
An Hierarchical Model of Visual Rivalry

In NIPS 9.

Peter Dayan
Department of Brain and Cognitive Sciences

E25-210 Massachusetts Institute of Technology
Cambridge, MA 02139

dayan@psyche.mit.edu1

Abstract

Binocular rivalry is the alternating percept that can result when
the two eyes see different scenes. Recent psychophysical evi-
dence supports an account for one component of binocular ri-
valry similar to that for other bistable percepts. We test the
hypothesis19, 16, 18 that alternation can be generated by competi-
tion between top-down cortical explanations for the inputs, rather
than by direct competition between the inputs. Recent neurophys-
iological evidence shows that some binocular neurons are modu-
lated with the changing percept; others are not, even if they are
selective between the stimuli presented to the eyes. We extend
our model to a hierarchy to address these effects.

1 Introduction

Although binocular rivalry leads to distinct perceptual distress, it is revealing
about the mechanisms of visual information processing. The first accounts for
rivalry argued on the basis of phenomena such as increases in thresholds for test
stimuli presented in the suppressed eye24, 8, 3 that there was a early competitive
process, the outcome of which meant that the system would just ignore input from
one eye in favour of the other. Various experiments have suggested that simple in-
put competition cannot be the whole story. For instance, in a case in which rivalry
is between a vertical grating in the left eye and a horizontal one in the right, and
in which a vertical grating is presented prior to rivalry to cause adaptation, the
relative suppression of vertical during rivalry is independent of the eye of origin
of the adapting grating.4 Even more compelling, if the rivalrous stimuli in the two
eyes are switched rapidly, the percept switches only slowly – competition is more
between coherent percepts than merely inputs. Rivalry is an attractive paradigm
for studying models of cortex like the Helmholtz machine12, 7 that construct coher-
ent percepts, and in particular for studying hierarchical models, because of electro-
physiological data on the behaviour during rivalry of cells at different levels of the
visual processing hierarchy.16

Leopold & Logothetis16 trained monkeys to report their percepts during rivalrous
and non-rivalrous stimuli whilst recording from neurons V1/2 and V4. Important
findings are that striate monocular neurons are unaffected by rivalry; some striate
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binocular neurons that are selective between the stimuli modulate their activities
during rivalry; others do not; some fire more when their preferred stimuli are sup-
pressed; others still are only selective during rivalry. In this paper we consider
one form of analysis-by-synthesis model of cortical processing7 and show how it
can exhibit rivalry between explanations in the case that the eyes receive different
input. This model can provide an account for many of the behaviours described
above.

2 The Model

Figure 1a shows the full generative model. Units in layers y (modeling V1) and x

and w (modeling early and late extra-striate areas) are all binocular and jointly
explain successively more complex features in the input z according to a top-
down generative model. Apart from the half bars in y, the model is similar
to that learned by the Helmholtz machine12, 7for which increasing complexity in
higher layers rather than the increasing input scale is key. In this case, for in-
stance, w2 specifies the occurrence of vertical bars anywhere in the 8 � 8 input
grids; x16 specifies the rightmost vertical bar; and y31 and y32 the top and bottom
half of this vertical bar. These specifications are provided by a top-down genera-
tive model in which the activations of units are specified by probabilities such as
P [yi = 1jx] = �
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where the sum k is over all the units in the x

layer, and �() is a robust normal distribution function. We model the percept in
terms of the activation in the w layer.

We model differing input contrasts by representing the input to zi by di, where
P [zi = 1] = �(di) and all the zi are independent. Recognition is formally the sta-
tistical inverse to generation, and should produce distribution P [w;x;yjd] over all
the choices of the hidden activations. We use a mean field inversion method,13
using a factorised approximation Q[w;x;y;�; �;  ] = Q[w;�]Q][x; �]Q[y; ], with
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We report the mean activities of the units in the graphs and use a modified gradi-
ent descent method to find appropriate parameters. Figure 1b shows the resulting
activities of units in response to binocular horizontal (i) and vertical (ii) bars, and
also the two equally likely explanations for rivalrous input (iii and iv). For rivalry,
there is direct competition in the top left hand quadrant of z, which is reflected in
the competition between y1; y3 and y17; y21. However, the input regions (top right
of L and bottom left of R) for which there is no competition, require the constant
activity of explanations y9; y11; y18 and y22. Under the generative model, the coac-
tivation of y1 and y9 without x1 is quite unlikely (P [x1 = 0jy1 = 1; y3 = 1] = 0:1),
which is why x1, x3 and also w1 become active with y1 and y3.

