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Abstract

Values, rewards, and costs play a central role in economic, statistical, and psychological 
notions of decision making. They also have surprisingly direct neural realizations. This 
chapter discusses the ways in which different value systems interact with different deci-
sion-making systems to fashion and shape affectively appropriate behavior in complex 
environments. Forms of deliberative and automatic decision making are interpreted as 
sharing a common purpose rather than serving different or non-normative goals.

Introduction

There is perhaps no more critical factor for the survival of an organism than 
the manner in which it chooses between different courses of action or inac-
tion. A seemingly obvious way to formalize choice is to evaluate the predicted 
costs and benefi ts of each option and pick the best. However, seething beneath 
the surface of this bland dictate lies a host of questions about such things as a 
common currency with which to capture the costs and benefi ts, the different 
mechanisms by which these predictions may be made, the different informa-
tion that predictors might use to assess the costs and benefi ts, the possibility of 
choosing when or how quickly to act as well as what to do, and different prior 
expectations that may be brought to bear in that vast majority of cases when 
aspects of the problem remain uncertain.

In keeping with the complexity and centrality of value-based choice, quite a 
number of psychologically and neurally different systems are involved. These 
systems interact both cooperatively and competitively. In this chapter, I outline 
the apparent dependence of four decision-making mechanisms on four differ-
ent value systems. Although this complexity might seem daunting, we will see 
that exact parallels can be found in ideas about how artifi cial systems such as 
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robots might make choices, that the different systems capture rather natural 
trade-offs that are created by the statistical and computational complexities of 
optimal control, and that at least some of the apparent problems of choice actu-
ally arise from cases in which reasonable a priori expectations about the world 
are violated by particular experimental protocols.

I begin by describing a formal framework that derives from the fi eld of  re-
inforcement learning ( Sutton and  Barto 1998). Reinforcement learning mostly 
considers how artifi cial systems can learn appropriate actions in the face of 
rewards and punishments. For our purposes, however, it is convenient since 
it (a) originated in mathematical abstractions of psychological data, (b) has a 
proof-theoretic link to statistical and normative accounts of optimal control, 
and (c) lies at the heart of widespread interpretations of neurophysiological 
and neuroimaging data. I show the roles played by value-based predictions in 
reinforcement learning and indicate how different psychological and neurobio-
logical ideas about decision making map onto roughly equivalent reinforce-
ment learning notions.

Thereafter, I describe four different value systems and four different 
decision-making systems that arise naturally within this framework. Two of 
the decision makers—one associated with  goal-directed or forward model-
based  control, the other associated with  habitual control ( Dickinson and  Bal-
leine 2001)—are well characterized neurally; the substrates of the other two 
are somewhat less clear. Equally, the anatomical (e.g., neuromodulatory) bases 
of two of the value systems are somewhat clearer than those of the other two. 
Different decision makers use value information directly and through learning 
in different ways; they also enjoy cooperative and competitive relations with 
each other. The extent to which these interactions might underlie some of the 
complexity in the data on choice is then considered. I conclude with a discus-
sion of the key open issues and questions.

A few remarks at the outset: First, we would like to aim toward a theory 
of behavior, not just of “decisions,” somehow more narrowly defi ned. That 
the systems involved in normative choice appear also to be implicated in the 
tics of a patient with Tourette’s syndrome or the compulsions of one with ob-
sessions suggest that we should not start by imposing arbitrary boundaries. 
Second, our analysis owes an important debt to  Dickinson (e.g., 1994), who, 
adopting a view that originated with  Konorski (1948, 1967), and together with 
his colleagues (e.g.,  Dickinson and  Balleine 2001), has long worked on teasing 
apart the various contributions from different systems. Third, we will typically 
lump together information derived from rodent, monkey, and human studies. 
We are far from having a suffi ciently refi ned understanding to be able sensi-
bly to embrace the obviously large differences between these species. Finally, 
the limit on the number of citations has forced the omission of many highly 
relevant studies.
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Reinforcement Learning and Dynamic Programming

The  problem for decision making can be illustrated in the simple maze-like 
task in Figure 3.1. It is helpful to defi ne a formalism which allows us to de-
scribe the external state of the subject (x ∈ {x1, x2, x3}, its position in the maze), 
its internal state (m, mostly motivational factors such as hunger or thirst), its 
possible choices (c ∈ {L, R}), and a set of possible outcomes (o ∈ Ω = {cheese, 
nothing, water, carrots}, but in general also including aversive outcomes such 
as shocks).

Immediate Outcomes

Let us fi rst consider the case that the subject has just one choice to make at a 
single state, for instance x3 in the maze. We write the probability of receiving 
outcome o given choice c as Oco(x). This would be stochastic if, for instance, 
the experimenter probabilistically swaps the outcomes. To select which action 
to execute, the subject must have preferences between the outcomes. One im-
portant way to describe these preferences is through a utility function uo(m), 
which we call a native (or experienced)  utility function ( Kahneman et al. 1997). 
This should depend on the motivational state of the subject since, for instance, 
all else being equal, thirsty subjects will prefer the water, and hungry subjects, 
the cheese. Example utilities for all the outcomes are shown in Figure 3.1b.

