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Abstract

The methods of temporal di�erences (Samuel, 1959; Sutton 1984, 1988)

allow agents to learn accurate predictions about stationary stochastic future

outcomes. The learning is e�ectively stochastic approximation based on sam-

ples extracted from the process generating the agent's future.

Sutton (1988) proved that for a special case of temporal di�erences, the

expected values of the predictions converge to their correct values, as larger

samples are taken, and Dayan (1992) extended his proof to the general case.

This paper proves the stronger result that the predictions of a slightly modi�ed

form of temporal di�erence learning converge with probability one, and shows

how to quantify the rate of convergence.

1 Introduction

Temporal di�erence (TD) learning is a way of extracting information from obser-

vations of sequential stochastic processes so as to improve predictions of future out-

comes. Its key insight is that estimates from successive states should be self-consistent

{ for instance, the prediction made at one state about a terminal outcome should be

related to the prediction from the next state, since this transition is obviously one

of the ways of getting to the termination point. The TD algorithm investigated here

was invented by Sutton (1988), and uses the di�erence between such predictions to

drive modi�cations to the parameters that generate them. In fact, Sutton de�ned

a whole class of such TD algorithms, TD(�), which look at these di�erences further

and further ahead in time, weighted exponentially less according to their distance by

the paramter �.

TD(�) algorithms have wide application, from modeling classical conditioning in an-

imal learning (Sutton and Barto, 1987) to generating a prize-winning backgammon

playing program (Tesauro, 1992) { however the theory underlying them is not so well

1



developed. Sutton (1988) proved the �rst theorem, which demonstrated under certain

conditions that the mean TD estimates of the terminal reward or return from a par-

ticular form of absorbing Markov process converge to the appropriate values. Using

some insightful analysis by Watkins (1989) about how TD methods for control relate

to dynamic programming (Ross, 1983), Dayan (1992) generalised Sutton's theorem

to cover the case where the di�erences between the predictions from many successive

states are taken into account.

Unfortunately, mere convergence of the mean is a very weak criterion. For instance,

consider a sequence Hn of independent, identically distributed, random variables with

a �nite expectation H. Trivially, limn!1 E [Hn] = H, but in no useful sense do the

Hn converge. Convergence of the mean is not the same as convergence in mean,

which would require that limn!1 E [jHn �Hj] = 0. The latter does not hold for the

simple example. Convergence with probability one is one of the more desirable forms

of stochastic convergence, and this note concentrates on proving that it holds for TD.

That the simplest form of TD converges with probability one in a very special case

was shown in Dayan (1992). This paper pointed out the equivalence of TD and

Watkins' (1989) Q-learning stochastic control learning algorithm, in the case where

at no stage is there any choice of possible action. Watkins (1989) and Watkins et

al (1992) proved convergence of Q-learning with probability one, and this assurance

therefore extends to TD.

This paper applies some general theory by Kushner and Clark (1978), which was

originally directed at the Robbins-Monro procedure (Robbins & Monro, 1951) to

prove that TD(�) with a linear representation converges with probability one. Kuan

and White (1990; 1991) have applied the same theory to the stochastic convergence of

static and dynamic backpropagation, provide a more easily approachable introduction

to the methods, and also more directly applicable convergence conditions.

2 De�nition of TD(�)

We will treat the same Markov estimation problem that Sutton (1988) and, following

him, Dayan (1992), used, and indeed will generally adopt their notation. Consider

the case of an absorbing Markov chain with stochastic terminal returns, de�ned by

sets and values:
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T terminal states

N non-terminal states

qij 2 [0; 1] i 2 N ; j 2 N transition probabilities between non-terminal states

sij 2 [0; 1] i 2 N ; j 2 T transition probabilities to terminal states

xi 2 <
c i 2 N vectors representing non-terminal states

vj j 2 T expected terminal return from state j

�i i 2 N probabilities of starting at state i

where
P

i2N �i = 1

The estimation system is fed complete sequences xi1
;xi2 ; : : :xim

of observation vec-

tors, together with their scalar terminal return v. It has to generate for every non-

terminal state i 2 N a prediction of the expected value E [vji] for starting from that

state. If the transition matrix of the Markov chain were completely known, these

predictions could be computed as:

�e�
i
� E [vji] =

X
j2T

sijvj +
X
j2N

qij
X
k2T

sjkvk +
X
j2N

qij
X
k2N

qjk
X
l2T

sklvl + : : : : (1)

where �e� is the vector of correct predictions.

