reaching a state of safety rather than the (presumably
serotonergically mediated) outcome of leaving a state of fear.
That is, it appears that dopamine reports the rewards reaped
from avoiding or controlling aversive outcomes [15,94,104].

We mentioned the mirror notion that the relationship
between 5-HT and inhibition arising through aversive
predictions is parallel to the obverse relationship for
dopamine and engagement/approach through appetitive
predictions [32]. In this case, appetitively directed chains of
thoughts would be favored. Indeed, Smith et al. [105,106], in
their work on the conditioned avoidance model of schizo-
phrenia, suggested something rather like this. In their
account, dopamine controls the extent of search through a
forward model, although they did not couple this to
dopamine’s involvement in appetitive prediction.

In all, disentangling and elucidating these varied relations
between dopamine and serotonin is a pressing task.

Depression and Anxiety
It would be reasonable to argue that the present model is

more relevant to anxiety than depression. There is at best a
somewhat fuzzy distinction between the two in terms of risk
factors [107] and pharmacology [108], and they are extra-
ordinarily co-morbid [109]. There is also no complete
definition of either disease in terms of the sort of reinforce-
ment mechanisms that we have been considering.

While depressive (but not anxious) symptoms can be
reinduced by TrD in a subpopulation of patients, TrD it is
not the only such manipulation, and it is not effective in all

patients. Patients who are responsive to seratonin–norepi-
nephrine reuptake inhibitors (SNRIs) are more sensitive to
catecholamine depletion by a-methyl-tyrosine [110,111] than
TrD, and a recent report with a DA antagonist successfully re-
induced depressive symptoms in formerly depressed people
[93]. The latter authors suggest that DA may be a ‘‘final
common path’’ for depression, and may relate more to the
depressive state than serotonin, which in turn may be more
important in defining a trait [15,112,113]. In addition, only
50% of formerly depressed subjects do respond to TrD
[41,114], and a pooled analysis of 71 formerly depressed
subjects found that previous response to SSRIs had less
predictive power for TrD response than chronicity of the
depressive disorder and sex [114]. As mentioned, resolving
the actual relative contribution of serotoninergic inhibition
will be tricky.

Conclusions
In sum, the findings in this study argue for an involvement

of the serotonin reuptake mechanism in mood disorders such
as anxiety and depression in the following manner: due to a
decreased efficiency of the transporter, increased behavioral
inhibition results in acquisition of overly optimistic values.
Such value functions are adaptive, but only in conjunction
with strong behavioral inhibition. On the other hand, they do
render the individual highly sensitive to large decreases in
average experienced rewards when serotonin function is
reduced. This might underlie a (controversially) larger
sensitivity to TrD and SSRIs of persons with the short
5HTTLPR allele (see [115]). Returning to the sequential
decision-making tasks suggested above, this study would
predict that the short 5HTTLPR allele would be associated
with more reflexive avoidance of states predictive of punish-
ment, and it may be possible to assess this with differential
effects of TrD on carriers with the short and long 5HTTLPR
allele.
A further, more involved conjecture, which returns to the

fact that serotonin is not the sole causative agent in
depression, is that it is the effects of reduced 5-HT on
affective experience that leads to the various symptoms of
depression, acting via the otherwise normative operation of
the multiple systems involved in behavioral control. For
instance, we have argued that the consequences of 5-HT
reduction include unexpected punishments, large negative
prediction errors, and a drop in average reward. These
changes in the statistics of reward demand explanation, for
example in terms of a shift in the characteristics of the
environment, and should cause normative behavioral re-
sponses. In particular, the unsignalled aversion that comes
independent of the subject’s actions can be seen as a form of
uncontrollable punishment. Uncontrollability lies at the
heart of an important characterization of depression centred
around learned helplessness [104,116].
We concentrated on the effects of reduced 5-HT rather

than on the reasons for this reduction. The obvious option is
that it is a pathological result from processes operating at a
purely cellular level. However, it could also arise as a
normative meta-adaptation to the statistics of experienced
punishments and rewards. Formalizing this fully would
require a more general theory of inhibition—what level of
inhibition is optimal? Tools for the characterisation of the
trade-off between accurate knowledge about a state’s value
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and the cost incurred in learning about it are already in
existence [34,117,118] and might be applicable to aspects of
the present case.

