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Abstract Diagnosis of several neurological disorders is

based on the detection of typical pathological patterns in

the electroencephalogram (EEG). This is a time-consuming

task requiring significant training and experience. Auto-

matic detection of these EEG patterns would greatly assist

in quantitative analysis and interpretation. We present a

method, which allows automatic detection of epileptiform

events and discrimination of them from eye blinks, and is

based on features derived using a novel application of

independent component analysis. The algorithm was

trained and cross validated using seven EEGs with epi-

leptiform activity. For epileptiform events with

compensation for eyeblinks, the sensitivity was 65 ± 22%

at a specificity of 86 ± 7% (mean ± SD). With feature

extraction by PCA or classification of raw data, specificity

reduced to 76 and 74%, respectively, for the same sensi-

tivity. On exactly the same data, the commercially

available software Reveal had a maximum sensitivity of

30% and concurrent specificity of 77%. Our algorithm

performed well at detecting epileptiform events in this

preliminary test and offers a flexible tool that is intended to

be generalized to the simultaneous classification of many

waveforms in the EEG.

Keywords Electroencephalogram � Independent

component analysis � Automatic classification �
Epileptiform events � Eye-blinks artefacts

1 Introduction

1.1 Background

The human Electroencephalography has been employed as

a routine clinical test for over 70 years and is widely used

for diagnosis of epilepsy, and, to a lesser extent, brain

abnormalities such as encephalopathies or dementia [5].

The principal abnormalities in epilepsy involve short

transients due to neuronal depolarization and repolarization

termed spikes, spike wave complexes and sharp waves

(Fig. 1). These waveforms may occur in sequences, which

are called polyspikes and spike-and-wave [18]. Other pos-

sible abnormalities include slow activity due to disruption

of underlying brain mechanisms or to continuous abnor-

malities in brain tissue. In practice, all these pathological

brain activities are relatively easy to diagnose. The main

difficulty in EEG analysis lies in distinguishing these epi-

leptiform waveforms from the many patterns which occur

due to normal activity, such as alpha rhythm at 8–12 Hz,

movement and muscle artefacts, eyeblinks (Fig. 2), or

normal physiological activity.

Despite computational advances, current clinical practice

is still for expert observers to interpret EEGs by eye. Over the

past three decades, there has been considerable interest in

finding automated ways to analyse the EEG in order to save

time consuming human analysis. This is a special problem

for longer recordings. Until now, these have mostly con-

centrated on detection of seizures and the spikes and sharp

waves which indicate epileptic activity; sensitivities of up to
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about 79% for seizures and 89% for spikes and sharp waves

have been reported for commercial software [42, 43].

Existing methods for automatic detection of epilepti-

form events are conventionally based on one or both of two

principles: (1) spike morphology, in which a set of typical

features that characterize spikes is utilized, and (2) local-

ization of transient events, in which spikes are represented

as transients that can be distinguished from ongoing

background activity. Algorithms in the first class attempt to

represent spikes by a set of features that make it possible to

discriminate spikes from other events. These are con-

structed to capture and represent explicitly all the relevant

information in the input, and eliminate redundancies that

would corrupt the subsequent discrimination. Some fea-

tures are readily related to spike morphology, such as

duration, amplitude and kurtosis [10, 15, 16, 43]; others use

more general signal processing methods such as waveform

decomposition into Fourier or wavelet components [14, 25,

29]. Algorithms in the second class aim to detect epilep-

tiform events by measuring their deviation from

stationarity. Autoregressive analysis has been used both in

single channel or multi channel EEG for the extraction of

relevant coefficients for characterizing the non-stationarity

of any epileptic events [1, 11]. The same principle has been

implemented using nonlinear measures based on informa-

tion theory that are able to capture the transitions between

complex and less complex dynamics [8].

In a typical detection algorithm design, these principles

are implemented in a tree-like structure algorithm or a

multistage classifier. One common idea is to use different

features of the EEG as inputs to one or more artificial

neural networks, whose outputs are then passed through a

set of rules based on fuzzy logic [35, 43]. Another is to use

a highly structured network with several input and hidden

layers [33, 40]. Such architectures can behave in complex

ways, which often makes it difficult to diagnose and rectify

flaws in classification.

1.2 Purpose

The long-term purpose of this work is to develop an

algorithm, which can automatically detect all the clinically

relevant waveforms in the EEG. Here, we report a novel,

generalizable, method, implemented in this case for the

special cases of major classes of epileptiform activity, and

the discrimination of these from eyeblinks. These two

features were selected because of the clinical significance

of the former, and the false positives caused by the latter.