Given just gradient descent for the rivalrous stimulus, the network would just find
one of the two equally good (or rather bad) solutions in figure 1b(iii,iv). Alterna-
tion ensues when descent is augmented by a fatigue process:

 1(t+ 1) =  1(t) + Æ(�r 1F [�; �;  ] + �(� 1(t))�  
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where � is a decay term. In all the simulations, �=0:5; �=0:1 and Æ=0:01.
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Figure 1: a) Hierarchical generative model for 8 � 8 bar patterns across the two eyes. Units are de-
picted by their net projective (generative) fields, and characteristic weights are shown. Even though
the net projective field of x1 is the top horizontal bar in both eyes, note that it generates this by in-
creasing the probability that units y1 and y9 in the y layer will be active, not by having direct connec-
tions to the input z. Unit w1 connects to x1; x2; : : : x8 through Jwx = 0:8; x16 connects to y31; y32

through Jxy =1:0 and y32 connects to the bottom right half vertical bar through Jyz=5:8. Biases are
bw=�0:75; bx=�1:5; by=�2:7 and bz=�3:3. b) Recognition activity in the network for four differ-
ent input patterns. The units are arranged in the same order as (a), and white and black squares imply
activities for the units whose means are less than and greater than 0:5. (i) and (ii) represent normal
binocular stimulation; (iii) and (iv) show the two alternative stable states during rivalrous stimulation,
without the fatigue process.

We adopted various heuristics to simplify the process of using this rather cum-
bersome mean field model. First, fatigue is only implemented for the units in the
y layer, and the  follow the equivalent of the dynamical equations above. Al-
though adaptation processes can clearly occur at many levels in the system, and
indeed have been used to try to diagnose the mechanisms of rivalry,15 their exact
form is not clear. Bialek & DeWeese1 argue that the rate of a switching process
should be adaptive to the expected rate of change of the associated signal on the
basis of prior observations. This is clearly faster nearer to the input.

The second heuristic is that rather than perform gradient descent for the non-
fatiguing units, the optimal values of � and � are calculated on each iteration by
solving numerically equations such as

r�iF [�; �;  ] = 0:

The dearth of connections in the network of figure 1a allows � and � to be calcu-
lated locally at each unit in an efficient manner. Whether this is reasonable de-
pends on the time constants of settling in the mean field model with respect to the
dynamics of switching, and, more particularly on the way that this deterministic
model is made appropriately stochastic.
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Figure 2: a) Mean activities of units at three levels of the hierarchy in response to rivalrous stimuli
with input strengths l = r = 1:75. b) Contrast dependence of the oscillation periods for equal input
strengths, and when l=1:25 and r is varied.

Figure 2a shows the resulting activities during rivalry of units at various levels of
the hierarchy including the fatigue process. Broadly, the competing explanations
in figure 1b(iii;iv), ie horizontal and vertical percepts, alternate, and units without
competing inputs, such as y9, are much less modulated than the others, such as
y1. The activity of y9 is slightly elevated when horizontal bars are dominant, based
on top-down connections. The activities of the units higher up, such as x1 and
w1, do not decrease to 0 during the suppression period for horizontal bars, leav-
ing weak activity during suppression. Many of the modulating cells in monkeys
were not completely silent during their periods of less activity.16 Figure 2b shows
that the hierarchical version of the model also behaves in accordance with experi-
mental results on the effects of varying the input contrast,17, 10, 22, 16 which suggest
that increasing the contrast in both eyes decreases the period of the oscillation (ie
increases the frequency), and increasing the contrast in just one eye decreases the
suppression period for that eye much more than it increases its dominance period.

3 Discussion

Following Logothetis and his colleagues19, 16, 18 (see also Grossberg11) we have
suggested an account of rivalry based on competing top-down hierarchical ex-
planations, and have shown how it models various experimental observations on
rivalry. Neurons explain inputs in virtue of being capable of generating their activ-
ities through a top-down statistical generative model. Competition arises between
higher-level explanations of overlapping active regions (ie those involving contrast
changes) of the input rather than between inputs themselves. Note that alternat-
ing the input between the two eyes would have no effect on this behaviour of the
model, since explanations are competing rather than inputs. Of course, the model
is greatly simplified – for instance, it only has units that are not modulating with
the percept in the earliest binocular layer (layer y), whereas in the monkeys, more
than half the cells in V4 were unmodulated during rivalry.16

The model’s accounts of the neurophysiological findings described in the introduc-
tion are: i) monocular cells will generally not be modulated if they are involved in



explaining local correlations in the input from a single eye. This model does not
demonstrate this explicitly, but would if, for instance, each of the inputs zi actu-
ally consisted of two units, which are always on or off together. In this case one
could get a compact explanation of the joint activities with a set of monocular units
which would then not be modulated. ii) Units such as y9 in the hierarchical model
are binocular, are selective between the binocular version of the stimuli, and are
barely modulated with the percept. iii) Units such as y1; x1 and w1 are binocular,
are selective between the stimuli, and are significantly modulated with the percept.

