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Computational modelling is playing an increasingly accepted
and important role in neuroscience. It is not a unitary en-
terprise, though, and the distinction between two different
sorts of modelling, one interested in description and the other
also in function, is illustrated in their application to activity-
dependent developmental plasticity and adult conditioning.

1 Introduction

There are two distinct sorts of computational modelling that are commonplace in neuroscience
and which are often confused. One is the natural offspring of the coupling of mathematical mod-
elling with technology and concentrates on descriptions of phenomena. Computers permit cal-
culation to be used to probe the quantitative consequences of models that are too complicated to
analyse, the complications often coming in virtue of their being quite tightly coupled to experi-
mental data. The classic examples of this are the detailed simulations of the flow of current in
single cells with complex geometries, including versions of channel kinetics and the like [1]. The
examples we discuss here are algorithms for vertebrate activity-dependent neural development
which are based on versions of the Hebb rule for synaptic change. Operation of such rules can
convert structure in input activity (eg nearby mechanoreceptors having closely related or corre-
lated firing patterns) into structure in the organisation of parts of cortex (eg neighbouring cells in
somatosensory cortex responding to touch in neighbouring parts of the body). The mathematical
models address characteristics of this conversion in a quantitative manner. We will call this form
of computational modelling mathematical modelling.

The other form of modelling, for which we retain the given name, starts from the (not quite univer-
sally accepted [2]) premise that brains are kinds of computers, and asks what computational func-
tions bits of them subserve. This also requires quantitative descriptions, just like mathematical
modelling, but it goes beyond them — in the example above not asking just how input correlations
get turned into cortical structure by a Hebb rule, but also what this implies about the way infor-
mation in those inputs is processed; not merely describing the process of Hebbian synaptic change
and its structural consequences, but ascribing to it specific computational functions. Notions of
the abstraction of tasks from their implementations are pervasive throughout computer science,
and the question of what function some structure or mechanism for synaptic change or whatever
has, has different answers at different levels of inquiry [3, 4, 5]. This form of modelling is some-
what more controversial, since the basic premise is not universally accepted, the more abstract
computational models can appear to be very far removed from their experimental foundations,
and the whole enterprise is too teleological for the tremulous.

To see that there is a difference, consider the extremely simplified example in the figure in which
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Figure 1: Simple example. a) Two sensors that look at the same quantity. Sensor 1 (s1) responds
more steeply than sensor 2 (s2). b) Graph of the joint and slightly noisy activities of s1 and s2
showing the effect of the different sensitivities in the imbalance of the data points in the two
directions. Hebbian learning for the weights can make them line up with the data (solid line).
This is as far as mathematical modelling will go — it gives an accurate description of what happens.
Computational modelling goes one step further and asks what this way of lining up with the data
imples for the way these inputs get processed — in this case more information is extracted than
would be from, say, straight averaging. See, for example, Linsker [6].

two sensors with different sensitivities report noisily on the same underlying quantity in a linear
manner through a summarising unit with weights that develop according to Hebbian principles.
In something of a caricature, mathematical modelling would just describe the relationship be-
tween the structure of the input (in this case the correlations between the sensor readings) and
the final weights (which line up with the direction in which the inputs jointly vary the most).
Computational modelling, however, would reveal that this extracts the maximum amount of in-
formation from these inputs — taking a weighted average is better than taking the straight average
since it leads to a higher signal/noise ratio. Computational modelling asks more questions and
can therefore be more revealing.

Although these two activities may appear to have a lot in common - for example, mathematical
modelling also requires abstraction from underlying detail, particular instances of computational
models are mathematical models, and the two are usually intimately intertwined in particular
pieces of research — there are important differences. We shall try to show this by describing com-
putational modelling in adult conditioning learning and contrasting the two in activity-dependent
development. These areas share deep roots, but historically mathematical modelling has played a
greater part in the latter, and a restricted form of computational modelling in the former.



Mathematical and computational modelling are pervasive throughout neurobiology. This review
therefore focuses only on the distinction drawn above in these two example areas. The references
include pointers to some recent work not explicitly discussed here (see particularly [7]. The con-
troversy over the use of abstract algorithms (particularly backpropagation [8]) is not engaged.
They mostly share only a certain computational flavour with the brain, however their merits as
some of the few ways to explore the class of processing that moderate numbers of simple compu-
tational units can perform, are independent of the fact that they are clearly not abstractions over
any neural process [9]. Also note that the distinction between the two forms of modelling is not
cleanly separable from other common distinctions such as realistic/simplifying [4], or ones based
exclusively on computational levels of analysis [3].