The native utility function quantifi es the actual worth to the subject of 
the outcome. It is the fi rst of the four value functions that we will consider 
overall. Given the utility, the subject could choose normatively the action 
that maximizes the  expected utility of the choice, or, more formally, defi ning 
these as the  Q values of choice c at environmental and motivational states x
and m, respectively,

Figure 3.1 Maze task: (a) A simple maze task for a rat, comprising three choice points 
(x1, x2, x3) and four outcomes (o ∈ {cheese, nothing, water, and carrots}). The rat has 
to run forward through the maze and must go left (L) or right (R) at each choice point. 
(b) Utilities uo(m) for the four outcomes are shown for the two motivational states, 
m = hunger and m = thirst. Figure adapted from  Niv,  Joel, and Dayan (2006). 
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The systematic assignment of choices to states is usually called a  policy, a term 
which comes from engineering. Policies can be deterministic (as here) or, as is 
often found experimentally, probabilistic, with the subject choosing all actions, 
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Here, parameter β > 0 (sometimes called an inverse temperature) regulates the 
strength of the  competition. If β is small, then choices that are worth very dif-
ferent amounts will be executed almost equally as often.

Straightforward as this may seem, there are conceptually quite different 
ways of realizing and learning such policies. These different methods are as-
sociated with different combinations of value and decision-making systems. 
Key combinations are described briefl y here; the separate systems and their 
interactions will be discussed later.

Perhaps the simplest approach would be to implement Equations 1 and 2 
directly by learning a so-called  forward model Ô [note: hats are used to 
indicate estimated, approximate, or learned quantities]; that is, the con-
sequences of each action, together with a way of estimating the utility of 
each outcome, û. If the contributions can be accumulated, as in Equation 
1, then each action could compete according to its estimated Q̂ value (a 
form of  predicted utility;  Kahneman et al. 1997). Figure 3.2a shows how 
this works for the case of state x3 in the maze. The neural substrate of 
this means of evaluating the worth of options is a second value system 
infl uencing choice. This will be related below to the psychological no-
tion of a goal-directed controller implemented in the prefrontal cortex and 
dorsomedial  striatum.
One alternative to the computational and representational costs of this 
scheme would be to try and learn the Q values directly and then only have 
those compete. This would obviate the need for learning and using O. 
Figure 3.2b shows these values, again for the case of x3.

A mainstay of psychology, the  Rescorla-Wagner learning rule, which 
is equivalent to engineering’s delta rule, suggests one way of doing this. 

1.

2.
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According to this rule, the estimate Q̂c(x, m) is represented, perhaps using 
a set of synaptic weights, and when action c is tried, leading to outcome o, 
the estimate is changed according to the prediction error:

ˆ ( , ) ˆ ( , ) ( ) ˆ ( , ) ,′ = + −⎡
⎣⎢

⎤
⎦⎥Q Q Qc c o cx m x m u m x mα (4)

where α  is called a learning rate (or associability). This rule has a norma-
tive basis and will often lead to Q̂ = Q, at least on average. There is good 
evidence that a prediction error closely related to this is represented in the 
activity of dopamine neurons ( Montague et al. 1996;  Schultz 1998).

The structure that expresses estimates like Q̂c(x, m) is actually the third 
of the value systems that plays a role in decision making. Such values are 
sometimes called cached ( Daw et al. 2005) because they cache information 
actually observed about future outcomes in the form of expected utilities.

The nature of the dependence on the motivational state m is a critical 
facet of  cached values (see Dayan and  Balleine 2002). In general, there is 
ample evidence for state dependence in learning and recall (i.e., m might 
indeed be involved in the representation of the Q̂ values). However, con-
sider the case that a subject learns Q̂ values in one motivational state (e.g., 
hunger, as in Figure 3.2b). Since these values are simply numbers, utilities 
that are divorced from their bases in actual outcomes, they can be ex-
pected to generalize promiscuously, certainly more so than values from 
the forward model. In particular, if they generalize to other motivational 
states such as thirst, then the subjects may continue to favor actions lead-
ing to food, even though this is inappropriate. To put it another way, there 
may be no way to move from the Q values appropriate to hunger to the 
ones suitable for thirst without explicit relearning. This type of infl ex-
ibility is indeed a hallmark of behavioral habits, as we explore in more 
detail below.
An even simpler scheme would be to use a choice mechanism such as 
that in Equation 2, but to observe that the policy only requires that the 

3.

Figure 3.2 Decision making at x3: (a) The forward model consists of Ô  and û. By ex-
ploring the explicit options, the subject can work out which action is best under which 
circumstance. (b) The Q̂ values suffi ce to indicate the  expected utilities for each action 
under a motivational state (in this case, hunger), but the provenance of these values in 
the actual outcomes themselves is not accessible. (c) An even more direct controller just 
specifi es ordinal quantities Ĉ  on which choice can be based; these numbers, however, 
lack anything like an invertible relationship with expected utilities. Figure adapted from 
 Niv,  Joel, and Dayan (2006).
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value used in the argmax associated with action c*(m, x) has to be numeri-
cally larger than the values associated with all the other actions, and not 
that it actually satisfi es Equation 1. Figure 3.2c demonstrates this, using 
Ĉc(x, m) for the action values. Learning rules for such values are closely 
related to the psychological notion of stimulus-response learning, with a 
choice being stamped in or reinforced by large delivered utilities. We treat 
these action values as also being cached, since they share critical char-
acteristics with the Q values (e.g., they are only indirectly sensitive to 
motivational manipulations).