We present preliminary results on a sample database of

seven EEGs and compare these results to the commercial

software Reveal (http://www.eeg-persyst.com/index.html),

as well as other possible approaches for feature extraction

prior to classification.

Fig. 1 Three examples of

epileptic waveforms. From the

left to the right, a sharp wave, a

spike wave, and a spike-and-
wave, characterized by a slow

wave which follows the spike

Fig. 2 Examples of eye-
movement and eye-blink
artefacts (left and right boxes)
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2 Methods

2.1 Design

Our algorithm falls into the class of spike morphology

algorithms described above. First, the raw EEG was pro-

jected onto selected informative feature dimensions;

second, these multidimensional features were used as the

basis of a classifier. Note that, for the moment, we only

considered single epileptic waveforms in the scalp EEG,

thus excluding seizures and also polyspike sequences of

these single waveforms.

The goal of feature extraction is to discover dimensions

in the input that collectively enable simple, readily gener-

alizable, separation of the various classes. This task is

subject to various trade-offs, most notably between the

power of the classifier and the power of the features, with

the latter being subject to severe constraints based on the

limited amount of information available in the training set.

We therefore started by restricting our consideration to

simple linear and quadratic classifiers, and sought small

numbers of feature dimensions. We considered spectral,

principal component analysis (PCA) and independent

component analysis (ICA) approaches to determine

appropriate features. The algorithm that performed most

competently was based on ICA and a quadratic classifier.

We, therefore, report the results achieved by this method.

In previous work, the most popular choice of features

involves spectral [9], or wavelet-based [14, 25, 29]

decompositions, and methods driven more directly by the

data such as PCA and ICA have attracted much less study.

However, the empirical bases are well suited to our goal,

since they are automatically sensitive to the characteristics

of the patterns involved. PCA and ICA are ways of

extracting empirical bases that differ in subtle, but impor-

tant, respects [17]. Indeed, ICA has previously been shown

to be useful for analyzing epileptiform discharges, but only

given a degree of hand-tuning [26–28, 32]. We employed a

novel variant of ICA in a fully automatic procedure, and

showed that it out-performs PCA and is at least competitive

with Reveal on the same input dataset.

2.2 Independent component analysis (ICA)

and its novel use in this study

The ICA is a general tool for analyzing multivariate data.

ICA aims to represent input data as a linear mixture of an

ensemble of (initially unknown) sources, which are

assumed to be statistically independent [19, 22]. This

model can be conveniently expressed using vector-matrix

notation. We denote by X the matrix whose rows are the U

(n-dimensional) input variables

Xi = (xi1, xi2,. . ., xin) i = 1,::,U ð1Þ

and by S, the matrix of the V underlying sources

Sj = (sj1, sj2,. . ., sjn) j = 1,. . .,V ð2Þ

If A is the matrix of mixing coefficient aij (i = 1,…,U,

j = 1,…,V), then ICA can be expressed by the following

linear model:

X = A � S ð3Þ

Without any prior knowledge on the properties of the

sources or of the mixing process, the goal of ICA is to

recover a version of the mixing matrix A and of the

independent sources (components) S, given only the

observation variables X.

Technically, a collection of random variables S is said to

be independent if their joint distribution factorizes as a

product of their marginal distributions:

P(S) = P(S1; S2; . . .SV ) = P(S1) � P(S2); . . .;P(SV ) ð4Þ

There are many different ways or principles for quanti-

fying the degree of independence of a collection of

variables, and concomitant algorithms that optimize these

quantities. Several possible implementations of ICA have,

therefore, been proposed [3, 20, 21, 34]. In the following

we will consider a ‘fixed point’ iteration algorithm (Fas-

tICA), that aims to maximize the negentropy of the

variables, which is an information-based measure of

independence [20, 21]. The problem is well defined if the

sources have non-Gaussian marginal statistics; it is also

most straightforward to extract fewer sources than input

data U C V.

Not only are there different principles and algorithms,

but also there are various ways to apply ICA to physio-

logical data [24]. One application of ICA, commonly used

for fMRI data, is called spatial ICA (sICA). In this, the

signals at each point in space are decomposed into V

spatially independent sources whose projections are fixed

across time. sICA is conventionally applied to functional

MRI [6, 30, 31], for which there are often many more

spatial than temporal dimensions. Here, the number of

sources, V, is bounded by the number of time steps of the

data that were acquired.

