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terials could even be fabricated.] The key is
to consider processes in which electrons in
the 2DEG absorb energy from the mi-
crowaves and are also scattered by impuri-
ties or lattice vibrations. The effect of the
microwaves is a type of population inver-
sion (11, 12) similar to that which occurs in
a laser. For the microwave frequencies and
magnetic fields at which the experiments
reveal resistance decreasing until it satu-
rates at zero, these calculations show re-
sistance decreasing, passing through zero,
and then becoming negative. Thus, this
work explained how the microwaves could
cause a decrease in resistance, but left a
key question unanswered: Why does the re-
sistance saturate at zero?

Missing from the calculations discussed
above is the effect of interactions between
the electrons. Such interactions would be
exceedingly difficult to include within a

microscopic cal-
culation, but can
be considered at
the macroscopic
level through the
solution of Max-
well’s equations
of electrodynam-
ics. Doing so for
the 2DEG sys-

tem, it was quickly shown that a homoge-
neous current distribution with negative re-
sistance would be electrodynamically un-
stable (13). To avoid the negative-resist-
ance state, the system can spontaneously
arrange itself into an intricate current pat-
tern (see the seccond figure) characterized
by domain walls separating regions of large
local current density at which the resist-
ance is not negative, but zero.

This is an exciting possibility which, to-
gether with the microscopic calculations
showing negative resistance, provides a
plausible explanation for the phenomenon
seen in the experiments. Furthermore, it
suggests that the microwave-induced zero-
resistance states should be understood in
terms of the nonequilibrium physics of pat-
tern formation. However, much work re-
mains to be done before this scenario can
be accepted as reality. On the theory side, it

is important to develop a better understand-
ing of what kinds of patterns are optimal,
how they are formed, and how their fluctu-
ations can be characterized. Experiments
may be able to detect the current patterns, if
they do exist, by measuring the local Hall
voltages they create, the magnetic field pat-
terns they produce, or the charges built up
on the current domain walls. Although ex-
perimental work is currently in progress,
these measurements are very difficult to
perform and we are still waiting for a smok-
ing gun.
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Recipe for pattern formation? Schematic diagram of a two-dimen-

sional electron gas in a perpendicular magnetic field (green field lines)

subjected to microwave radiation (red). Shown is an example of the

type of current pattern that might be associated with the observed ze-

ro-resistance state. Domain walls (purple) separate regions of large

but counterflowing current density. Net current flow is equal to the

applied current, depicted left to right.

S
ensation is simple, execution easy, ac-
cording to a burgeoning line of work
in neurophysiology, neuroimaging,

and neural computation. The difficulty
arises in getting them properly married.

Situated in the mid-
dle between sen-
sation and action is
decision-making.
Choosing between

actions usually requires learning how these
actions determine the rewards and punish-
ments that an environment affords, and
how this depends on sensory circumstance.

Computationally, decision-making is hard
to study because these factors are nonsta-
tionary: The environment may be dynamic.
The subject’s knowledge about the envi-
ronment surely is. Experimentally, the in-
formation associated with choice (like
most quantities represented at refined lev-
els of the cortical hierarchy) is rather slip-
pery. It is only loosely amenable to experi-
mental control, and only dimly illuminated
by behavior. The study by Sugrue et al. on
page 1782 of this issue (1), along with oth-
er recent reports (2–4), exemplifies what is
currently the most successful strategy to
overcome these obstacles. The idea is to
ground a detailed analysis of behavior on a
computational theory of near-optimal per-
formance. Key internal variables from al-

gorithms that instantiate the theory can
then be correlated with, and thereby eluci-
date, neural activity. 

Sugrue et al. (1) study a decision task in
which, on each trial, a monkey must make
an eye movement toward one of two col-
ored targets to indicate its choice. The
choice may be rewarded with juice, which
becomes available sporadically (and
unsignaled) at each target, with different
characteristic payoff frequencies. If these
frequencies are fixed, then many species
adopt a reasonably effective behavioral
strategy called matching (5). Under this
strategy, the probability of choosing a tar-
get roughly equals the proportion of the to-
tal reward (income) earned from that target
(called “fractional income”). In this study,
frequencies were constantly changed, pro-
ducing continual behavioral adaptation.
The experiment captures the metrics of be-
havioral plasticity by relating the ever-mu-
tating choices to the ever-mutating frac-
tional incomes. It also probes the neural
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mechanics of decision-making by relating
dynamic choices and incomes to fluctuat-
ing neural activity in an area of the brain
called the lateral intraparietal cortex (LIP),
a site that helps to control eye movements. 