In short, there are different mechanisms, all of which can be used to achieve 
the same ostensive goal of optimizing the net expected value. The differences 
will become apparent when aspects of the motivational state that pertained 
during training are different from those during the test. Understanding how 
the different systems generalize is therefore critical. Bayesian ideas are rapidly 
gaining traction as providing general theories of this, encouraging careful con-
sideration of prior expectations, here in the nature of any or all of O, u, Q, and 
c as well as the internal representations of x and m underlying these functions. 
I will argue that such priors play a central role in everything from Pavlovian 
conditioning (arising from a prior over actions appropriate to predictions of 
reward or punishment) to learned helplessness (a prior over the nature of the 
controllability of an environment).

Delayed Outcomes

 One important characteristic of many choice problems is that the outcome may 
not be provided until a whole sequence of actions has been executed. In the 
maze shown in Figure 3.1, this is true for state x1, as either action only gets the 
subject to x2 or x3, and not directly to any of the outcomes. In fact, many out-
comes may be provided along a trajectory and not just a single one at the end. 
In simple (Markovian) environments like the maze, it is possible to formalize 
trajectories by considering transitions from one state x to others y whose prob-
abilities Txy(c) may depend on the action chosen c.

A key defi nitional problem that arises is assessing the worth of a delayed 
outcome. Various schemes for doing so have been suggested in economics and 
psychology. One idea is discounting, with an outcome o that will be received in 
the future after time t, having a reduced net present value of uo(m) × f (t), where 
f (t) = exp(−γt) might be exponential or f (t) = 1/(1 + γt) hyperbolic (γ > 0). Un-
der discounting, it becomes advantageous to advance outcomes with positive 
utilities and delay those with negative utilities.

Exponential  discounting is akin to using a form of interest rate. It turns out 
that there are natural extensions to the defi nition of Q values that are suitable 
for trajectories ( Watkins 1989), and necessitating only a small change to the 
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learning rule in Equation 4. Indeed, much of the data about the neural basis of 
value systems depends on these extensions.

Although hyperbolic discounting generally fi ts behavioral data more profi -
ciently, it is not clear how this might be implemented without imposing implau-
sible requirements on memory for learning. Hyperbolic discounting infamously 
leads to temporal inconsistencies (see  Ainslie 2001). For instance, if γ = 1 s−1, 
then although a reward of 4 units that arrives in 10 s would be preferred to one 
of 3 units in 9 s, after 8 seconds has passed, the reward of 3 units, which would 
now arrive in 1 s, would be preferred to the reward of 4 units, which would 
arrive in a further 2 s. The latter pattern, in which a larger, but later reward is 
rejected in favor of a smaller, but earlier one, is called impulsive.

An alternative method for handling delayed outcomes is to optimize the 
rates at which rewards are received and costs avoided. Most of the conse-
quences of this are too complex to describe here; however, in this scheme 
a key role is played by the fourth value system, which evaluates and pre-
dicts the long-run average rate (ρ) of the delivery of utility. The rate is the 
sum of all the utility received over a long period of time (from all sourc-
es), divided by that time period. The rate turns out to matter most when 
we consider optimizing the choice of not just which action, but also its 
alacrity, speed or vigor, given that the cost of acting quickly is taken into ac-
count ( Niv,  Daw et al. 2006; Niv,  Joel, and Dayan 2006).

Four Value Systems

Having introduced the four value systems above, I will now summarize some 
of their properties. Note, in particular, the distinction between the true utilities 
uo(m) and true Q values Qc(x, m) that depend on them, and the various estimates 
(distinguished using hats) which depend in different ways on the various un-
derlying learned quantities. As will be apparent, many uncertainties remain.

Native Values

 The actual utility (or experienced utility, in terms of  Kahneman et al. 1997) 
uo(m) of an outcome in a motivational state m (or at least the most immedi-
ate neural report of this) should ground all methods of choice.  Berridge and 
 Robinson (1998) discuss extensive evidence about the existence of a so-called 
 liking system, which reports on the motivational state-dependent worth of an 
outcome. Although its exact anatomical substrates are not completely clear, for 
food reward, liking has been suggested as being mediated by structures such 
as the primary taste system in the  brainstem; further, neurons in the  hypothala-
mus, for instance, have the ability to sense certain aspects of the internal state 
of an animal (e.g., hydration), and thus could play an important role. Nuclei 
in the pain system, such as the periacqueductal gray, may play a similar role 
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in the mediation of primary aversion (i.e., disliking). Opioids and benzodiaz-
epines can act to boost liking and reduce disliking, perhaps by manipulating 
this value.