By contrast, the most common approach for EEG signals

is called temporal ICA (tICA) (Fig. 3a). Signals are

decomposed at each time into temporally independent

sources whose spatial projections (i.e. mappings onto the

channels) are fixed across time. The maximum number of

independent components is the number of EEG channels.

Temporal ICA makes good sense for signals such as eye

blinks, eye movements and muscle activity [2, 37–39],

since the sources underlying these signals are spatially

compact and independent from the rest of the activity

picked up by the EEG.
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For our purposes, tICA was problematic, since we

expected that more than one independent component

accounts for the epileptic activity, and that different

patients would have different foci in different locations,

therefore having quite different underlying spatial maps on

different electrodes.

We, therefore, designed what we believe to be a novel

variant of ICA [7]. We expected the form of spikes to be

relatively independent of the location of the electrode on

which they appear, therefore allowing all the spikes to be

lumped together. Then, like sICA, except with instances of

spikes replacing voxels (Fig. 3b), we sought a representa-

tion in which the activations of the components are sparse

and independent across the time steps in the spike window

(Fig. 4). This method of representation is able to charac-

terize abrupt changes in the amplitude of the signal,

especially if they arise from changes in phase rather than

changes in frequency. In this respect, Fourier-like or PCA-

based representations perform less well, as they are less

well temporally localized [4] (Fig. 5).

The novel aspect of our ICA variant arises from the fact

that during testing, any potential spike was treated as an

extra input into the model (Fig. 3b). The features for each

spike (red links in Fig. 3b) were evaluated by projecting

the independent components onto the spike itself (red

waveform in Fig. 3b). This projection is in fact the set of

mixing (weights) coefficients that, in the underlying ICA

generative model, would allow the spike to be created from

the ensemble of independent sources learned from the

training set.

It is worth emphasizing that the independent sources

were extracted just from the training database of spikes.

This was done since we expected that there will be a bigger

difference between the projection of spikes and non-spikes

onto a representation that is precisely tailored to the

vagaries of spikes themselves. The same argument applies

potentially to other signals of interest such as eyeblinks, to

which we also applied our method.

2.3 EEG training and validating data

Training was based on seven EEGs chosen from clinical

recordings in subjects with confirmed epilepsy (Table 1).

Data were collected using a 21-channel EEG system at a

sample rate of 256 Hz, following the 10–20 system for the

electrode positions [23] and a Micromed (Micromed, Italy)

Brainquick EEG system utilizing the SystemPlus software

suite. All the recordings showed some form of epileptic

activity, either spikes or sharp waves (Fig. 1). Seven

recordings (124 min total duration) were labeled by an

experienced EEG technician and were used for both

training and testing. The labels included the time of the

centre of the epileptiform activity and the channels in

which these occurred. The EEGs were filtered between 0.5

and 70Hz, and a notch filter at 50 Hz was applied. The

EEG was displayed in common average montage.

Training and validation proceeded according to a leave-

one-out cross-validation procedure on the seven record-

ings. In each case, testing was performed on one full

recording and training was undertaken on a subset of the

remaining six. This was repeated seven times. The training

set comprised all the sharp and spike waves collected from

the six recordings together with a separate, hand-picked,

Fig 3 a Temporal ICA: EEG

signals (X) picked up at some

spatial points (Ch1, Ch2, …),

can be represented as a linear

mixture of independent

components (S); when new data

is measured, the independent

components are updated

correspondently in time. (b) Our

proposed use of ICA: A

collection of spikes (X) were

decomposed into a mixture of

independent components (S)

through the mixing matrix A;
when a new spike was added to

the dataset of spikes, S was kept

fixed and the mixing matrix A
was updated. The four

independent components

represented here were a subset

of the whole set of 105

independent components

obtained from one of the cross

validation split of our dataset
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23 min subset of the six recordings. This subset was chosen

to capture the range of variability in the data, whilst

avoiding artefacts. The total number of sharp waves and

spikes in each training set was between 499 and 611.

