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Abstract

Binocular rivalry is the alternating percept that can result when the two

eyes see different scenes. Recent psychophysical evidence supports the no-

tion that some aspects of binocular rivalry bear functional similarities to other

bistable percepts. We build a model based on the hypothesis (Logothetis &

Schall, 1989; Leopold & Logothetis, 1996; Logothetis, Leopold & Sheinberg,

1996) that alternation can be generated by competition between top-down cor-

tical explanations for the inputs, rather than by direct competition between the

inputs. Recent neurophysiological evidence shows that some binocular neu-

rons are modulated with the changing percept; others are not, even if they are

selective between the stimuli presented to the eyes. We extend our model to a

hierarchy to address these effects.

1 Introduction

If one’s eyes are presented with two different, but very low contrast stimuli, as shown in

figure 1, then the overall percept is of the sum or composition of the stimuli (Liu, Tyler &
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Figure 1: Rivalrous gratings. Rivalrous stimuli for the left and right eyes consisting of

horizontal and vertical gratings respectively. The grid lines and the dotted boxes are for

descriptive purposes and are not presented. Boxes A show the basic competitive element

in the model, between short horizontal and vertical parts of the gratings; boxes B show

the essential repeating unit that the stimulus comprises.

Schor, 1992). However, as the stimuli are given higher contrast, there comes a point when

it appears as if the inputs from the eyes rival – first one dominates, then the other, with

stochastic switching between the two. Figure 1 shows the case of horizontal and vertical

gratings (the grid lines and boxes A and B are for later descriptive convenience and are

not presented), but more complex patterns are also often used.

If the stimuli are large, then one single stimulus may not dominate across the entire field,

but rather there will be a mosaic of patches, with different stimuli dominating in each

patch (Wheatstone, 1838; Levelt, 1965). The dynamics of rivalry are sensitive to the con-

trast of the stimuli in the eyes if they are different, with such characteristic results as that

increasing the contrast of one stimulus decreases the time during which that stimulus is

suppressed much more than it increases the time that it is dominant (Levelt, 1965; Fox &
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Rasche, 1969; Blake, 1977; Mueller & Blake, 1989). There are also effects of the nature of

the stimuli – for instance if two separate patterns are divided up between the two stimuli,

then, in certain cases, the patterns will rival rather than the stimuli directly (Whittle, Bloor,

Pocock, 1968; Kovacs, Papathomas, Yang & Feher, 1996), and there is some evidence that

familiar patterns enjoy an advantage over unfamiliar ones during rivalry (see Yu & Blake,

1992).

It is natural to suppose that this rivalry is instantiated in the parts of the visual pathway

that are still monocular, ie the lateral geniculate nucleus (LGN) and layer IV of V1. In-

deed most models of rivalry implicitly or explicitly make this assumption (eg Matsuoka,

1984; Lehky, 1988; Blake, 1989; Mueller, 1990), using various forms of reciprocal inhibi-

tion between two pathways and thus capturing many of the intricacies of the dynamics

of rivalry. It turns out that the activities of neurons in the LGN are not affected by rivalry

(Lehky & Maunsell, 1996), leaving layer IV of V1 as the candidate for this class of models.

These models could be augmented with some top-down processing to capture the famil-

iarity and pattern-based effect. However, they are directly challenged by psychophysical

data from Logothetis, Leopold & Sheinberg (1996) and are hard to reconcile with the neu-

rophysiological data from Schall & Logothetis (1989) and Leopold & Logothetis (1996).

Logothetis, Leopold & Sheinberg (1996) switched rivalrous patterns quickly between the

two eyes (see also Blake, Westendorf & Overton, 1980) whilst constantly flickering the

stimuli. Subjects report that the perceptual switching time is much greater than the ac-

tual switching time, which is inconsistent with the hypothesis that there is a dominant eye

rather than a dominant pattern. Of course, there could be eye-based competition as well

(Wales & Fox, 1970; Fox & Check, 1972; Blake & Fox, 1974).