Forward-model Values

 The second value system involves learning and using a forward model of the 
probabilities Ô  of the outcomes (and, in the case of trajectories, the transitions 
T̂) consequent on a choice, together with the motivational state-dependent util-
ity û of those outcomes (Figure 3.2a). This involves the use of a model in the 
service of computing a  predicted utility ( Kahneman et al. 1997). There is evi-
dence in various species that prefrontal areas (notably dorsolateral prefrontal 
cortex, the dorsomedial  striatum, and the insular cortex) are involved in this 
sort of model-dependent predictions of future outcomes (and future states). 
The nature and substrate of the assessment of the state-dependent utility û is 
less clear, and various suggestions have been made about the psychological 
and neural mechanisms involved. For instance, one idea involves incentive 
learning ( Dickinson and  Balleine 2001); namely, that subjects learn the utili-
ties from direct experience and the observed native utility. Another notion is 
that of a  somatic marker; crudely that the body itself (or a cortical simula-
crum thereof) is used to evaluate the  native utility of a predicted outcome via a 
mechanism of top-down infl uence ( Damasio et al. 1991).

One interesting question for these schemes concerns the motivational state 
m used to make the assessments. If this is the subject’s current motivational 
state, but the prediction is about an outcome that will be obtained in a different 
motivational state, then the prediction might be wrong. In discussing “hot” and 
“cold” cognition,  Loewenstein (1996) makes just such a point.

Cached Values

The  Q values ( Watkins 1989) discussed above and shown in Figure 3.2b can 
be seen as alternative estimates of predicted utilities ( Kahneman et al. 1997). 
Unlike the native or forward model-based values, these Q values pay no direct 
allegiance to their provenance in terms of particular outcomes. This turns out 
to have distinct computational benefi ts for choice, particularly in the case of 
optimizing actions over whole trajectories. However, as has already been dis-
cussed, it has problems coping effi ciently with changes to the environment or 
motivational state.

In the trajectory case, there is an important role for the cached value V (x, m) 
of the state x in motivational state m, which is defi ned by averaging the choices 
over the policy, as either

V x m x mc( , ) ( , )*=Q given Equation 2, or (5)
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=∑ P c x m x mc
c
( ; , ) ( , )Q given Equation 3. (6)

Estimates V̂  can be learned using a learning rule similar to that in Equation 4.
There is strong evidence for the involvement of the phasic release of the 

neuromodulator  dopamine in the appetitive aspects of learning these cached 
values (e.g.,  Montague et al. 1996; Schultz 1998), and for the basolateral nu-
cleus of the  amygdala, the  orbitofrontal cortex, and regions of the striatum 
in representing the V̂  and Q̂ values. This has all been reviewed extensively 
elsewhere (e.g.,  O’Doherty 2004;  Balleine and  Killcross 2006), including in 
its ascription by  Berridge and  Robinson (1998) to the second of their two sys-
tems infl uencing choice (“wanting,” which complements liking). The reader is 
referred to these excellent sources.

There is rather less agreement about how the aversive components of cached 
utilities are represented and manipulated, although there are ample data on 
the involvement of the amygdala and insula. An important psychological idea 
is that of opponency, between appetitive and aversive cached value systems. 
Indeed, some of the best psychological evidence for the existence of outcome-
independent value systems, such as Q values, comes from facets of opponency. 
For instance, the nondelivery of an expected shock can play some of the critical 
roles through learning of the delivery of an unexpected reward (see  Dickinson 
and  Balleine 2001). It has been suggested that another neuromodulator,  sero-
tonin, has a starring role in the cached aversive system ( Daw et al. 2002), but 
most of the evidence is rather circumstantial.

There may be a critical anatomical and functional separation between the 
systems associated with representing the cached values of states V̂  and those 
representing the cached Q̂ values ( O’Doherty 2004). This would be particu-
larly important if cached action values like those considered in Figure 3.2c are 
employed, as these are further divorced from the utilities.

Long-run Average Value

The fi nal notion of  value is the  long-run average utility ρ. This is important 
when it is the average utility per unit time that must be optimized, which is 
indeed the case for large classes of psychological experiments in such things 
as free operant schedules, for which rates of responding (i.e., choices about the 
times at which to act) are more central than choices between punctate actions. 
In the context of the maze, this might translate to the speed of running rather 
than the choice of which direction to run.

The importance of the long-run average value in controlling response rates 
has only fairly recently been highlighted, notably in the work of  Niv,  Daw et 
al. (2006) and Niv, Joel and Dyan (2006). They point out the link between ρ 
and the opportunity cost for behaving slothfully. When ρ is big and positive, 
animals should act faster, since every idle moment is associated directly with 
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a greater amount of lost (expected) utility. This helps explain why animals 
that are highly motivated by the expectation of receiving large rewards per 
unit time perform all actions quickly (and often not just those actions that lead 
directly to the reward).

In principle, ρ could be realized in either a forward model-based or a cache-
based manner. However, Niv,  Daw et al. (2006) suggest that the existing evi-
dence, again for rewards rather than punishments, may favor an assignment of 
ρ to the tonic activation of dopaminergic neurons.

Again, less work has been done on the nature and realization of long-run 
average negative values. It is notable that various forms of depression have 
been postulated as depending in some way on stress and excessive affective 
negativity. We might expect these to be associated with a form of anergia (i.e., 
actions slowed are expected punishments postponed). However, more sophisti-
cated effects of prior expectations appear to be at work in other paradigms used 
to capture aspects of depression, such as learned helplessness.

Four Decision Makers

 As outlined above, these four value systems contribute in various ways to 
the different structures involved in decision making. Indeed, most of the evi-
dence about the value systems derives from observations of choices that are 
inferred to depend on values of one sort or another. In this section, I briefl y 
describe fi rst the decision-making systems, and then some critical aspects of 
their interaction.