2.4 Description of the method of classification

In the training set, each spike was positioned in the centre

of a window of fixed length. The window was L = 109

samples long, corresponding to about half a second. This

length was chosen in order to include the longest sharp

wave and also some background activity. The epileptiform

activity was stored in a matrix Xs (of dimension ns 9 L),

where ns was the total number of epileptiform waves in the

training set. Xs represents the first class in the problem. The

background EEG waveforms were stored in a matrix Xb (of

dimension nb 9 L), where nb was the number of back-

ground EEG waveforms in the training set:

Xk ¼

Xk
1

Xk
2

. . .

Xk
n

0
BBB@

1
CCCA k = s,b ð5Þ

where the ith row of Xk is the generic waveform xi
k = (xi1

k

xi2
k ,...,xiL

k ), and where k can assume as many indexes as

many classes to be discriminate by the algorithm.

For each waveform, we computed the maximum

amplitude occurring within a sub-interval of the original

temporal window. This subinterval consisted of 40 time

frames starting at the 40th time point of each waveform.

Without loss of generality we disregarded a priori all the

waveforms that did not have this maximum value in the

middle of the 109 time-frame window. This choice was

made in order to reduce the computational time required by

the algorithm, and because those criteria did not exclude

any epileptic waveforms. The same principle applies to

both training and testing of the algorithm.

Fig. 4 Example of 16 independent components that provided the

temporal basis used for feature extraction. These components are a

subsample of the 105 independent components obtained in the

training stage using six out of the seven EEG recordings. The

components are all well localized in time as well as in frequency,

which provides a good basis for representing the abrupt amplitude

change of epileptic events

Med Biol Eng Comput (2008) 46:263–272 267

123



In the first step of the algorithm, independent compo-

nents S were extracted from Xs according to the model

expressed by (3). The input data for ICA were preprocessed

by centering and whitening. The ICA decomposition was

performed using Fastica [21], [20] and activation function

g(u) = u3. The independent components were fixed for

both classes, and their projections onto Xk were treated as

lists of features for each class. In the second step of the

algorithm, we trained a quadratic classifier based on these

projections [36].

In the test stage, a sliding window of length L was

shifted sample by sample along each channel, and projec-

tions onto the independent components were computed for

each EEG segment that met the above criteria.

For any of the cross-validation splits in the dataset, the

maximum number of independent components was 105.

Since the basis is undercomplete, computation of the

pseudoinverse of the matrix S was required.

The algorithm was then generalized to detect a further

class which comprised eye movements and eye blinks (eye

artifacts; Fig. 2), as these artefacts appeared to provide the

main source of classification errors in the two-class case. In

the feature extraction stage, the three classes—epileptiform

Fig. 5 Example of principal components extracted in the training

stage using six out of the seven EEG recordings, ordered by

descending variances. These components can be considered in the

same terms as Fourier analysis, since each of them can be seen as

representing a different frequency component spread across the whole

temporal window. This set of representational coordinates was used to

provide a point of comparison for the ICA-based coordinates

Table 1 Dataset description

Diagnosis # Epilep

tiform

events

Duration

(min)

Birth

year

Idiopathic generalized epilepsy 10 5.76 1983

Left temporal partial lobe epilepsy 55 23.23 1973

Focal epilepsy 40 20.0 1956

Focal spike wave activity 17 4.17 1976

Temporal lobe epilepsy 122 20.01 1983

Generalized spike and wave and

partial temporal epilepsy

265 24.36 1981

Generalized spikes and spikes and

wave, burst of polyspikes and wave

112 23.48 1991
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activity, eye artefacts and rest of the EEG—were all pro-

jected on the same single basis obtained from ICA using

only the epileptiform activity. We generalized the qua-

dratic discriminator to allow a multiclass classification,

fitting a mixture of Gaussians model to the features of the

different classes, and computing the posterior probabilities

of each class [36].

The model was optimized by extracting the number of

independent components that showed the best performance

of the quadratic classifier across the seven splits. To this

end, we reduced the input dimension ns of X to between 1

and 105 dimensions using Principal Component Analysis

before extracting the same number of independent com-

ponents. In the following we will always refer to this

algorithm as ICA-algorithm, either when it is based on

PCA followed by ICA, or on ICA alone when no dimen-

sion reduction is needed.

We evaluated the performance based on the average

ROC curve across the seven cross-validation splits. Given

the multiple classes, we evaluated the ROC curve in the

testing stage of each of the seven splits by fixing the prior

probability for the eyeblink class in order to get the

maximum sensitivity possible for detecting epileptiform

activity, and tuning the prior probability between epilep-

tiform and the background EEG classes. In the ROC

curve evaluation, we collapsed all the marks across

channels along one single channel and considered the

marks within the L-window as one single event. A mark

is labeled as true positive when at least one of the spikes

at a certain time point is detected. This criterion makes it

possible to make a fair comparison with the Reveal

software (see below).