Again, following Sutton, let [M ]
ab

denote the abth entry of any matrix M , [u]
a
de-

note the ath component of any vector u, Q denote the square matrix with com-

ponents [Q]ab = qab; a; b 2 N , and h denote the vector whose components are

[h]
a
=
P

b2T sabvb, for a 2 N . Then from equation (1):

E [vji] =

"
1X
k=0

Qk
h

#
i

=
h
(I �Q)�1h

i
i

(2)

As Sutton showed, the existence of the limit in this equation follows from the fact

that Q is the transition matrix for the non-terminal states of an absorbing Markov

chain, which, with probability one will ultimately terminate.

During the learning phase, linear TD(�) generates successive vectors w1;w2; : : :,

changing w after each complete observation sequence. De�ne V �

n
(i) = wn:xi as the

prediction of the terminal return starting from state i, at stage n in learning. Then,

during one such sequence, V �

n
(it) are the intermediate predictions of these terminal

returns, and, abusing notation somewhat, de�ne also V �

n
(im+1) = v, the observed

terminal return.1 TD(�) changes w according to:

wn+1 = wn +
mX
t=1

(
�n+1[V

�

n
(it+1)� V �

n
(it)]

tX
k=1

�t�kr
wn
V �

n
(ik)

)
: (3)

where �n+1 is the learning rate for the n
th trial.

1Sutton used Pn

t
for V �

n
(it).
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Sutton proved the following theorem true for � = 0; Dayan (1992) extended it to the

case of general 0 < � < 1:

Theorem T For any absorbing Markov chain, for any distribution of

starting probabilities �i such that there are no inaccessible states, for any

outcome distributions with �nite expected values vj, and for any linearly

independent set of observation vectors fxiji 2 Ng, there exists an � > 0

such that, if �n = � where 0 < � < � and for any initial weight vector,

the predictions of linear TD(�) (with weight updates after each sequence)

converge in expected value to the ideal predictions (2); that is, if wn

denotes the weight vector after n sequences have been experienced, then

lim
n!1

E [(wn;xi)] = E [vji] =
h
(I �Q)�1h

i
i
; 8i 2 N : (4)

In proving this for � < 1, it turns out that there is a linear update matrix for the mean

estimates of terminal return from each state after n sequences have been observed. If

wn are the actual weights after sequence n and �wn+1 the expected weights after the

next sequence, then:

XT �wn+1 = XT
wn � �n+1X

TXD
h
I � (1� �)Q(I � �Q)�1

i
(XT

wn � �e�); (5)

where X is the matrix whose columns are the vectors representing the non-terminal

states; [X]ab = [xa]b. Furthermore, the mean estimates converge appropriately be-

cause, if the vectors representing the states are independent (ie X is full rank),

�XTXD [I � (1� �)Q(I � �Q)�1] has a full set of eigenvalues all of whose real parts

are negative. It turns out that these, together with some other conditions that are

mainly guaranteed by the �niteness of the Markov chain, are just what justi�es the use

of the powerful stochastic convergence proof methods of Kushner and Clark (1978).

The next two sections show how.

3 Convergence Proof

On pages 21-24 and 26-27 of their book, Kushner and Clark (1978) consider the

following problem (changing the notation to �t with the above). zi 2 <
c are random

variables, k : <c ! <c is a stochastic function whose mean for every z 2 <c is �k(z),

0 < �n < 1 is a sequence of real numbers such that

1X
i=1

�n =1 but
1X
i=1

�2
n
<1 (6)
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and

zn+1 = zn + �n+1
�k(zn) + �n+1dn; and (7)

dn =
h
k(zn)� �k(zn)

i
(8)

where dn acts as a zero mean noise process.

De�ne a discrete `time' as tn =
P

n

i=1
�i and a piecewise linear interpolation of the

sequence fzng as:

z
L(t) =

tn+1 � t

�n

zn +
t� tn

�n

zn+1 (9)

and functions that are left shifts of this as zn(t) � z
L(t+ tn). Then, as a consequence

of their theorem 2.3.1, if the variance of the noise dn is bounded and fzng is bounded

with probability 1, then, also with probability 1, the sequence of functions fzn(t)g

has a convergent subsequence that tends to some function z(t) which satis�es the

equation:
dz

dt
= �k(z) (10)

Kushner and Clark also show that zn ! z0 as n ! 1 if there is a particular

constant solution z0 of this di�erential equation which is asymptotically stable in the

following way: for any bounded solution z(t) and any � > 0 there is a Æ > 0 such that

jz(t)� z0j < � for t � 0 if jz(0)� z0j < Æ, and z(t)! z0 as t!1.