Goal-directed Control 

 The  forward model is the most straightforward control mechanism. It was dis-
cussed in the description of Figure 3.2a. Choices are based on approximate 
evaluations (û) of predicted (Ô) outcomes. If the evaluation system û is sensi-
tive to motivational state, then so will be the choice of action.

Figure 3.3a shows the extension of Figure 3.2a to the case of the full maze. 
The main difference is that the search process starts at x1 and includes the use 
of T̂  to work out which states follow which actions until outcomes are reached. 
By searching to the end of the tree, the subject can favor going left at x1 when 
hungry, but right at x1 when thirsty. This motivational dependence of control, 
which itself is a function of the motivational dependence of û, is why this 
controller is typically deemed to be goal-directed. Since choices are based on 
search through the tree, which may be considered to be working-memory in-
tensive and deliberative (see  Sanfey et al. 2006), this controller distributes in-
formation in exactly the correct way. For instance, if the subject is hungry, but 
when it visits x2 it discovers that the path to the cheese is blocked, then the next 
time x1 is visited, the appropriate choice of action (going right) can be made, 
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since the new, impoverished consequence of going left can be calculated. This 
is a hallmark of the sort of sophisticated, cognitive control whose investigation 
was pioneered by  Tolman (1948).

As mentioned, there is evidence for the involvement of dorsolateral prefron-
tal cortex and dorsomedial striatum in goal-directed control ( Balleine 2005), 
perhaps because of the demands on working memory posed by forward search 
in the tree. The representation of û, however, is less clear.

Habitual Control

 Figure 3.3b is the extension of Figure 3.2b to the case of the full maze and 
shows the complete set of cached V̂  and Q̂ values for the case of hunger. These 
are actually the optimal values in the sense that they relate to the optimal 
choice of action at each state in the maze. As mentioned above, these values 
can be learned directly from experience. However, the  cached values lack the 
fl exibility of the forward model-based values, in particular not being based 
on knowledge, or estimates, of the actual outcomes. Therefore, behavior at x3 
may not change immediately with a change in motivational state from hunger 
to thirst, and the behavior at x1 may not change immediately when the subject 
learns about the impossibility of turning left at x2. These infl exibilities are the 
psychological hallmarks of automatic, habitual control ( Sanfey et al. 2006).

One key feature for learning cached values in the case of trajectories is 
that the value of a state, or a prediction of this value, becomes a surrogate for 
the utilities that will arise for outcomes delivered downstream of that state. In 
the maze, for instance, assuming that the subject already knows to turn left 
there, state x2 is worth V (x2, H) = 4 in the case of hunger. This makes state x2 
a conditioned reinforcer (see Mackintosh 1983). Discovering this on turning 
left at x1 can help reinforce or stamp in that choice at x1. In the case of rewards, 
it is a learning rule that arises from this that has been validated in the activity 

Figure 3.3 Complete maze task: (a) Goal-directed control uses a forward model of 
the transitions T̂ , the outcomes Ô  and the utilities û to predict the values. (b) Cached 
control uses Q̂ (and V̂) values to quantify the worth of each action (and state) without 
modeling the underlying cause of these values. Figure adapted from Niv,  Joel, and 
Dayan (2006).
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of dopamine neurons, the concentration of  dopamine at its striatal targets, 
and even the fMRI BOLD signal in humans undergoing simple conditioning 
tasks for primary or secondary reward ( Montague et al. 1996;  Schultz 1998; 
 O’Doherty 2004). The combination of learning predictions and using those 
predictions to learn an appropriate policy is sometimes called the  actor–critic 
learning rule ( Sutton and  Barto 1998).

These and other studies suggest that habitual control depends strongly on 
dorsolateral regions of the striatum ( Balleine 2005). This region is subject to 
dopaminergic (and serotonergic) neuromodulation, and there is evidence from 
pharmacological studies that these neuromodulators infl uence the learning of 
appropriate actions.

Episodic Control

 Both goal-directed and habitual controllers can be seen as learning appropriate 
actions through the statistical process of measuring the correlations between 
actions and either outcomes or the utilities of those outcomes. An apparently 
more primitive scheme, called an episodic controller, would be simply to re-
peat wholesale any action or sequence of actions that has been successful in 
the past ( Lengyel and Dayan 2007). This requires a structure that can store 
the successful actions, putatively a job for an  episodic memory, plus a way 
of coupling ultimate success to storage or consolidation within this memory. 
Although different interpretations are possible, there is indeed evidence in rats 
and humans that the hippocampus, a critical structure for episodic memory, 
whose storage appears to be under rich neuromodulatory control, may indeed 
have a key role to play ( Poldrack and  Packard 2003).