Supporting Information

Figure S1. A Deep Environment

Similar state space to Figure 1, but with a more explicitly deep
structure. State in I1

þ mainly lead to I2
þ, or back to themselves. The

last states in each of the two chains (here I3
þ and I3

�) always
preferentially lead to the outcome state Oþ and O�.

Found at doi:10.1371/journal.pcbi.0040004.sg001 (32 KB PDF).

Figure S2. Inhibition in a Deep Environment

The outcomes O are approached by sequentially walking through K¼
4 levels. Only I4 states lead to outcomes.
(A,D) True values without inhibition are shown by the black line. It is
constant for each level and valence, or illustration, as all outcomes
were assigned the same positive value (þ1 or �1). The reward of the
states I is zero and shown by the dash-dotted line. The grey point
display the estimated values of the states under inhibition a5HT¼ 20.
There is a positive bias in all states, but it is more pronounced in the
states with true negative values. In (D), the dash-dotted line indicates
that states I4

þ now carry reward �0.4, while states I4
� carry reward

þ0.4. States I k
þ for k¼ f1,2,3g now have true negative values, and I k

�
for k ¼ f1,2,3g have true positive values.
(B,E) Probabilities of ending thought sequence in Oþ or O�.
(C,F) Effect of preferentially choosing actions according to their
valence on the average value of states. The arrow indicates increasing
c. In (C), larger c are advantageous, in (F), smaller c are better.

Found at doi:10.1371/journal.pcbi.0040004.sg002 (210 KB PDF)

Text S1. Impulsivity in a Deep Environment

Found at doi:10.1371/journal.pcbi.0040004.sd001 (34 KB PDF).

Acknowledgments

We are grateful to Y-Lan Boureau, Roshan Cools, Nathaniel Daw,
Hanneke Den Ouden, Karl Friston, Michael Moutoussis, Jon Roiser,
Barbara Sahakian, Douglas Steele, Jonathan Williams, and Paul
Willner for helpful discussions. We would also like to thank
anonymous reviewers for helpful comments.

Author contributions. PD and QJMH conceived and designed the
experiments, performed the experiments, analyzed the data, and
wrote the paper.

Funding. Funded by the Gatsby Charitable Foundation (PD,
QJMH) and a Bogue Research Fellowship (QJMH).

Competing interests. The authors have declared that no competing
interests exist.

References
1. Solomon RL, Corbit JD (1974) An opponent-process theory of motivation.

i. temporal dynamics of affect. Psychol Rev 81: 119–145.
2. Dickinson A, Dearing MF (1979) Appetitive-aversive interactions and

inhibitory processes. In: Dickinson A, Boakes RA, editors. Mechanisms of
learning and motivation. Hillsdale (New Jersey): Erlbaum. pp. 203–231.

3. Dickinson A, Balleine B (2002) The role of learning in the operation of
motivational systems. In: Gallistel R, editor. Stevens’ handbook of
experimental psychology. Volume 3. New York: Wiley. pp. 497–534.

4. Carter CJ, Pycock CJ (1978) Differential effects of central serotonin
manipulation on hyperactive and stereotyped behaviour. Life Sci 23: 953–
960.

5. Costall B, Hui SC, Naylor RJ (1979) The importance of serotonergic
mechanisms for the induction of hyperactivity by amphetamine and its
antagonism by intra-accumbens (3,4-dihydroxy-phenylamino)-2-imidazo-
line (dpi). Neuropharmacology 18: 605–609.

6. Deakin JFW (1983) Roles of brain serotonergic neurons in escape,
avoidance and other behaviors. J Psychopharmacol 43: 563–77.

7. Deakin JFW, Graeff FG (1991) 5-HT and mechanisms of defence. J
Psychopharmacol 5: 305–316.

8. Fletcher PJ (1996) Injection of 5-HT into the nucleus accumbens reduces
the effects of d-amphetamine on responding for conditioned reward.
Psychopharmacology (Berl) 126: 62–69.

9. Kapur S, Remington G (1996) Serotonin–dopamine interaction and its
relevance to schizophrenia. Am J Psychiatry 153: 466–476.

10. Daw ND, Kakade S, Dayan P (2002) Opponent interactions between
serotonin and dopamine. Neural Netw 15: 603–616.

11. Esposito E (2006) Serotonin–dopamine interaction as a focus of novel
antidepressant drugs. Curr Drug Targets 7: 177–185.
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