Two aspects of the ROC curve are of particular interest:

the area, which measures the overall performance of the

algorithm, and the sensitivity reached at the rate of six false

positives (FPs) per minute. Since EEGs are usually dis-

played with 10 s per page, a higher rate of FPs per minute

would require a revision of classifier marks for every page,

and so would not save the time of the technician or elec-

trophysiologist. In order to emphasize the difference

between the three representations, we also report the

accuracy obtained at a mid-range value of 65% sensitivity.

3 Comparison with other feature-based classifiers

and Reveal

The performance of the ICA-based representation was

compared with other feature-based classifiers, and the

commercially available software Reveal.

We considered two possible choices of features, using

each time the same classifier as described above. The first

important control was done using the raw, temporal,

representation of the input data themselves. The second

comparison was performed using PCA.

In the first case, the number of features equals the

temporal dimension of the input data, which is fixed to

match the number of time frames defining each waveform.

Therefore, this comparison was made only with complete

ICA representation, in order to minimize the impact of the

number of feature dimensions on the performance and

allow a fair contrast (Fig. 6). The second comparison was

performed using as features the PCA components rather

than the ICA components. This second case allowed a

comparison for any undercomplete choice of representation

of the waveforms (Fig. 7). In all cases, we measured

relative performance by computing and comparing the

areas under the ROC curves for the various cases (Figs. 6,

7).

Reveal was also run on the same dataset. In this pro-

gram, spikes, sharp waves, and spikes and waves are

marked when they occur as single waveforms or in a run

(focal or generalized or partially generalized). All these

events are defined as spikes in the ‘mark detector’. The

mark is accompanied by a probability index, termed a

perception level p (0.1 \ P \ 1), and the channel of the

spike focus.

The perception level quantifies the degree of uncertainty

about the marked waveform; the lower the perception

value, the lesser the confidence in the detection.

To treat Reveal in the same manner as our algorithm, we

considered its marks to be correct if they matched true

spikes within a window of length L. Since, unlike Reveal,

we did not include polyspikes in our classification, we

disregarded any marks occurring within a polyspike. The

perception levels were used to generate the ROC curves,

where the maximum of the perception value corresponds to

the minimum sensitivity of Reveal and vice-versa. That the

Fig. 6 Average ROC curve for the three methods: ICA and PCA with

105 components extracted, and raw data
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perception levels are discrete makes for a rather rough

estimate of the ROC curve (Fig. 8).

4 Results

When the ICA-algorithm was optimized for epileptiform

detection, the best performance for all seven splits was for

the case that just three components were extracted (Figs. 7,

8, 9).

The corresponding ROC curve (Fig. 8) gave a sensi-

tivity of 65% (±22%) at a specificity of 86% (±7%). With

a PCA algorithm based on three components, the speci-

ficity was 76%(±1%) at the same sensitivity (Fig. 8).

Allowing any possible number of extracted components,

the PCA-based classifier gave an underlying ROC curve

area that was always lower than the ICA-algorithm (Fig. 7;

p \ 0.05). The three ROC curves obtained for our algo-

rithm at 105 independent components extracted, 105

principal components and raw data gave respectively a

specificity of 80% ± 12%, 64% ± 26% and 74% ± 7%

all at a sensitivity of 65% (Fig. 6).

The ICA-algorithm when three components were

extracted provided 17% ± 17% in sensitivity and 96% in

specificity, at a rate of six false positives per minute

(Fig. 8).

For Reveal, the highest average sensitivity was 30% and

a specificity of 77%. In one recording, Reveal did not

detect any spikes. Our algorithm showed a higher accuracy

than Reveal only for sensitivities higher than 17% (Fig. 8).

ROC curves areas for Reveal compared to our algorithm

restricted to this highest sensitivity reached by Reveal were

not significantly different (Student’s t test).

5 Discussion

We have presented a two-stage algorithm for automatic

classification of EEG signals. The first stage consisted of a

novel application of an independent components analysis

algorithm. This resulted in a set of new representational

coordinates that were appropriate for discriminating spikes

from other features of the EEG. The second stage consisted

of a mixture of Gaussians classifier, based on these coor-

dinates. The classifier was optimized to detect epileptiform

activity, eye blinks and eye movement artefacts. A ROC

curve analysis for epileptiform events showed that we can

expect an average sensitivity of 65% at a specificity of

86%.