Leopold & Logothetis (1996) trained monkeys to report their percept during rivalrous
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and non-rivalrous stimuli whilst recording from neurons V1/2 and V4. They found that

striate monocular neurons are unaffected by rivalry; that there are binocular neurons in

all areas that are selective between the stimuli during binocular presentation and whose

activities are not modulated with the monkey’s percept; that there are binocular neurons in

all areas that are sensitive between the stimuli during binocular presentation and whose

activities are modulated with the monkey’s percept; and that there are binocular neurons

in all areas that are sensitive between the stimuli during binocular presentation whose

activities are elevated during perceptual suppression of their preferred stimuli, and also

binocular neurons that are not selective between the stimuli in binocular viewing, but

whose activities are nevertheless modulated during rivalry.

Logothetis and his colleagues have long suggested an account of rivalry under which it

is cortical explanations of sensory input that compete rather than the inputs themselves.

Various recent models of cortical processing are based on the old notion of analysis by

synthesis (MacKay, 1956; Grenander, 1976; Mumford, 1994; Carpenter & Grossberg, 1987;

Pece, 1992; Hinton et al, 1995; Dayan et al, 1995; Olshausen & Field, 1996; Rao & Ballard,

1997). For these, the synthetic model, which is usually instantiated in top-down con-

nections in cortex, exactly constructs a top-down explanation for input, and an analysis

procedure finds which particular synthetic explanation is appropriate for a given input.

In this paper we consider one form of analysis-by-synthesis model and show how it can

exhibit rivalry between explanations in the case that the eyes receive different input. This

model can provide an account for many of the behaviours described above.

Section 2 discusses a simplified case of rivalry to illustrate the basic principles of the

model, based on the contents of boxes A in figure 1; section 3 describes a more complete

model with three layers of units in a hierarchy, based on boxes B of figure 1; the implica-

tions of the model are discussed in section 4.
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2 The Simple Model

Figure 2a shows a simple abstract model illustrating competition between cortical expla-

nations. It is taken from boxes A of figure 1, representing the minimal competitive unit in

that stimulus. The grating consisted of pairs of horizontal and vertical bars, to enhance

the strength of the signal. For illustrative convenience, the pairs have been separated –

there is no special significance to the spatial order of the input units.

In figure 2, w1 andw2 model two binary-valued striate units and layer zmodels 32 binary-

valued geniculate units, 16 each for left (L) and right (R) eyes. In the generative model,

turning w1 on activates two binocular horizontal bars in the input z, and we therefore

say that w1 explains the input activity, if the input were really to consist of two binocular

horizontal bars. Similarly, the activity of w2 explains two binocular vertical bars in the

input. More formally, the explanations arise as the analysis or recognition phase of an

analysis-by-synthesis model of cortical function. The top-down, synthetic, model speci-

fies successively probabilities P[w] and P[zjw] according to:

P[wk=1] = �(bw)

P[zi=1jw] = �

 
bz +

2X
k=1

wkJ
ki
wz

!
(1)

where

�(x)=
1

4000

�
1 +

3998p
2�

Z x

t=�1

e
�t2=2

dt

�

is a normal distribution function, squashed to avoid infinities, and all the wk and zi are

independent given w. The parameters of the generative model, the weights Jwz and the

biases bw and bz are shown in the diagram. They were set by hand such that, in the

generative model, w1 and w2 are active only rarely (ie activity in the w layer is sparse),

but are almost sure to produce their favoured pattern in z if they do fire. In general these
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Figure 2: a) Simple generative model. Units w1 and w2 are shown in the form of their

projective fields (eg w2 generates two vertical bars binocularly in the 4 � 4 left (L) and

right (R) geniculate units, z), together with a subset of the weights. The other weights

follow similarly. bw=�2 and bz=�3 are the generative biases, Jwz=5:8 are the generative

weights from w to z. b) Rivalrous input pattern. Horizontal input is provided to the

geniculate units for the left eye (z1 : : : z16), with strength l (eg P[z1=1]=�(l)); vertical input

to those for the right eye (z17 : : : z32), with strength r. Silent units have input � such that

�(�)=0:01.

weights would be learned from experience of horizontal and vertical contours (Hinton et

al, 1995; Dayan et al, 1995; Saul, Jaakkola & Jordan, 1996).

