
Adaptation and Unsupervised Learning

Peter Dayan Maneesh Sahani Grégoire Deback
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Abstract

Adaptation is a ubiquitous neural and psychological phenomenon, with
a wealth of instantiations and implications. Although a basic form of
plasticity, it has, bar some notable exceptions, attracted computational
theory of only one main variety. In this paper, we study adaptation from
the perspective of factor analysis, a paradigmatic technique of unsuper-
vised learning. We use factor analysis to re-interpret a standard view of
adaptation, and apply our new model to some recent data on adaptation
in the domain of face discrimination.

1 Introduction

Adaptation is one of the first facts with which neophyte neuroscientists and psychologists
are presented. Essentially all sensory and central systems show adaptation at a wide variety
of temporal scales, and to a wide variety of aspects of their informational milieu. Adap-
tation is a product (or possibly by-product) of many neural mechanisms, from short-term
synaptic facilitation and depression,1 and spike-rate adaptation,28 through synaptic remod-
eling27 and way beyond. Adaptation has been described as the psychophysicist’s electrode,
since it can be used as a sensitive method for revealing underlying processing mechanisms;
thus it is both phenomenon and tool of the utmost importance.

That adaptation is so pervasive makes it most unlikely that a single theoretical framework
will be able to provide a compelling treatment. Nevertheless, adaptation should be just
as much a tool for theorists interested in modeling neural statistical learning as for psy-
chophysicists interested in neural processing. Put abstractly, adaptation involves short or
long term changes to aspects of the statistics of the environment experienced by a system.
Thus, accounts of neural plasticity driven by such statistics, even if originally conceived as
accounts of developmental (or perhaps representational) plasticity,19 are automatically can-
didate models for the course and function of adaptation. Conversely, thoughts about adap-
tation lay at the heart of the earliest suggestions that redundancy reduction and information
maximization should play a central role in models of cortical unsupervised learning.4–6, 8, 23

Redundancy reduction theories of adaptation reached their apogee in the work of Linsker,26

Atick, Li & colleagues2, 3, 25 and van Hateren.40 Their mathematical framework (see sec-
tion 2) is that of maximizing information transmission subject to various sources of noise
and limitations on the strength of key signals. Noise plays the critical roles of rendering
some signals essentially undetectable, and providing a confusing background against which
other signals should be amplified. Adaptation, by affecting noise levels and informational
content (notably probabilistic priors), leads to altered stimulus processing. Early work con-
centrated on the effects of sensory noise on visual receptive fields; more recent studies41

have used the same framework to study stimulus specific adaptation.

Redundancy reduction is one major conceptual plank in the modern theory of unsupervised
learning. However, there are various other important complementary ideas, notably gen-
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Figure 1: A) Redundancy reduction model. � is the explicit input, combining signal  and noise ! ;" is the explicit output, to be corrupted by noise # to give $ . We seek the filter % that minimizes
redundancy subject to a power constraint. B) Factor analysis model. Now " , with a white, Gaussian,
prior, captures latent structure underlying the covariance & of � . The empirical mean is '� ; the
uniquenesses (*) capture unmodeled variance and additional noise such as +-,. . Generative / and
recognition % weights parameterize statistical inverses.

erative models.19 Here, we consider adaptation from the perspective of factor analysis,15

which is one of the most fundamental forms of generative model. After describing the fac-
tor analysis model and its relationship with redundancy reduction models of adaptation in
section 3, section 4 studies loci of adaptation in one version of this model. As examples,
we consider adaptation of early visual receptive fields to light levels,38 orientation detec-
tion to a persistent bias (the tilt aftereffect),9, 16 and a recent report of adaptation of face
discrimination to morphed anti-faces.24

2 Information Maximization

Figure 1,3 shows a linear model of, for concreteness, retinal processing. Here, 0 -
dimensional photoreceptor input 132547698 , which is the sum of a signal 4 and detector
noise 8 , is filtered by a retinal matrix to produce an : -dimensional output ;52=<>1 for
communication down the optic nerve ?@2A;B6DC , against a background of additional noiseC . We assume that the signal is Gaussian, with mean E and covariance F , and the noise
terms are white and Gaussian, with mean E and covariances GIHJLK and GMHN�K , respectively;
all are mutually independent. The input may be higher dimensional than the output, ie0PO=: , as is true of the retina. Here, the signal is translation invariant, ie F is a circulant
matrix11 with FRQTSVUXWDY[Z]\_^a` . This means that the eigenvectors of F are (discrete) sine
and cosines, with eigenvalues coming from the Fourier series for W , whose terms we will
write as b-c7debfHgdihThjhkOml (they are non-negative since F is a covariance matrix; we
assume for simplicity that they are strictly positive).