Pavlovian Control

 The three controllers described thus far encompass ways of making, or at least 
learning to make, essentially arbitrary choices in light of the outcomes to which 
they lead. They are sometimes called  instrumental controllers, since they favor 
actions that are instrumental in achieving rewards or getting to safety. This 
sort of choice may, however, just be a thin layer of icing on the overall cake 
of control ( Breland and  Breland 1961). Inbuilt, instinctive mechanisms, which 
have been programmed by evolution, specify vast swathes of appropriate ac-
tions in the direct face of particular appetitive or aversive outcomes ( Mackin-
tosh 1983). This is particularly apparent in the response to clear and present 
dangers; such defensive and aggressive responses even appear to enjoy a topo-
graphic organization along an axis of the dorsal periacqueductal gray ( Keay 
and  Bandler 2001). It is also apparent in the appetitive (licking) and aversive 
(gapes) responses to the direct provision of primary rewards that  Berridge and 
 Robinson (1998) used to measure the extent of  liking, as well as perhaps in 
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consummatory responses, such as the drinking behavior of a pigeon faced with 
a water dispenser or its eating behavior faced with grain in a hopper.

More critically, however, there is also a range of inbuilt responses to predic-
tions of future rewards or punishments, which may be considered to come from 
a Pavlovian controller. These responses are emitted even though they may be 
immaterial (or indeed, as will be seen below, antagonistic) to the delivery of 
the outcomes.  Very crudely, one component of these responses is outcome-
independent, including approach and engagement to predictors associated with 
positive utilities and withdrawal and disengagement from predictors associated 
with negative utilities. For instance, pigeons will approach or peck a key whose 
illumination is temporally predictive of the delivery of food or water at another 
part of the experimental chamber; rats will move away from a stimulus that 
predicts the delivery of a shock. A second component is outcome-dependent; 
that is, the detailed topography of the keypeck is dependent on whether the 
pigeon expects food or water.

In view of these fi ndings, it is likely that there are multiple Pavlovian con-
trollers, with outcome-dependent responses arising from the predictions of 
something akin to the forward model, and outcome-independent reactions aris-
ing from something more like  cached values. Indeed, exactly the same anatom-
ical and pharmacological mechanisms seem to play similar roles, and it may 
be that Pavlovian values arise from the systems discussed above. However, the 
different classes of Pavlovian responses seem not to be separated as readily 
using motivational manipulations, and the distinctions between the different 
controllers is less well understood.

Pavlovian control is important since most tasks that are designed to test in-
strumental controllers also create Pavlovian contingencies ( Mackintosh 1983). 
In the maze of Equation 1, for instance, how do we know if hungry animals 
run from x1 to x2 because they have had the choice of going left stamped in by 
the utility available (an instrumental explanation) or because they have learned 
to predict the appetitive characteristic of V̂  (x2) > 0, and to emit an inbuilt ap-
proach response to stimuli or states associated with positive utility (a Pavlovian 
one)? In fact, a reductio ad absurdum exists: since Pavlovian responses have 
likely been designed over evolution to be appropriate to the general environ-
mental niche occupied by the subjects, experimenters can arrange it such that 
the Pavlovian response is instrumentally inappropriate. A famous case of this 
is  negative automaintenance: Consider the autoshaping experiment mentioned 
above, in which pigeons come to peck keys simply because they are illumi-
nated a short while before food or water is presented. If an additional, instru-
mental, contingency is imposed, such that no food or water will be provided on 
any trial on which the pigeon pecks the illuminated key, the pigeons continue 
to peck the key to some degree, despite the adverse effect of this pecking on 
their earnings. Many foibles of control and choice can be interpreted in terms 
of untoward cooperation and  competition between Pavlovian and instrumental 
control (Dayan et al. 2006).
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Interactions among the Systems

It is natural to ask what benefi ts could accrue from the existence of multiple, 
different decision-making systems and, indeed, to question how the new prob-
lem for choice they pose collectively might be solved; that is, choice between 
the choosers rather than between different possible actions.

 Instrumental Competition

The fi rst three decision makers at least share the common notional goal of mak-
ing choices that will maximize predicted utilities. They base their choices on 
distinct value systems, which are differentially accurate in given circumstances. 
 Daw et al. (2005) suggested that goal-directed and habitual controllers lie at 
two ends of a rough spectrum, trading off two sources of uncertainty: ignorance 
and computational noise. This trade-off is not unique to animals, but rather af-
fects all decision makers. Daw et al. (2005) suggested that uncertainty should 
also be the principle governing the choice between the decision makers.

The goal-directed controller makes best use of information from the world, 
propagating fi ndings at one state (e.g., a newfound inability to turn left at x2) 
immediately to affect choice at other states (enabling the subject to choose to 
turn right at x1). By contrast, information propagates between the  in a more 
cumbersome manner over learning, and thus incorrect or ineffi cient behaviors 
(at states like x1) may persist for a number of trials. In fact, one possible use 
for the reactivation of activity during sleep or quiet wakefulness is the con-
solidatory process of propagating information to eliminate any inaccuracy. In 
general, the goal-directed controller can be expected to be more accurate early 
in learning and after environmental change. Its use of û also makes it more 
reliable in the face of change to the motivational state.

Nevertheless, the goal-directed controller only gains this fl exibility at the 
expense of computationally intractable and, at least in animals, noisy, compu-
tations. The task of explicitly searching the tree of choices is tough, since the 
number of branches and leaves of a tree typically grows very quickly with its 
depth. Keeping accurate track of the intermediate states and values is impos-
sible for deep trees, and the resulting inaccuracies are a source of noise and 
uncertainty that removes therefore some of the benefi ts of goal-directed con-
trol. Note that if computational noise can be reduced through the application 
of (cognitive) effort or processing time, then forms of effort- or time-accuracy 
trade-offs may ensue (e.g.,  Payne et al. 1988).

