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Abstract

Recently Linsker [2] and MacKay and Miller [3, 4] have analysed Hebbian
correlational rules for synaptic development in the visual system, and
Miller [5, 8] has studied such rules in the case of two populations of fibres
(particularly two eyes). Miller’s analysis has so far assumed that each of
the two populations has exactly the same correlational structure. Relaxing
this constraint by considering the effects of small perturbative correlations
within and between eyes permits study of the stability of the solutions.
We predict circumstances in which qualitative changes are seen, including
the production of binocularly rather than monocularly driven units.

1 INTRODUCTION

Linsker [2] studied how a Hebbian correlational rule could predict the development
of certain receptive field structures seen in the visual system. MacKay and Miller
[3, 4] pointed out that the form of this learning rule meant that it could be analysed
in terms of the eigenvectors of the matrix of time-averaged presynaptic correlations.
Miller [5, 8, 7] independently studied a similar correlational rule for the case of two
eyes (or more generally two populations), explaining how cells develop in V1
that are ultimately responsive to only one eye, despite starting off as responsive
to both. This process is again driven by the eigenvectors and eigenvalues of
the developmental equation, and Miller [7] relates Linsker’s model to the two
population case.

Miller’s analysis so far assumes that the correlations of activity within each popula-
tion are identical. This special case simplifies the analysis enabling the projections
from the two eyes to be separated out into sum and difference variables. In general,



one would expect the correlations to differ slightly, and for correlations between the
eyes to be not exactly zero. We analyse how such perturbations affect the eigenvec-
tors and eigenvalues of the developmental equation, and are able to explain some
of the results found empirically by Miller [6].

Further details on this analysis and on the relationship between Hebbian and
non-Hebbian models of the development of ocular dominance and orientation
selectivity can be found in Goodhill (1991).

2 THE EQUATION

MacKay and Miller [3, 4] study Linsker’s [2] developmental equation in the form:
_w = (Q + k2J)w+ k1n

where w = [wi] ; i 2 [1; n] are the weights from the units in one layer R to a
particular unit in the next layer S, Q is the covariance matrix of the activities of the
units in layer R, J is the matrix Jij = 1; 8 i; j, and n is the ‘DC’ vector ni = 1; 8 i.

The equivalent for two populations of cells is:�
_w1

_w2

�
=

�
Q1 + k2J Qc + k2J
Qc + k2J Q2 + k2J

��
w1

w2

�
+ k1

�
n

n

�

where Q1 gives the covariance between cells within the first population, Q2 gives
that between cells within the second, andQc (assumed symmetric) gives the covari-
ance between cells in the two populations. Define Q� as this full, two population,
development matrix.

Miller studies the case in which Q1 = Q2 = Q and Qc is generally zero or slightly
negative. Then the development of w1 �w2 (which Miller calls SD) and w1 +w2

(SS) separate; forQc = 0, these go like:

�S

�t

D

= QSD and
�S

�t

S

= (Q + 2k2J)S
S + 2k1n:

and, up to various forms of normalisation and/or weight saturation, the patterns
of dominance between the two populations are determined by the initial value
and the fastest growing components of SD. If upper and lower weight saturation
limits are reached at roughly the same time (Berns, personal communication), the
conventional assumption that the fastest growing eigenvectors of SD dominate the
terminal state is borne out.

The starting condition Miller adopts has w1 �w2 = �0a and w1 +w2 = b, where
�0 is small, and a and b are O(1). Weights are constrained to be positive, and
saturate at some upper limit. Also, additive normalisation is applied throughout
development, which affects the growth of the S

S (but not the S
D) modes. As

discussed by MacKay and Miller [3, 4], this is approximately accommodated in the
k2J component.

Mackay and Miller analyse the eigendecomposition of Q + k2J for general and
radially symmetric covariance matricesQ and all values of k2. It turns out that the
eigendecomposition of Q� for the case Q1 = Q2 = Q and Qc = 0 (that studied by
Miller) is given in table form by:



E-vector E-value Conditions
(xi; xi) �i Qxi = �ixi n:xi = 0
(xi;�xi) �i Qxi = �ixi n:xi = 0
(yi;�yi) �i Qyi = �iyi n:yi 6= 0
(zi; zi) �i (Q + 2k2J)zi = �izi n:zi 6= 0

Figure 1 shows the matrix and the two key (y;�y) and (x;�x) eigenvectors.