Given no input noise ( GMHJ 2Bl ), the mutual information between 1n2>4 and ? isKpo 4�qr?tsu23v o ?tst\5v o ?�w 4-sa2xY[y{zB|| <}F~<>�B6_G HN K || \�y�z�w G HN K w `���� (1)

where v is the entropy function (which, for a Gaussian distribution, is proportional to they�z determinant of its covariance matrix). We consider maximizing this with respect to < , a
calculation which only makes sense in the face of a constraint, such as on the average power� w ;�w H���2 tr ��<}F~< ��� . It is a conventional result in principal components analysis12, 20 that
the solution to this constrained maximization problem involves whitening, ie making

<92>�B�B�n� with �i� diag � c����� q c�I��� qThjhThjq c�I�j��� (2)

where � is an arbitrary : -dimensional rotation matrix with �>� � 2 K , � is the :B��:
diagonal matrix with the given form, and � � is an :���0 matrix whose rows are the first :
(transposed) eigenvectors of F . This choice makes <}F~< � � K , and effectively amplifies
weak input channels (ie those with small bt  ) so as fully to utilize all the output channels.
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Figure 2: Simple adaptation. A;B) Filter power as a function of spatial frequency for the redundancy
reduction (A: RR) and factor analysis (B: FA) solutions for the case of translation invariance, for low
(solid: + ,.�� ����� ) and high (dashed + ,.�� � ) input noise and �
	 � ���� , . Even though the optimal
FA solution does have exactly identical uniquenesses, the difference is too small to figure. In (B), � �
factors were found for ����� inputs. C) Data9 (crosses) and RR solution41 (solid) for the tilt aftereffect.
D) Data (crosses) and linear approximate FA solution (solid). For FA, angle estimation is based on
the linear output of the single factor; linearity breaks down for � ����� ��� ����� ��� . Adaptation was based
on reducing the uniquenesses (M) for units activated by the adapting stimulus (fitting the width and
strength of this adaptation to the data).

In the face of input noise, whitening is dangerous for those channels for which G�HJ � b-  ,
since noise rather than signal would be amplified by the ! �#"�b-  . One heuristic is to pre-
filter 1 using an 0 -dimensional matrix $ such that $I1 is the prediction of 4 that minimizes
the average error %�w $*1x\54kw H�& , and then apply the < of equation 2.14 Another conventional
result12 is that $ has a similar form to < , except that �D2 o �('�s � , and the diagonal entries
of the equivalent of � are bt  � Y[bf �6 GtHJ ` . This makes the full (approximate) filter

<92>�B�B� � with � � diag � �*� ����*),+ �- q �I������.),+ �- qThjhThaq �I����j�/)0+ �- � (3)

Figure 2A shows the most interesting aspect of this filter in the case that b   21!��/2�H , in-
spired by the statistics of natural scenes,36 for which 2 might be either a temporal or spatial
frequency. The solid curve shows the diagonal components of � for small input noise.
This filter is a band-pass filter. Intermediate frequencies with input power well above the
noise level GtHJ are comparatively amplified against the output noise C , On the other hand,
the dashed line shows the same components for high input noise. This filter is a low-pass
filter, as only those few components with sufficient input power are significantly transmit-
ted. The filter in equation 3 is based on a heuristic argument. An exact argument2, 3 leads to
a slightly more complicated form for the optimal filter, in which, depending on the power
constraint and the exact value of G HJ , there is a sharp cut-off in which some frequencies are
not transmitted at all. However, the main pattern of dependence on GIHJ is the same as in
figure 2A; the differences lie well outside the realm of experimental test.