Computational intractability has inspired the integration of  goal-directed 
and  habitual  control in artifi cial systems. For instance, game-playing pro-
grams, such as the  chess player Deep Blue, typically perform explicit search, 
but without reaching the leaves of the tree (where one or another player will 
be known to have won). Instead, they use an evaluation function to measure 
the worth of the positions on the board discovered through searching the tree. 
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This evaluation function is exactly analogous to the V (x, m) function discussed 
above. As before, the ideal evaluator would report something akin to the prob-
ability of winning, starting from position x. Indeed, some of the earliest ideas 
in  reinforcement learning stem from the realization that the tree search defi nes 
a set of consistency conditions for the evaluations, and that inconsistencies can 
be used to learn or improve evaluators ( Sutton and  Barto 1988).

 Daw et al. (2005) suggest that the goal-directed and habitual systems should 
keep track of their own respective uncertainties. Then, as is standard in Bayes-
ian decision theoretic contexts, the controllers’ estimates should be integrated 
in a way that depends on their uncertainties. Calculating the uncertainties ac-
tually poses severe computational challenges of its own, and it is likely that 
approximations will be necessary. Daw et al. (2005) demonstrate that a very 
simple version of uncertainty-based competition suffi ced to account for the 
data on the transition from goal-directed to habitual control that is routinely 
observed over the course of behavioral learning. This transfer is signaled by 
the different motivational sensitivities of the two controllers, which, in turn, 
comes from their dependence on different value systems. It occurs because 
after substantial experience, the uncertainty in the habitual controller, which 
stems from its ineffi cient use of information, is reduced below the level of the 
computational noise in the goal-directed system. Daw et al. (2005) interpret 
various psychological results by noting that the extent to which uncertainty fa-
vors one or another system depends on the depth of the tree (shallow trees may 
permanently favor goal-directed control) as well as the (approximate) models 
of uncertainty that each controller possesses.

The  episodic controller can also fi t into this general scheme for uncertainty-
based utility and competition. Repeating a previously successful action is like-
ly to be optimal in the face of substantial uncertainty and costly exploration. 
This suggests that the episodic controller should be most benefi cial at the very 
outset of learning, even before the goal-directed controller. Experimental data 
on this are presently rather sparse ( Poldrack and  Packard 2003).

Pavlovian  Competition

The Pavlovian controller is somewhat harder to locate within this apparently 
normative interaction between the instrumental controllers. It is diffi cult, for 
example, to see the logic behind the fi nding in  negative automaintenance that 
pigeons will learn to emit actions (pecking the illuminated key because of its 
temporal association with the delivery of food) that are explicitly at odds with 
their instrumental ambitions (i.e., denying them food). More strikingly, learn-
ing may be based on exactly the same forward-modeling and cached value 
systems that underlie the instrumental decision makers.

One way to think about this is as an illusion of choice. Some perceptual 
illusions can be seen as arising when a particular observation is construct-
ed in a way that violates statistical expectations or priors based either on 
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evolutionarily specifi ed characteristics of the natural sensory environment, or 
on characteristics that have been acquired over a lifetime of experience. The 
systems engaged in perceptual inference must weigh the evidence associated 
with a particular scene against the overwhelming evidence embodied by these 
priors. Illusions can result when the latter wins. Similarly, it is indeed generally 
appropriate to approach and engage with predictors of positive utility, and it 
is mainly in artifi cial experimental circumstances that this has negative con-
sequences.  Breland and  Breland (1961) present an extensive and entertaining 
description of various other cases that can be seen in similar terms.

The task for us becomes one of understanding the net effects of the interac-
tion between Pavlovian and  instrumental control. Approach and engagement 
responses triggered by positive  values could lead to the same sort of boost for 
a nearly immediately available rewarding outcome that underlies the impul-
sivity inherent in hyperbolic  discounting (for a recent example, see  McClure 
et al. 2004). Concomitantly, it could underlie indirectly the whole range of 
commitment behaviors that have been considered by proponents of this sort of 
discounting (e.g.,  Ainslie 2001).

Withdrawal responses caused by predictions of aversive outcomes can be 
equally important and, at least in experimentally contrived conditions, equally 
detrimental. However, perhaps not unreasonably, the range of Pavlovian re-
sponses to threat appears to be much more sophisticated than that to reward, 
with a need to engage fl ight (defi nitive withdrawal) or fi ght (defi nitive ap-
proach) under conditions that are only fairly subtly different. Nevertheless, it 
has been suggested ( De Martino et al. 2006) that the framing effect, in which 
presenting equivalent choices as losses rather than gains makes them apparent-
ly less attractive, could well arise from Pavlovian withdrawal. Similarly, one 
can argue that Pavlovian responses might bias the sort of deliberative evalua-
tion performed using a forward model, by inhibiting the exploration of paths 
that might have negative consequences and boosting paths that might have 
positive consequences. Various biases like these are known to exist, and indeed 
are systematically disrupted in affective diseases such as depression.