The details of the decomposition of Q� in this table are slightly obscured by de-
generacy in the eigendecomposition of Q + k2J. Also, for clarity, we write (xi; xi)
for (xi; xi)T. A consequence of the first two rows in the table is that (�x i; �xi) is an
eigenvector for any � and �; this becomes important later.

That the development of SD and S
S separates can be seen in the (u;u) and (u;�u)

forms of the eigenvectors. In Miller’s terms the onset of dominance of one of the
two populations is seen in the (u;�u) eigenvectors – dominance requires that � j

for the eigenvector whose elements are all of the same sign (one such exists for
Miller’s Q) is larger than the �i and the �i for all the other such eigenvectors. In
particular, on pages 296-300 of [6], he shows various cases for which this does and
one in which it does not happen. To understand how this comes about, we can
treat the latter as a perturbed version of the former.

3 PERTURBATIONS

Consider the case in which there are small correlations between the projections
and/or small differences between the correlations within each projection. For
instance, one of Miller’s examples indicates that small within-eye anti-correlations
can prevent the onset of dominance. This can be perturbatively analysed by setting
Q1 = Q + �E1, Q2 = Q + �E2 andQc = �Ec. Call the resulting matrixQ�

�
.

Two questions are relevant. Firstly, are the eigenvectors stable to this perturbation,
ie are there vectors a1 and a2 such that (u1 + �a1;u2 + �a2) is an eigenvector of
Q�

�
if (u1;u2) is an eigenvector of Q� with eigenvalue �? Secondly, how do the

eigenvalues change?

One way to calculate this is to consider the equation the perturbed eigenvector
must satisfy:1

Q�
�

�
u1 + �a1
u2 + �a2

�
= (� + � )

�
u1 + �a1
u2 + �a2

�

and look for conditions on u1 and u2 and the values of a1;a2 and  by equating
the O(�) terms. We now consider a specific example. Using the notation of the
table above, (yi + �a1;�yi + �a2) is an eigenvector with eigenvalue �i + � i if

(Q� �iI) a1 + k2J (a1 + a2) = � (E1 � Ec �  iI)yi; and
(Q� �iI) a2 + k2J (a1 + a2) = � (Ec � E2 +  iI)yi:

Subtracting these two implies that

(Q � �iI) (a1 � a2) = � (E1 � 2Ec + E2 � 2 iI) yi:

1This is a standard method for such linear systems, eg in quantum mechanics.



However, yTi (Q � �iI) = 0, since Q is symmetric and yi is an eigenvector with
eigenvalue �i, so multiplying on the left by yTi , we require that

2 iy
T
i yi = y

T
i (E1 � 2Ec + E2)yi

which sets the value of  i. Therefore (yi;�yi) is stable in the required manner.

Similarly (zi; zi) is stable too, with an equivalent perturbation to its eigenvalue.
However the pair (xi; xi) and (xi;�xi) are not stable – the degeneracy from their
having the same eigenvalue is broken, and two specific eigenvectors, (�ixi; �ixi)
and (��ixi; �ixi) are stable, for particular values �i and�i. This means that to first
order, SD and S

S no longer separate, and the full, two-population, matrix must be
solved.

To model Miller’s results, call Q�;m
�

the special case of Q�
�

for which E1 = E2 = E

and Ec = 0. Also, assume that the xi;yi and zi are normalised, let e1(u) = u
TE1u;

etc, and define 
(u) = (e1(u) � e2(u))=2ec(u), for ec(u) 6= 0, and 
i = 
(xi). Then
we have

�i=�i = �
i �

q
1+ 
2i (1)

and the eigenvalues are:

Eigenvalue for case:
E-vector Q� Q�;m

�
Q�

�

(�ixi; �ixi) �i �i + �e1(xi) �i + �[e1(xi) + e2(xi) + �i]=2
(��ixi; �ixi) �i �i + �e1(xi) �i � �[e1(xi) + e2(xi) + �i]=2
(yi;�yi) �i �i + �e1(yi) �i + �[e1(yi) + e2(yi) � 2ec(yi)]=2
(zi; zi) �i �i + �e1(zi) �i + �[e1(zi) + e2(zi) + 2ec(zi)]=2

where �i =
p
[e1(xi)� e2(xi)]2 + 4ec(xi)2. For the case Miller treats, since E1 = E2,

the degeneracy in the original solution is preserved, ie the perturbed versions of
(xi; xi) and (xi;�xi) have the same eigenvalues. Therefore the SD and S

S modes
still separate.