Fig. 7 Average ROC areas as a function of the number of indepen-

dent components extracted for ICA and PCA-based algorithms; in

both cases all the seven curves showed a maximum at three

independent components

Fig. 8 Average ROC curve at three independent components

extracted (best parameter choice) for ICA and PCA and average

ROC curve obtained running reveal on the same dataset

Fig. 9 Example of the three independent components (TF = time

frames) extracted in the training stage after reducing data dimension

to three through principal component analysis. This low number of

independent components is actually that which maximizes the

accuracy in the classification of epileptiform waveforms

270 Med Biol Eng Comput (2008) 46:263–272
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Model optimization led to the selection of only three

independent components after dimensionality reduction by

PCA. The three selected components are clearly related to

the salient features that human experts report using to

detect a spike or a sharp wave (Fig. 9). One component is

clearly responsible for the peakedness of the waveform

(red line), the green component reflects the duration of the

epileptiform event, and the last blue component represents

the rebound, which specially characterizes the spikes and

wave. This quite straightforward interpretability of the

selected features can be seen as indirect support for the

validity of our data driven approach to feature selection

based on independent component analysis. More indepen-

dent components are expected to be selected when more

patterns must be detected.

The algorithm has not been fully tested on a naive dataset,

but our preliminary results, which are based on a cross val-

idation procedure, appear promising for routine clinical use.

The algorithm did not impose high computational demands.

A recording of 20 min, which comprises 17 Mb of data, can

be processed in about 10 min on a 2.8 GHz dual processor

PC. In clinical practice, we expect this time to be practicable

for routine daily use. Should the computational time become

unfeasible when more classes need to be detected, more

powerful computational resources could be considered. One

avenue is use of parallel processing by the GRID. Using the

Condor GRID resource available at our university with 920

PCs, processing time was reduced by a factor of 25 [12, 13].

It is very hard to compare our algorithm directly against

most other suggested methods, since, unlike ours, the data-

sets on which they have been tested and validated are not in

the public domain. We certainly observed even in our own

datasets, that there can be quite large differences depending

on patient and human expert. In contrast, some other reported

performances are better than this, especially in the range of 6

false positives per minute. For instance the ‘Gotman spike

detector’ [16] achieved a sensitivity of 76% with 5.2 FPs/min

[40] and another study reported a sensitivity of 73% at

6.1 FPs/min, but our algorithm showed only 17% sensitivity

in this range. More reliable are comparisons based on the

same dataset. In this respect, we were able to run the com-

mercial algorithm Reveal on our own data. Although this is

reported as having a sensitivity and specificity of 89.9 and

99.6%, respectively (based on a large dataset including 40

subjects and 10 controls, which was independently labeled

by five experts), when applied to our data, Reveal only

achieved a sensitivity of 30% even at the lowest perception

level. This prevented us from comparing our results at the

level of sensitivity ([50%) usually reported in the literature

[41]. Nevertheless, the specificity of Reveal at sensitivity

lower than 17% was slightly better than that of our algorithm.

We are confident that our data have been appropriately

labeled, and have duly put it into the public domain. That our

method allows multiple classes suggests that its performance

could be further improved if other explicit sources of mis-

classification are included as extra classes in the classifier.

This is a key direction for future work.

Other planned work includes validation with a larger

naı̈ve training and cross-validation set, particularly because

of the apparent variability in the number of spikes in each

dataset. This variability led to problems in setting the

threshold consistently between the separate cross-validation

splits of the data, an issue with which extra data should

greatly help. The next task is to improve the classifier. Since

rather few representational components turn out to be opti-

mal, it is possible to visualize the representation of the spikes

and non-spikes in the reduced-dimensionality ICA space.

This visualization suggests that we might beneficially

replace the quadratic classifier, which was chosen mainly for

its simplicity, with a nearest neighbor classifier.

In the longer run, our intent is to generalize automatic

classification to the other salient aspects of EEG signals. If

this can be accomplished, then this could provide a novel

tool, which could be used routinely for a quantitative fast

analysis suitable for everyday EEG recording.

In conclusion, our novel ICA-based approach is quite

accurate in detecting epileptiform events, and is a promi-

sing approach for generalizing automatic methods to the

detection of other salient aspects of EEG signals.
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