Consider this in the context of TD(�). De�ne zn � XT
wn as the vector containing

all the predictions at the nth trial. Then in the appropriate form of the update

equation 7, the �rst two terms on the right hand side, which take care of the mean,

are just equation 5. Therefore, the associated di�erential equation equivalent to

expression 10 is:

dz

dt
= �k(z) = �XTXD

h
I � (1� �)Q(I � �Q)�1

i
(z� �e�): (11)

As mentioned above, from Sutton (1988) and Dayan (1992), if the vectors repre-

senting the states are independent (ie X is full rank), the negated growth matrix in

equation 11 has a full set of eigenvalues all of whose real parts are negative. Therefore

the di�erential equation is asymptotically stable about �e� in the above manner.

So, if the variance of the noise were bounded, and fzng were bounded with proba-

bility 1, then, from the above, we would know that zn ! �e� (equivalently wn ! w
�

where XT
w
� = �e� as X is full rank) as n !1, with probability 1, ie TD(�) would

converge to the right answer with probability 1.

Although far weaker conditions would probably suÆce (Kushner, 1984), it is adequate

to bound k using a projection technique. Choose a large real bound B. If zn+1,
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updated according to equation 7, would lie outside the hypercube de�ned as f�B;Bgc,

it is projected orthogonally back along the o�ending axes so that it lies on the surface.

This makes both fzng and the variance V[k(z)] bounded and so, since also the Markov

chain is absorbing, Kushner and Clark's theorem 2.3.1 holds for TD(�).

4 Rate of Convergence

Kushner and Clark go on to show how to quantify the rate of convergence of stochastic

algorithms such as the Robbins-Monro procedure. In the notation of this paper, they

consider setting �n = (n + 1)�r, for some 1 � r > 1=2, de�ne dn = zn � �e� and

un = (n + 1)sdn, and deem the rate of convergence the largest s 2 (0; 1) `for which

the asymptotic part of fung makes sense as a non-degenerate but \stable" process'

(Kushner and Clark, 1978, p 233). r determines how fast learning can progress - the

larger it is, the quicker.

If we de�ne H as the Jacobian matrix of �k() at �e�, ie:

H = �XTXD
h
I � (1� �)Q(I � �Q)�1

i
; (12)

then, theorem 7.3.1 (Kushner and Clark, 1978, p 245), proves the following theorem

(ignoring conditions that are clearly true in the present case):

Theorem P If

1. 9�e� such that zn ! �e� as n!1, with probability 1, and �k(�e�) = 0,

2. Either:

a) r = 1; s = 1

2
and �H � H+ sI has the real part of all its eigenvalues strictly

less than 0, or

b) r < 1; s = r

2
and �H � H has the real part of all its eigenvalues strictly less

than 0

3. There is a matrix M such that E
h
fk(zn)� �k(zn)gfk(zn)� �k(zn)g

T

i
! M as

n!1.

4. There are real Æ > 0 and ! <1 such that E [
���k(zn)� �k(zn)

���2+Æ

] � ! for all n

then un converges in distribution to a normally distributed random variable.

Conditions 1 and 2b are guaranteed by the previous theorem (condition 2a is stronger

and may hold in certain particular cases), and conditions 3 and 4 hold since the
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Markov chain is absorbing. Therefore, TD(�) converges at least as fast as r=2, where

r can be chosen to be 1 if condition 2a holds.

For case 2a, the asymptotic variance of the normal distribution of un is related to

the covariance matrix M , which in turn is related to the variance of the update

operator. Decreasing � should decrease this variance (Watkins, 1989).2 However,

decreasing � can also increase the bias and this slows optimal convergence. This

trade-o� between bias and variance (Watkins, 1989; Geman, Bienenstock & Doursat,

1992) is characteristic of such stochastic algorithms.

5 Discussion

The application of powerful stochastic approximation algorithms in this paper is nei-

ther the most general possible nor the most elegant. Kushner and Clark's work has

been further extended (eg Kushner, 1984; Benveniste et al , 1990) and convergence

with probability 1 could be proved under less restrictive conditions. Satinder Singh

(personal communication) also has a more re�ned proof that generalises the Watkins

et al (1992) result that Q�learning, with synchronous updates, converges with prob-

ability 1.

Nevertheless, we have shown that TD(�) converges with probability one, under the

standard stochastic convergence constraints on the learning rate given in equation 6

and the other stated conditions. The maximal rate of convergence of this algorithm

is determined by the eigenvalues of the update matrix. This gives for TD(�) a similar

assurance that other approximation algorithms enjoy.

Although these theorems provide mathematical assurance for the convergence of

TD(�), the actual rate of convergence can often be too slow for real-world problems,

especially for state spaces of high dimensionality. Developing good representations

of states is of critical importance in achieving good performance with this as well as

other classes of reinforcement learning algorithm.
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