Figure 2A shows a powerful form of adaptation.3 High relative input noise arises in cases
of low illumination; low noise in cases of high illumination. The whole filtering character-
istics of the retina should change, from low-pass (smoothing in time or space) to band-pass
(differentiation in space or time) filtering. There is evidence that this indeed happens, with
dendritic remodeling happening over times of the order of minutes.42

Wainwright41 (see also10) suggested an account along exactly these lines for more stimulus-
specific forms of adaptation such as the tilt aftereffect shown in figure 2C. Here (concep-
tually), subjects are presented with a vertical grating ( 3k254 l76 ) for an adapting period of a
few seconds, and then are asked, by one of a number of means, to assess the orientation
of test gratings. The crosses in figure 2C shows the error in their estimates; the adapting
orientation appears to repel nearby angles, so that true values of 3 near 4 l
6 are reported



as being further away. Wainwright modeled this in the light of a neural population code
for representing orientation and a filter related to that of equation 3. He suggested that
during adaptation, the signal associated with 3k2 4 l#6 is temporarily increased. Thus, as in
the solid line of figure 2A, the transmission through the adapted filter of this signal should
be temporarily reduced. If the recipient structures that use the equivalent of ; to calculate
the orientation of a test grating are unaware of this adaptation, then, as in the solid line of
figure 2C, an estimation error like that shown by the subjects will result.

3 Factor Analysis and Adaptation

We sought to understand the adaptation of equation 3 and figure 2A in a factor analysis
model. Factor analysis15 is one of the simplest probabilistic generative schemes used to
model the unsupervised learning of cortical representations, and underlies many more so-
phisticated approaches. The case of uniform input noise GIHJ is particularly interesting,
because it is central to the relationship between factor analysis and principal components
analysis.20, 34, 39

Figure 1B shows the elements of a factor analysis model (see Dayan & Abbott12 for a
relevant tutorial introduction). The (so-called) visible variable 1 is generated from the
latent variable ; according to the two-step

� o ;ts���� o EMq K s � o 1Rw ;Ms���� o � ;76��1�q	��s with �}2 diag Y�
 c qThThjhaq�
 ' ` (4)

where � o    q	��s is a multi-variate Gaussian distribution with mean    and covariance matrix
� , � is a set of top-down generative weights, �1 is the mean of 1 , and � a diagonal matrix
of uniquenesses, which are the variances of the residuals of 1 that are not represented in
the covariances associated with ; . Marginalizing out ; , equation 4 specifies a Gaussian
distribution for 1���� o �1�q ��� � 6���s , and, indeed, the maximum likelihood values for the
parameters given some input data 1 are to set �1 to the empirical mean of the 1 that are
presented, and to set � and � by maximizing the likelihood of the empirical covariance
matrix � of the 1 under a Wishart distribution with mean ��� � 6�� . Note that � is only
determined up to an :���: rotation matrix � , since Y � �B`TY � �}` � 2 ��� � .

The generative or synthetic model of equation 4 shows how ; determines 1 . In most
instances of unsupervised learning, the focus is on the recognition or analysis model,30

which maps a presented input 1 into the values of the latent variable ; which might have
generated it, and thereby form its possible internal representations. The recognition model
is the statistical inverse of the generative model and specifies the Gaussian distribution:

� o ;�w 1*s���� o <xY�1x\��1�`aq	�ks with �L25Y K 6 � ����� c � `	� c <92�� � ����� c h (5)

The mean value of ; can be derived from the differential equation31, 32

�;n2x\�;B6��*����� c Y�17\ �1x\ � ;�` (6)

in which 1 \ �1 \ � ; , which is the prediction error for 1 based on the current value of; , is downweighted according to the inverse uniquenesses � � c , mapped through bottom-
up weights � and left to compete against the contribution of the prior for ; (which is
responsible for the \�; term in equation 6). For this scheme to give the right answer, the
bottom-up weights should be the transpose of the top-down weights � 2 � � . However,
we later consider forms of adaptation that weaken this dependency.