The most important area not covered is representation — the codings that are inferred from record-
ings in various neural systems, particularly from awake and behaving animals. The very notion of
representation is itself computational, and abstract connectionist models have been used to sug-
gest various ways in which cells might jointly represent some aspect of a stimulus (in so-called dis-
tributed codes) rather than doing it singly (in punctate or grandmother-cell codes). Computational
modelling licences investigating these other forms of representation. Just as one example, Geor-
gopoulos and his colleagues (see [10] for a recent review and [11] for some computational analysis)
have studied the motor cortex, showing the relationship between the firing of a whole population
of cells before a movement and the direction of that movement. The grip of the grandmother-cell
has been weakened as investigators have found effects from outside the classical receptive field
that is at the heart of this theory, and will be more so as simultaneous recording from many cells
becomes possible [12].

Robinson [13] suggests that to the extent that these connectionist-inspired theories of distributed
codes are actually borne out, it will be almost impossible to work out in detail how the brain
processes particular sorts of information, rather than just the general strategies it employs. This is
on the grounds that it is often almost impossible to take a connectionist system that is performing
some task using abstract models of neurons, and reverse-engineer just how it does so.

2 Conditioning

Hebb’s famous postulate [14] about the circumstances in which the efficacy of a connection be-
tween two cells would change can be seen as almost a cellular implementation of part of philo-
sophical associationism. Hebbian learning rules quickly became important in theoretical models
of memory and activity-dependent plasticity. However, animal conditioning experiments showed
that they could not, at least on their own, account for the psychological data on the circumstances
under which animals learn about the associations between stimuli and reinforcers [15]. Condi-
tioned stimuli such as lights or tones generally have to precede delivery of unconditioned stimuli
such as shocks or food for animals to learn the association between them; simultaneous presen-
tation is not nearly so effective. Likewise, in a phenomenon called blocking, stimuli that are pre-
sented in perfectly appropriate temporal relationships with rewards can also fail to enter into
associations if the delivery of reward is signaled by some other, previously conditioned, stimulus.



These breaks with the former doctrine were followed by a separation of most of the research in
the neurobiological basis of plasticity, which was conducted along more strictly Hebbian lines,
and modelling and experimentation in conditioning. The separation allowed a greater focus on
the computational nature of conditioning, albeit divorced from the neural mechanisms by which
it occurs, barring some notable and debatable exceptions in invertebrate conditioning and the
cerebellum [16].

There are many strands of conditioning research and also theoretical conflicts that have yet to be
resolved; however one main focus has been on how animals learn about the causal texture of their
environments [15] and learn to act, presumably on the basis of this knowledge. When the task
is posed in this way, insights from the study of learned prediction and action in other systems,
including artificial ones, can be applied. To put it somewhat starkly, if plasticity in the brain is
partly directed at learning predictions, then the way this is done is a member of the set of possible
algorithms for learning to make predictions, and so shares any universal features of this set, and
likely also features of other and possibly known algorithms. Using insights in this way is exactly
what Churchland [19] calls a coevolutionary approach to the computational understanding of the
brain, since the theories at all levels evolve in step.

Some of this interplay is evident in the evolutionary path of the influential Rescorla-Wagner [20]
learning rule in conditioning. This explains in informational terms the blocking phenomenon
described above, suggesting that since the previously conditioned stimulus predicts the delivery
of the reward, there is nothing left unpredicted to cause learning for the new stimuli — it is an
error correcting rule in the sense that learning is driven by prediction errors and acts to reduce
them. Sutton and Barto [21] pointed out that this rule is equivalent to an algorithm called the
delta-rule [22], which is well known in engineering as a way of allowing predictions to be made
of some quantity on the basis of the values of other quantities to which it is related, and whose
computational properties have been extensively explored. All this analysis applies directly to
the Rescorla-Wagner rule. Sutton and Barto [21] went on to suggest a modification to this rule
to take account of temporal effects in conditioning such as the utility of having the conditioned
stimuli precede the unconditioned ones, and this led to a different algorithm for prediction which
McLaren and Dickinson [23] pointed out had originally been suggested for animal learning by
Konorski [24], the year before Hebb’s own suggestion.

Sutton and Barto subsequently suggested a further modification to their own algorithm [25], mak-
ing it consistent both with more conditioning experiments and with another engineering tech-
nique called dynamic programming (DP, [26]), in which prediction and optimal action are inti-
mately bound [27]. DP is a quite general technigue for systems to work out how to optimise some
measure of return given certain conditions about the world and about the information from the
world that is available to them, and so it permits a link to be made with more ethological theo-
ries of animal behaviour for which optimalities of various sorts are the starting point. In fact the
algorithms turn out to be novel contributions to engineering too [28].

Of course, these conditioning theories are all incomplete — Mackintosh [29] and Pearce and Hall
[30] point out the importance of attentional effects, and the true relationship between classical and
instrumental conditioning is still unclear — however the interplay licenced in the framework of
computational modelling has been productive.