Since the units in the generative model are binary, we cannot model differing input con-

trasts directly by changing the level of activity of the zi. Rather, we represent the input to

zi as di, where P[zi=1] = �(di) and all the zi are independent. Write P[z;d] as the induced

probability distribution over the input units.

Recognition is formally the statistical inverse to generation. For the network in figure 2a

it should produce P[wjz] over the four choices for w, given a particular input. In this case
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it would be easy to calculate these probabilities exactly. However, in general this is com-

putationally intractable, since if there are n units, then there are 2n probabilities. Further,

we require a way of representing these 2n probabilities in terms of just the activities of the

n units. Inspired by Saul, Jaakkola & Jordan (1996) and Jaakkola, Saul & Jordan (1996), we

achieve both of these by using a mean field inversion method. This approximates P[wjz]
by the parameterised factorial form

pQ[w;���] =
Y
i

�(�i)
wi (1� �(�i))

1�wi
: (2)

This sets the mean activity of w1 to be �(�1). Note that �i are real values which, through

equation 2, parameterise a distribution over the binary-valued wi. We model the activities

of cells as the real-valued �(�i).

Mean field methods would use a descent method to optimise the parameters ��� to min-

imise the mean Kullback-Leibler divergence between Q[w;���] and P[wjz]:

F [���] =
X
z

P[z;d]
X
w

Q[w;���] log
Q[w;���]

P[wjz] :

The simplest model of gradient descent has:

�1(t + 1) = �1(t)� Ær�1F [���(t)] (3)

= �1(t)� Æ(log

�
�(�1(t))

�(��1(t))
�(�bw)
�(bw)

�
+

�
0(�1(t)) (P10 � P00 + �(�2(t))[P11 � P10 � P01 + P00]))

where

Pab =
X
i

�(di) logP[zi=1jw1=a; w2=b] + �(�di) logP[zi=0jw1=a; w2=b]

and Æ acts like an adaptation rate.

In this simple case, calculating these terms only requires operations local to each unit, al-

though the operations are somewhat complicated. Jaakkola, Saul & Jordan (1996) provide
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a further approximation that simplifies these calculations. In this, unit zi passes back to

w1 and w2 information about how it is incorrectly predicted by w1 and w2:

rw

 
di � bz �

X
k

�(wk)J
ki
wz

!
2

:

We found this model to work slightly less well.

Note that the mean-field model only affects the activities in the w layer and does not af-

fect the inputs, even though there are top-down inputs to those units. Lehky & Maunsell

(1996) resolved conclusively that the activities of neurons in the LGN of macaque mon-

keys are not modulated during rivalry (see Varela & Singer, 1987), by clear contrast with

the data cited above from cortical cells. In the hierarchical model in the next section, there

are top-down influences on the activities of modeled cortical (but not modeled thalamic)

cells.

If a non-rivalrous input is presented, with just horizontal bars in both channels, then

recognition assigns full responsibility to w1. Rivalry results when different inputs are

presented to the two eyes. For inputs such as figure 2b, fw1=1;w2=0g and fw1=0;w2=1g
are equally good explanations (albeit worse than in the non-rivalrous case). Explanation

fw1=0;w2=0g is poor because it does not account for any input; fw1=1;w2=1g is poor

because activity across w should be sparse, according to the generative model, and w1=1

explains away (Pearl, 1988) the need for w2=1 for those elements of z that are common

between horizontal and vertical bars. Note that w1 and w2 compete even though there are

no explicit inhibitory interconnections between them in the generative model.

Note that the recognition model of a Helmholtz machine (Hinton et al, 1995) is unsuitable

to model rivalry, since it acts in a purely bottom-up direction in such a way that it lacks

the capacity to capture explaining away (Dayan & Hinton, 1996), on which this model of

rivalry crucially depends. This is one reason why we used a mean field method instead

8



(Saul, Jaakkola & Jordan, 1996).