This perturbed eigendecomposition suffices to show how small additional correla-
tions affect the solutions. We will give three examples. The case mentioned above
on page 299 of [6], shows how small same-eye anti-correlations within the radius
of the arbor function cause a particular (yi;�yi) eigenvector (i.e. one for which
all the components of yi have the same sign) to change from growing faster than
a (xi;�xi) (for which some components of xi are positive and some negative to
ensure that n:xi = 0) to growing slower than it, converting a monocular solution
to a binocular one.

In our terms, this is theQ�;m
�

case, with E1 a negative matrix. Given the conditions
on signs of their components, e1(yi) is more negative than e1(xi), and so the
eigenvalue for the perturbed (yi;�yi) would be expected to decrease more than
that for the perturbed (xi;�xi). This is exactly what is found. Different binocular
eigensolutions are affected by different amounts, and it is typically a delicate issue
as to which will ultimately prevail. Figure 2 shows a sample perturbed matrix for
which dominance will not develop. If the change in the correlations is large (O(1)),
then the eigenfunctions can change shape (eg 1s becomes 2s in the notation of [4]).
We do not address this here, since we are considering only changes of O(�).



Positive opposite-eyecorrelations can have exactly the same effect. This time ec(yi)
is greater than ec(xi), and so, again, the eigenvalue for the perturbed (yi;�yi)
would be expected to decrease more than that for the perturbed (xi;�xi). Figure 3
shows an example which is infelicitous for dominance.

The third case is for general perturbations in Q�
�
. Now the mere signs of the

components of the eigenvectors are not enough to predict which will be affected
more. Figure 4 gives an example for which ocular dominance will still occur. Note
that the (xi;�xi) eigenvector is no longer stable, and has been replaced by one of
the form (�ixi; �i; xi).

If general perturbations of the same order of magnitude as the difference between
w1 and w2 (ie �0 ' �) are applied, the �i and �i terms complicate Miller’s SD
analysis to first order. Let w1(0)�w2(0) = �a and applyQ�

�
as an iteration matrix.

w1(n)�w2(n), the difference between the projections aftern iterations has noO(1)
component, but two sets of O(�) components; f2�n

i (a:yi)yig, and

f �ni [1+ �(�i + �i)=2�i]
n (�ixi:w1(0) + �ixi:w2(0)) (�i � �i)xi �

�ni [1+ �(�i � �i)=2�i]
n (�ixi:w2(0)� �ixi:w1(0)) (�i + �i)xi g

where �i = e1(xi) + e2(xi). Collecting the terms in this expression, and using
equation 1, we derive�

�ni

�
(�2i + �

2
i )xi:a+ 2n

�i

�i

i�i�ixi:b

�
xi

�

where b = w1(0) + w2(0). The second part of this expression depends on n,
and is substantial because w1(0) + w2(0) is O(1). Such a term does not appear
in the unperturbed system, and can bias the competition between the y i and the
xi eigenvectors, in particular towards the binocular solutions. Again, its precise
effects will be sensitive to the unperturbed eigenvalues.

4 CONCLUSIONS

Perturbation analysis applied to simple Hebbian correlational learning rules reveals
the following:

� Introducing small anti-correlations within each eye causes a tendency toward
binocularity. This agrees with the results of Miller.

� Introducing small positive correlations between the eyes (as will inevitably
occur once they experience a natural environment) has the same effect.

� The overall eigensolution is not stable to small perturbations that make the
correlational structure of the two eyes unequal. This also produces interesting
effects on the growth rates of the eigenvectors concerned, given the initial
conditions of approximately equivalent projections from both eyes.
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Figure 1: Unperturbed two-eye correlation matrix and (y;�y), (x;�x) eigenvec-
tors. Eigenvalues are 7.1 and 6.4 respectively.
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Figure 2: Same-eye anti-correlation matrix and eigenvectors. (y;�y), (x;�x) eigen-
values are 4.8 and 5.4 respectively, and so the order has swapped.
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Figure 3: Opposite-eye positive correlation matrix and eigenvectors. Eigenvalues
of (y;�y), (x;�x) are 4.8 and 5.4, so ocular dominance is again inhibited.
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Figure 4: The effect of random perturbations to the matrix. Although the order is
restored (eigenvalues are 7.1 and 6.4), note the (�x; �x) eigenvector.