The computational modelling is also incomplete to the extent that it is unclear what the neural
mechanisms are over which these algorithms are abstractions. This is of coevolutionary impor-
tance since there are various confusing phenomena in conditioning such as the difference between
the learning behaviour of conditioned excitors (the stimuli that come to predict the presence of an
unconditioned stimulus) and inhibitors (which are described as coming to predict its absence),
which are suggestive of neural constraints. The neural basis has attracted more interest in the in-
vertebrate [31, 32] and cerebellar literature (see [16]) than that on cortical learning, although there
are some pointers.

As an example of taking computational modelling one stage further, recent evidence from the
vertebrate dopaminergic system, which has previously been implicated in the processing of re-
warding events on the basis of self-stimulation and drug addiction studies [33], suggests that the
firing of the dopaminergic output cells of the ventral tegmental area is consistent with the hypoth-
esis [34] that it reports to its targets the information about prediction errors that would be expected
from a rule such as Sutton and Barto’s [25, 35]. Importantly for this suggestion, dopamine is be-
lieved to modulate synaptic plasticity [36].

Note that this explanatory process is neither top-down nor bottom-up. There are many possi-
ble algorithms for prediction, most of which are inconsistent with evidence about what animals
actually do or how they do it; there are many facts about conditioning, particularly to do with
conditioned inhibitors, whose natural explanation probably lies at the level of their neural under-
pinning; and yet the organising thrust of the computational modelling comes from the notion of
prediction, which is a significant abstraction from any neuron firings.

3 Activity-dependent Development

Research into activity-dependent development has a venerable history. For a system in which the
construction of representations at multiple levels is a main means of mediating computation, it
is an attractive theoretical notion that the representations that form are sensitive to the stimuli
that are actually observed. Although significant aspects of development are not dependent on
input but are presumably genetically pre-specified, there is substantial evidence for input-driven
components and it is those that have been the main focus of theories (but see [37]). Unfortunately,
the equivalent of prediction as an organising computational principle has so far eluded the field,
and the interplay of mathematical and computational modelling has been less productive.

Mathematical modelling had an early start, as algorithms based on Hebb’s hypothesis were shown
to be adequate for the development of the orientation selective cells [38] and topographically or-
dered mappings between sheets of sensory and central neurons [39] as in the retino-tectal pro-
jection in frogs or the retino-thalamo-cortical projection in cats and monkeys. Hebb’s suggestion
is about how innervating axons might cooperate — some form of competition is also required to
prevent the outcome of development from being trivial [40]. Different ways of implementing the
Hebbian or the competitive parts of the rule, different models for the activity itself (either random
or somehow patterned [41]) from which the development arises, and different degrees of abstrac-
tion from the neural basis, all lead to apparently different algorithms (eg [42, 43, 44, 45, 46]), and



there is as yet not enough experimental data to distinguish between those that compete. Also,
they have almost exclusively been confined to the primary sensory areas; cortical mechanisms are
not apparently different deeper in, but it is not clear that these algorithms can be sensibly applied
in an hierarchical manner.

From the perspective of computational modelling, there seems so far to be lacking an organising
principle with the appeal that the notion of prediction had in conditioning theory. Purves, Riddle
and LaMantia [47] highlight the extent to which this is true in suggesting that the modular struc-
ture in cortex that they all produce are effectively epiphenomenal byproducts of the underlying
mechanisms governing synaptic plasticity. This issue is outside the purview of these models, since
it is an appeal for a computational explanation of what is going on.

The obvious computational principle (eg [48] and many others) would be couched in terms of
gleaning information from the input in such a way that it can more easily be used [49, 50] for
subsequent processing — indeed it is known that algorithms based on Hebbian learning rules can
perform a sort of principal components analysis [51, 52], a standard technique for extracting in-
formation from a set of inputs. It is important to bear in mind that there is no sentient ‘user’ but
only further sub-cortical areas and also cortical areas presumably organising themselves in similar
manners. The most serious concern about this principle, which is why it has been hard to codify, is
that it is unclear what it is to be more easily usable — data that from the perspective of one system
are information, can easily be noise to another. Various suggestions have been made such as that
the outputs of a single step in the process should be more independent than the inputs, and yet
convey the same information [49, 53]; however mechanisms for achieving this on a large scale are
as yet not known. Related principles such as removing redundancy from inputs [54], have also
been suggested; however these work better nearer the sensory periphery and are replaced by less
powerful and more system-specific computational principles in modelling cortical organisation
[55].

4 Conclusions

This review has pointed out some of the differences between two sorts of computational mod-
elling, one which is an extension of mathematical modelling, and the other which is based on a
qualitatively different approach. The two are particularly intertwined in the evolution of condi-
tioning theory and activity-dependent synaptic plasticity, and the dearth of organising computa-
tional principles in the latter is thrown into sharp relief. Of course, the two have been somewhat
caricatured to reveal their differences. Although mathematical modelling is typically easier to jus-
tify, closer to obvious characteristics of the underlying neural substrate, and more amenable to
making predictions that can simply be tested, it is in the latter that lie multi-level explanations for
neural computation.
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