If the dynamics were just determined by equation 3, then the activities would tend to one

of the two equivalently good explanations (which are global minima of F ) and just stay

there. We therefore implemented a simple oscillatory model with auxiliary variables �0k(t)

implementing a form of fatigue process. The full dynamics for �1(t) and �0
1
(t) are:

�1(t+ 1) = �1(t) + Æ(�r�1F [���(t)] + �(��1(t))� �
0

1
(t))

�
0

1
(t+ 1) = �

0

1
(t) + Æ(�1(t)� ��

0

1
(t));

where � is a decay term. A similar equation applies for �2(t) and �
0

2
(t). In all the simu-

lations, �=0:5; �=0:1 and Æ=0:01. Factor 1

Æ
now plays the role of a time constant for the

network. �2 follows similar dynamics. As with most models of rivalry (see Lehky 1988

for a notable exception), we are modeling data on the mean dominance times and are

ignoring the stochasticity of the data.

Based on this simple oscillatory process, the model effectively switches between horizon-

tal (fw1=1;w2=0g) and vertical (fw1=0;w2=1g) explanations. Figure 3a shows the result-

ing activities of w1 and w2 for a case in which the strength of the input to the horizontal

bars (l) is stronger than to the vertical (r). Alternations ensue, with a greater dominance

period for w1 than w2. Figure 3b shows that, as empirically observed, when the input

strengths for both patterns are increased together (modeling increasing contrast), the os-

cillations speed up (Levelt, 1965; Fox & Rasche, 1969), and when just r is varied, it has a

significantly greater effect on the period for which the vertical explanation is suppressed (ie

the horizontal explanation is dominant) than on the period for which it is dominant (Lev-

elt, 1965; Fox & Rasche, 1969; Blake, 1977; Mueller & Blake, 1989; Leopold & Logothetis,

1996). This achieves the effect of mutual inhibition (Fox & Rasche, 1969; Matsuoka, 1984;

Lehky, 1988; Mueller, 1990) between w1 and w2, dependent on input contrast (Mueller,
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1990) by statistically justifiable means. Furthermore, for very weak inputs, both w1 and

w2 are weakly activated, which is the model’s account of the psychophysical observation

that fusion rather than rivalry occurs for very low contrast stimuli. Also, if the eyes are

provided with binocularly consistent inputs within a reasonable range of contrast, then

the system does not oscillate.

We have therefore shown that it is possible to get rivalry between cortical explanations

for input, using a mean field inversion method for a top-down generative model. In this

case, the final model resembles existing models for rivalry in which there is competition

amongst binocular oriented units rather than within in a monocular system (Grossberg,

1987). Indeed, Sengpiel, Blakemore & Harrad (1995) studied interocular suppression of

activity in binocular cells when the two eyes were presented with gratings of orthogonal

orientations. In the mean-field model, this suppression arises as a consequence of ex-

plaining away during the process of recognition, and has a precise relationship with the

underlying top-down generative model.

3 The Hierarchical Model

The simple model is too small to be able to have populations of units that are and are not

modulated with rivalry, as in the neurophysiological data. We therefore extended it to a

hierarchy of units covering a larger spatial array, incorporating various characteristics of

cortical visual processing. The hierarchical version is intended to capture the processing

of boxes B in figure 1. Boxes B were chosen to capture the minimal repeating unit in

the stimulus. No smaller box will suffice – for instance, boxes A miss the portion of the

stimuli which do not directly compete. No larger box is necessary, since they would only

represent copies of boxes B. Since the model operates by constructing explanations, it is of
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Figure 3: a) Development and maintenance of oscillations in the mean activities of w1=

�(�1) and w2=�(�2) over time. Input strengths l=1:25 and r=1:0, so the horizontal bars

dominate. b) Dependence on the input strength (modeling contrast) in l and r of the

periods of suppression and dominance. Horizontal patterns are taken as dominant when

the mean activity of w1 is greater than the mean activity of w2 — there is no switching

reaction time. For the equal contrast case, l and r were varied together; for suppression

and dominance plots, l=1:25 was constant; r was varied.
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course vital to choose appropriately those portions of the input that are to be explained.