The final neurophysiological finding is to do with cells that fire when their pre-
ferred stimuli are suppressed, or fire selectively between the stimuli only during
rivalry. There are no units in this model that are selective between the stimuli and
are preferentially activated during suppression of their preferred stimuli. However,
in a model with more complicated stimulus contingencies, they would emerge to
account for the parts of the stimulus in the suppressed eye that are not accounted
for by the explanation of the overlying parts of the dominant explanation, at least
provided that this residual between the true monocular stimulus and the current
explanation is sufficiently complex as to require explaining itself.

We would expect to find two sets of cells that are activated during the suppressed
period by this residual, some of which will form part of the representation of the
stimulus when presented binocularly and some of which will not. Those that do
not (class A) will only even appear to be selective between the stimuli during ri-
valry, and will represent parts of the residual that are themselves explained by
more overarching explanations for parts of the complete (binocularly presented)
stimulus. This suggests the experimental test of presenting binocularly a putative
form of the residual (eg dotted lines for competing horizontal and vertical grat-
ings). We predict that these cells should be activated.

If there are cells that do participate in the binocular representation, then they will
be selective, but will preferentially fire during suppression (class B). Certainly, the
residual will have a high correlation with the full suppressed pattern, and so a cell
that is selective for part of the residual could have appropriate properties. How-
ever, why should such a cell not fire when the full, but currently suppressed, pat-
tern is dominant? In monkeys,16 there are fewer class B than class A cells (0 versus
3 of 33 cells in V1/2; 6 versus 8 of 68 cells in V4). Under the model, we account for
these cells based on a competition between units that represent the residual and
those that represent overlapping parts of the complete pattern. In binocular view-
ing, explanations are generally stronger than during rivalry. So even if both such
units participate in representing a binocular stimulus, the cells representing the
residual might not reach threshold during the dominance period. However, dur-
ing suppression, they no longer suffer from competition, and so will be activated.
The model’s explanation for class B cells seems far less natural than that for class A
cells. One experimental test would be to present the preferred pattern binocularly,
reduce the contrast, and see if these cells are suppressed more strongly.

The overall model mechanistically has much in common with models which place
the competition in rivalry at the level of binocular oriented cells rather than be-
tween monocular cells.11, 2 Indeed, the model is based on an explanation-driven
account for normal binocular processing, so this is to be expected. The advantage
of couching rivalry in terms of explanations is that this provides a natural way
of accounting for top-down influences. In fact, one can hope to study top-down
control through studying its effects on the behaviour of cells during rivalry.

The model suffers from various lacunæ. Foremost, it is necessary to model the
stochasticity of switching between explanations.9, 17 The distributions of domi-



nance times for both humans and monkeys is well characterised by a � distri-
bution (Lehky14 argues that this is descriptive rather than normative), with strong
independence between successive dominance periods. Our mean field recognition
process is deterministic. The stochastic analogue would be some form of Markov
chain Monte-Carlo method such as Gibbs sampling. However, it is not obvious
how to incorporate the equivalent of fatigue in a computationally reasonable way.
In any case, the nature of neuronal randomness is subject to significant debate at
present. Note that the recognition model of a stochastic Helmholtz machine7, 6
would be unsuitable, since it is purely feedforward and does not integrate bottom-
up and top-down information.

We have adopted a very simple mean field approach to recognition, giving up neu-
robiological plausibility for convenience. The determinism of the mean field model
in any case rules it out as a complete explanation, but it does at least show clearly
the nature of competition between explanations. The architecture of the model
is also incomplete. The cortex is replete with what we would model as lateral
connections between units within a single layer. We have constructed generative
models in which there are no such direct connections, because they significantly
complicate the mean field recognition method. It could be that these connections
are important for the recognition process,6 but modeling their effect would require
representing them explicitly. This would also allow modeling of the apparent dif-
fusive process by which patches of dominance spread and alter. In a complete
model, it would also be necessary to account for competition between eyes in ad-
dition to competition between explanations.24, 8, 3

Another gap is some form of contrast gain control.5 The model is quite sensitive
to input contrast. This is obviously important for the effects shown in figures 2,
however the range of contrasts over which it works should be larger. It would be
particularly revealing to explore the effects of changing the contrast in some parts
of images and examine the consequent effects on the spreading of dominance.
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