Temporally local estimates of the frac-
tional incomes calculated using a low-pass
filter (leaky integrator) fairly closely
match changing choice probabilities. The
filter’s time constant determines over how
many trials income is averaged. Intrig-
uingly, the value that best fits the mon-
keys’ eye movement behavior is nearly op-
timal for harvesting rewards, at least in the
restricted class of algorithms considered.
In a similar task, a monkey’s time constant
seemed to evolve systematically with ex-
perience (6). These findings raise the pos-
sibility that animals are engaging in met-
alearning, adaptively tuning parameters
that control learning. Testing this idea
would involve manipulating the task pa-
rameters that determine the optimal time
constant, such as the prevalence of
changes to the payoff frequencies.

Many LIP neurons respond preferen-
tially, prior to eye movements, to particular
locations (their spatial “response fields”).
The monkeys’ behavior suggests investi-
gating how this neural activity relates to
the local fractional income of targets in the
response fields. The figure illustrates vari-
ous possibilities: correlation of neural ac-
tivity purely with ultimate target choice
(panel A); correlation of neural activity
purely with fractional income (panel B),
implying that other structures (perhaps
subcortical areas associated with habit
learning) might control the behavior; or, as
actually supported by the data here, corre-
lation of neural activity with a combina-
tion of both target choice and fractional in-
come (panel C). There is no evidence in

the Sugrue et al. study that choice and in-
come correlation trade off differentially
during the delay preceding eye move-
ments, as suggested previously (2).

Several questions arise. First, this task
has deeper psychological than computa-
tional roots. The field of reinforcement
learning (7) has focused on a different class
of task, which allows for choices to have
delayed consequences. A key proposal
based on this theory is that learning about
rewards is driven by errors in predictions of
those rewards. These errors are believed to
be reported by the neuromodulator
dopamine (8). It is not clear how (or even
whether) dopamine controls the ongoing
estimation of fractional incomes in the
matching task.

Reinforcement learning and economic
decision theory concentrate on expected re-
ward per choice (return), which, unlike in-
come, explicitly factors out choice proba-
bility. Return behaves unusually in perfect
matching, because it is equal for both alter-
natives, even if the programmed payoff fre-
quencies differ. A temporally local estimate
of the return would thus be unaffected by
swapping the programmed payoff frequen-
cies between targets (see the figure, panel
D), even though this change strongly mod-
ulates choice behavior and fractional in-
come. An analogous prediction has been
investigated in a game-playing task. Early
results suggest that LIP responses and be-
havior are dissociated (3).

This raises the critical issue of model
validation. Fractional income is strongly
correlated with analogous measures de-
fined by innumerable alternative models.
Standard statistical model selection proce-
dures could address the question of which
theory best explains the LIP responses.
Applied to monkeys’ behavior on a similar

task, such analysis favors a somewhat dif-
ferent model (9). It is not yet clear whether
the alternative income estimates of this
model (or indeed others) correlate better
with neural responses.

Finally, what critical computations, if
any, do LIP neurons perform in this task,
and how is income involved? As Sugrue et
al. note, LIP, with its spatially localized
response fields, seems an unlikely sub-
strate for tracking the incomes of targets,
which, in this task, are determined by col-
or rather than location. Are decision theo-
retic quantities such as income ubiquitous,
with LIP merely being an example?
Recent data (10) suggest an apparently
specific function for LIP in integrating
over time noisy sensory information per-
taining to a choice, an aspect of decision-
making not exercised by the matching
task. Tasks combining sensory integration
and complex payoff contingencies are un-
der way. If cortical areas like LIP indeed
have an intimate role to play in the mar-
riage between sensation and action, then
perhaps it will take the theory-driven ap-
proach of Sugrue et al. to expose it fully.
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The marriage between sensation and action. (A to C) Hypothetical

relationships between the proportion of integrated reward (called frac-

tional income) earned in the recent past for eye movements toward a

target and the trial-to-trial activity of a LIP neuron with a response field

covering that target. The blue line shows neural activity for trials in

which the choice of eye movement was into the response field. The

green line shows neural activity for trials in which the eye movement

was away from the response field. (A) LIP neuron activity correlates

with choice, but not fractional income. (B) LIP neuron activity corre-

lates with fractional income, but not choice. (C) LIP neuron activity cor-

relates with both choice and fractional income. [The third option is con-

sistent with figure 4A of Sugrue et al. (1), because the abscissa for their

green curve is 1 minus the local fractional income.] (D) Smoothed re-

turn (payoff per choice of target) (brown) during a period when the tar-

get payoff frequencies are swapped (gray background). Although

smoothed fractional income (red) and choice behavior (orange) change

markedly, the return remains roughly constant. Also, local fluctuations

in all three quantities are correlated.
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