Figure 4 shows the full generative model.

Units in layers y (modeling V1) and x and w (modeling early and late extra-striate areas)

are all binocular and jointly explain successively more complex features in the input z

according to a top-down generative model. Apart from the half bars in y, the generative

model is similar to that learned by the Helmholtz machine (Dayan et al, 1995) for which

increasing complexity in higher layers rather than the increasing input scale is key.1 In this

case, for instance, w2 specifies the occurrence of vertical bars anywhere in the 8� 8 input

grids; x16 specifies the rightmost vertical bar; and y31 and y32 the top and bottom half of

this vertical bar. Again, these specifications are provided by a top-down generative model

in which, as in equation 1, the activations of units are specified by probabilities such as:

P[yi = 1jx] = �

 
by +

X
k

xkJ
ki
xy

!

where the sum k is over all the units in the x layer.

In this more complicated model, activities of units in different layers could conflict. For

instance, unit w1 could be activated, suggesting that there are horizontal bars in the input;

but units x15 and x16 could also be active, suggesting that there are two particular vertical

bars. Such patterns of activity are unlikely, since they are inconsistent with the generative

model, and we never observed them with the settings of the weights that we adopted.

We therefore model the percept of the network as the activity in the w layer.

A similar mean field method is used to perform recognition in this hierarchical model.

The equivalent mean field distribution is:

Q[w;x;y;���;���;   ]=Q[w;���]Q][x;���]Q[y;   ]

1Although the recognition model of the Helmholtz machine is not used, since it does not capture explain-
ing away.
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Figure 4: Hierarchical generative model for 8� 8 bar patterns across the two eyes. Units

are depicted by their net projective (generative) fields, and characteristic weights are

shown. Even though the net projective field of x1 is the top horizontal bar in both

eyes, note that it generates this by increasing the probability that units y1 and y9 in the

y layer will be active, not by having direct connections to the input z. Unit w1 connects to

x1; x2; : : : x8 through Jwx=0:8; x16 connects to y31; y32 through Jxy=1:0 and y32 connects to

the bottom right half vertical bar through Jyz=5:8. Biases are bw=�0:75; bx=�1:5; by=�2:7

and bz=�3:3. Each unit in the z layer is really a pair of units (as in Hinton et al, 1995), to

increase the strength of the signal.
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which renders independent all the units in the model. The equivalent of F now depends

on ���;��� and    :

F [���;���;   ] =
X
z

P[z;d]
X
w;x;y

Q[w;x;y;���;���;   ] log
Q[w;x;y;���;���;   ]

P[w;x;yjz] :

We adopted various heuristics to simplify the process of using this rather cumbersome

mean field model. First, fatigue is only implemented for the units in the y layer, and

the    follow the equivalent of the dynamical equations above. Although adaptation pro-

cesses can clearly occur at many levels in the system, their exact form is not clear. Bialek

& DeWeese (1995) argue that the rate of a switching process should be adaptive to the

expected rate of change of the associated signal on the basis of prior observations. This is

clearly faster nearer to the input.

The second heuristic is that rather than perform gradient descent for the non-fatiguing

units, the optimal values of��� and ��� are calculated on each iteration by solving numerically

equations such as

r�iF [���;���;   ] = 0:

The dearth of connections in the network of figure 4 allows ��� and ��� to be calculated lo-

cally at each unit in an efficient manner. Whether this is reasonable depends on the time

constants of settling in the mean field model with respect to the dynamics of switching,

and, more particularly on the way that this deterministic model is made appropriately

stochastic.