The last interaction is called Pavlovian-to-instrumental transfer, or PIT. 
This is the phenomenon whereby a subject engaging in an instrumental ac-
tion to get an outcome will act more quickly or vigorously upon presenta-
tion of a Pavlovian predictor of that outcome, or indeed any other appetitive 
outcome that is relevant to the subject’s current motivational state. The boost 
from predictors of the same outcome (called specifi c PIT) is greater than that 
of a different, though motivationally relevant, outcome (general PIT). The ob-
verse phenomenon, in which a predictor of an aversive outcome will suppress 
ongoing instrumental behavior for rewards, is actually the standard way that 
the strengths of Pavlovian predictors of aversive outcomes are measured. One 
view of general PIT is that the Pavlovian cues might affect the prediction of the 
 long-run average value ρ and, as discussed above, thereby change the optimal 
behavioral vigor ( Niv,  Joel, and Dayan 2006). A mechanism akin to this was 
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interpreted as playing a key role in controlling the vigor with which habits are 
executed. This was argued as being necessary since the general motivational 
insensitivity of habits limits other ways of controlling habitual vigor.

Open Issues

There are many open issues about the nature of the individual systems and 
their interactions. In particular, the nature of the predicted utility ûo(m) in the 
 forward-model value, and especially its dependence on motivational state m 
and relationship to the native “ liking” value uo(m), are distressingly unclear. 
Equally, the coupling between forward-model mechanisms and neuromodula-
tors is somewhat mysterious—a fact that is particularly challenging for the 
models designed to optimize the average rate of utility provision. Subjects 
have also been assumed to know what actions are possible, although this in 
itself might require learning that could be particularly taxing.

I would like to end by pointing to various issues that relate to the broader 
themes of this Ernst Strüngmann Forum.

Generalization and Value

I have stressed issues that relate to generalization: the way that information 
learned in one motivational state generalizes to another one, and generalization 
of facts learned in one part of an environment (e.g., the futility of going left 
at x2) to other parts (the choice of going right at x1). The issue of generaliza-
tion in learning functions such as Q̂c(x, m) is a large topic itself, raising many 
questions about things such as the representations of the states x and m that 
determine these values.

Foremost to generalization is prior expectations. Subjects can have prior 
expectations about many facets of the world, which then translate into prior 
expectations about all the unknown aspects of the problem (particularly T and 
O). Take, for instance, the phenomenon of learned helplessness, which is an 
animal and human model of depression (e.g.,  Maier 1984). In learned helpless-
ness, two subjects are yoked to receive exactly the same shocks. One subject 
(the “master”) can terminate the shock by its actions, whereas the other (the 
“yoke”) cannot; it just experiences whatever length of shock the master ex-
periences. In generalization tests to other tasks (or other environments), the 
master subjects perform like controls; however, the yoked subjects show signs 
that resemble depression, notably an unwillingness to attempt to choose ac-
tions to improve their lot. One interpretation (Huys and Dayan, pers. comm.) 
is that the yoked subjects generalize to the test, the statistical structure, which 
indicates that actions cannot be expected to have reliable or benefi cial effects. 
Given this expectation, it is not adaptive to search for or to attempt appropriate 
actions, which is exactly the behavioral observation. Thus predictions about 
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likely values and value structures can exert a strong infl uence on the whole 
interaction between a subject and its environment.

Conscious and Unconscious Control

A major theme at this Forum was the relationship between conscious and  un-
conscious decision making. Without wishing to pass judgment on conscious-
ness, we might think that the former has more to do with deliberative process-
ing; the latter with automatic control. If we consider forward-model  schemes 
to be deliberative and habitual ones automatic, then within the  instrumental 
systems described herein, there appears to be a seamless integration with a 
single intended target. The  Pavlovian controller can disturb this normativity, 
but it may also be based on deliberative and automatic evaluation mechanisms, 
each of which might disturb its matched instrumental controller. Our view is 
thus perhaps not completely consistent with some two-systems accounts, for 
instance, those that attribute a shorter timescale of discounting to the automatic 
rather than the deliberative system ( McClure et al. 2004).

Deliberation, however, could clearly be much more complicated than the 
sort of rigid search that we have considered through a known tree. There are 
many choices inherent in the search process itself, and these are presumably 
the products of exactly the same sorts of mechanisms and rules that have been 
developed for externally directed actions. Understanding how they all work 
together as well as the way that biases in different systems affect the overall 
choice, are key areas for future exploration. To belabor one example, I have 
argued that amorphous and poorly understood tasks likely favor the  episodic 
controller. However, since it is explicitly not designed on the principles of sta-
tistical averaging, which underlie the forward model and the habit system, this 
controller will most likely have a diffi cult time integrating statistical informa-
tion correctly. This could lead to large biases in choice, given only moderate 
numbers of examples.

Conclusions

I have sketched an account of the infl uences of different systems involved in 
the assessment of value on different systems involved in making choices. Val-
ue systems, and therefore the behavioral systems they support, vary according 
to the nature and origin of their sensitivity to the motivational state of a sub-
ject, its knowledge about its environment, as well as their intrinsic timescales. 
Decision-making systems vary in related ways, bringing different information 
to bear on largely similar concerns. Instrumental controllers work together in 
a harmonious manner, whereas it is signifi cantly more challenging to account 
for and understand Pavlovian control.
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