Top-down connections are allowed to influence the activities of the units in layers x and

y. This is necessary in general to coordinate the explanations for distant parts of the

input and to provide a means by which top-down information can influence the course

of rivalry. As in the simpler model, and following the data of Lehky & Maunsell (1996),
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Figure 5: Recognition activity in the network for four different input patterns. The units

are arranged in the same order as figure 4, and white and black squares imply activities

for the units whose means are less than and greater than 0:5. (i) and (ii) represent normal

binocular stimulation; (iii) and (iv) show the two alternative stable states during rivalrous

stimulation, without the fatigue process.

the activities of units in layer z are not affected by top-down influences, although this is

not for a principled reason in the model.

Figure 5 shows the activities of units in response to binocular horizontal (i) and vertical

(ii) bars. In these cases there are no oscillations. Figure 5 also shows the two equally likely

explanations for rivalrous input (iii and iv). For rivalry, there is direct competition in the

top left hand quadrant of z, as in figure 2, which is reflected in the competition between

y1; y3 and y17; y21. However, the input regions (top right of L and bottom left of R) for

which there is no competition, require the constant activity of explanations y9; y11; y18 and

y22. Under the generative model, the coactivation of y1 and y9 without x1 is quite unlikely

(P[x1=0jy1=1; y3=1] = 0:1), which is why x1, x3 and also w1 become active with y1 and y3.
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Figure 6a shows the resulting activities during rivalry of units at various levels of the hier-

archy including the fatigue process. Broadly, the competing explanations in figure 5(iii;iv),

ie horizontal and vertical percepts, alternate, and units without competing inputs, such as

y9, are much less modulated than the others, such as y1. The activity of y9 is slightly ele-

vated when horizontal bars are dominant, based on top-down connections. The activities

of the units higher up, such as x1 and w1, do not decrease to 0 during the suppression pe-

riod for horizontal bars, leaving weak activity during suppression. Leopold & Logothetis

(1996) observed that many of their modulating cells were not completely silent during

their periods of less activity. Figure 6b shows that the hierarchical version of the model

also behaves in accordance with experimental results on the effects of varying the input

contrast (Levelt, 1965; Fox & Rasche, 1969; Blake, 1977; Mueller & Blake, 1989; Leopold &

Logothetis, 1996).

4 Discussion

Following Logothetis and his colleagues (Logothetis & Schall, 1989; Leopold & Logo-

thetis, 1996; Logothetis et al, 1996; see also Grossberg, 1987) we have suggested an account

of rivalry based on competing top-down hierarchical explanations. Neurons explain in-

puts in virtue of being capable of generating their activities through a top-down statistical

generative model. Competition arises between higher-level explanations of overlapping

active regions (ie those involving contrast changes) of the input rather than between in-

puts themselves.

The overall model mechanistically has much in common with models which place the

competition in rivalry at the level of binocular oriented cells rather than between monoc-

ular cells (see Grossberg, 1987; Blake, 1989). Indeed, the model is based on an explanation-
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Figure 6: a) Mean activities of units at three levels of the hierarchy in response to rivalrous

stimuli with input strengths l=r=1:75. b) Contrast dependence of the oscillation periods.

The dash-dotted line shows the period when the contrasts in both eyes are varied to-

gether. The solid and dashed lines show the periods of dominance of the left and right

eyes respectively when the contrast in the left eye is fixed (l=1:25) and the contrast in the

right eye r is varied.
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driven account for normal binocular processing, so this is to be expected. The advantage

of couching rivalry in terms of explanations is that this provides a natural way of ac-

counting for top-down influences, which are clear in such phenomena as the influence

of perceptual organisation on rivalry (eg Whittle et al, 1968; Kovacs et al, 1996). In fact,

one can hope to study top-down control through studying its effects on the behaviour of

cells during rivalry. The model would also explain other sorts of alternation phenomena

(such as those that arise with the Necker cube) in terms of competition between top-down

explanations. The top-down model governs which units should compete with each other.

The model correctly captures a number of the experimental characteristics of rivalry. If

the input stimuli are weak, then there is no alternation, and instead both horizontal and

vertical representing neurons are weakly activated (as in Liu, Tyler & Schor, 1992). If in-

put stimuli are stronger, then alternation ensues. The period of the alternation increases

as the contrast of both the stimuli decrease, and if the contrast of only one stimulus de-

creases, then the dominance period of the other stimulus increases substantially more

than the suppression period of the given stimulus (as in Levelt, 1965; Fox & Rasche, 1969;

Blake, 1977; Mueller & Blake, 1989). There are two classes of binocular units activated

by the rivalrous stimulus. The activity of one class is substantially modulated during ri-

valry; the activity of the other is not (as in Leopold & Logothetis, 1996). Alternating the

input between the two eyes has absolutely no effect on this behaviour of the model (as in

Logothetis, Leopold & Sheinberg, 1996). The last effect arises since, apart from the input

layer, on which there are no top-down influences, all the units are binocular, and there is

no static or dynamic difference in the connections from the two eyes.

Although it captures these phenomena, the model is, of course, simplified and incom-

plete. In particular, it does not exhibit two of the phenomena that Leopold & Logothetis

(1996) observed. The first is that there is no opportunity in the model for monocular cells
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to be unmodulated during rivalry, as they found. Given redundant inputs and an extra

layer of monocular units between layers z and y, this behavior would be expected. These

units would explain away the redundancy in the input, and, like unit y9 in figure 6, would

have consistently to be activated during rivalry.

The second lacuna is that there are no units in the model that are selective between the

stimuli when presented binocularly and are preferentially activated during suppression of

their preferred stimuli during rivalry, or are not selective during binocular presentation

but are selective during rivalry. In a model with more complicated stimulus contingen-

cies, such units would emerge to account for the parts of the stimulus in the suppressed

eye that are not accounted for by the explanation of the overlying parts of the dominant

explanation, at least provided that this residual between the true monocular stimulus and

the current explanation is sufficiently complex as to require explaining itself. This sug-

gests the experimental test of presenting binocularly a putative form of the residual (eg

dotted lines for competing horizontal and vertical gratings). We predict that these cells

should be activated. One might expect some of these cells to participate in the explana-

tion of the patterns when presented binocularly, whereas the activity of others would be

explained away during binocular presentation, only to emerge during suppression.

Other extensions are also desirable. Foremost, it is necessary to model the stochasticity of

switching between explanations (Fox & Herrmann, 1967; Levelt, 1965). The distributions

of dominance times for both humans and monkeys have traditionally been characterised

in terms of a Gamma distribution, and, more recently, in terms of a log normal distribu-

tion (Lehky, 1995), with independence between successive dominance periods. Our mean

field recognition process is deterministic. The stochastic analogue would be some form of

Markov chain Monte-Carlo method such as Gibbs sampling (see Neal, 1993). However, it

is not obvious how to incorporate the equivalent of fatigue in a computationally reason-
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able way. In any case, the nature of neuronal randomness is subject to significant debate

at present.

We have adopted a very simple mean field approach to recognition, giving up neurobi-

ological plausibility for convenience. The determinism of the mean field model in any

case rules it out as a complete explanation, but it does at least show clearly the nature of

competition between explanations. The architecture of the model is also incomplete. The

cortex is replete with what we would model as lateral connections between units within

a single layer. We have constructed generative models in which there are no such direct

connections, because they significantly complicate the mean field recognition method.

These connections are certainly important for the recognition process (Dayan & Hinton,

1996), but modeling their effect would require representing them explicitly. This would

also allow modeling of the apparent diffusive process by which patches of dominance

spread and alter. In a complete model, it would also be necessary to account for compe-

tition between eyes in addition to competition between explanations (Wales & Fox, 1970;

Fox & Check, 1972; Blake & Fox, 1974).

Another extension is some form of contrast gain control (Carandini & Heeger, 1994). The

model is quite sensitive to input contrast, which is obviously important for the effects

shown in figures 3 and 6. However, the range of contrasts over which it works should

be larger. Achieving this will likely require a statistical model with real-valued rather

than binary-valued activities. It would be particularly revealing to explore the effects of

changing the contrast in some parts of images and examine the consequent effects on the

spreading of dominance, particularly in images as large as the full figure 1 rather than

just the portion in boxes B that the existing model addresses.
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