In general, factor analysis and principal components analysis lead to different results. In-
deed, although the latter is performed by an eigendecomposition of the covariance matrix
of the inputs, the former requires execution of one of a variety of iterative procedures on
the same covariance matrix.21, 22, 35 However, if the uniquenesses are forced to be equal,
ie 
�� 2 
Vq"!$# , then these procedures are almost the same.34, 39 In this case, assuming that



�1n2}E ,
� � 2B�>���{� � with ���u2 diag

� "BY�� c \ 
�`aq "BY�� H \ 
�`uqjhThjhTq "BY�� � \ 
R` � (7)


~2D� � '� � � ) c �$� � � Y[0 \�:*` (8)

with the same conventions as in equation 2, except that � � are the (ordered) eigenvalues of
the covariance matrix � of the visible variables 1 rather than explicitly of the signal. Here

 has the natural interpretation of being the average power of the unexplained components.
Applying this in equation 5:

<92>�B�B� � with �92 diag � ���
	 � ����	�� q ����	�� ����	�� qjhThThjq ����	�� ����	�� � h (9)

If 1 really comes from a signal and noise model as in figure 1, then � � 2Db � 6 GtHJ , and

B2 
 � 69GtHJ , where 
 � is the residual uniqueness of equation 8 in the case that G*HJ 2xl .
This makes the recognition weights of equation 9

<92>�B�B� � with �92 diag � ����� � ������� � ),+ �- q ���{� � �������j� ),+ �- qThThjhaq ����� � ���������/),+ �- � h (10)

The similarity between this and the approximate redundancy reduction expression of equa-
tion 3 is evident. Just like that filter, adaptation to high and low light levels (high and low
signal/noise ratios), leads to a transition from bandpass to lowpass filtering in < . The filter
of equation 3 was heuristic; this is exact. Also, there is no power constraint imposed; rather
something similar derives from the generative model’s prior over the latent variables ; .

This analysis is particularly well suited to the standard treatment of redundancy reduction
case of figure 2A, since adding independent noise of the same strength GIHJ to each of the
input variables can automatically be captured by adding GIHJ to the common uniqueness 
 .
However, even though the signal 4 is translation invariant in this case, it need not be that
the maximum likelihood factor analysis solution has the property that � is proportional
to K . However, it is to a close approximation, and figure 2B shows that the strength of
the principal components of F in the maximum likelihood < (evaluated as in the figure
caption) shows the same structure of adaptation as in the probabilistic principal components
solution, as a function of GMHJ .

Figure 2D shows a version of the tilt illusion coming from a factor analysis model given
population coded input (with Gaussian tuning curves with an orientation bandwidth of��l 6 ) and a single factor. It is impossible to perform the full non-linear computation of
extracting an angle from the population activity 1 in a single linear operation <5Y[1�\ �1�` .
However, in a regime in which a linear approximation holds, the one factor can represent the
systematic covariation in the activity of the population coming from the single dimension
of angular variation in the input. For instance, around 3>2 4 l76 , this regime comprises
roughly 3�� o � l 6�q !���l 6 s . A close match in this model to Wainwright’s41 suggestion is
that the uniquenesses 
 � for the input units (around 3R254 l 6 ) that are reliably activated by
an adapting stimulus should be decreased, as if the single factor would predict a greater
proportion of the variability in the activation of those units. � This makes < of equation 5
more sensitive to small variations in 1 away from 3�2 4 l 6 , and so leads to a tilt aftereffect
as an estimation bias. Figure 2D shows the magnitude of this effect in the linear regime.
This is a rough match for the data in figure 2C. Our model also shows the same effect as
Wainwright’s41 in orientation discrimination, boosting sensitivity near the adapted 3 and
reducing it around half a tuning width away.33

4 Adaptation for Faces

Another, and even simpler, route to adaptation is changing �1 towards the mean of the
recently presented (ie the adapting) stimuli. We use this to model a recently reported effect
of adaptation on face discrimination.24

�
Note that changing the mean '� according to the input has no effect on the factor.
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Figure 3: Face discrimination. Here, Adam and Henry are used for concreteness; all results are
averages over all faces, and, for FA, � ����� random draws. A) Experimental24 mean propensity to
report Adam as a function of the strength of Adam in the input for no adaptation (‘o’); adaptation
to anti-Adam (‘x’); and adaptation to anti-Henry (‘ � ’). The curves are cumulative normal fits. B)
Mean propensity in the factor analysis model for the same outcomes. The model, like some subjects,
is more extreme than the mean of the subjects, particularly for test anti-faces. C;D) Experimental
and model proportion of reports of Adam when adaptation was to anti-Adam; but various strengths
of Henry are presented. The model captures the decrease in Adam given presentation of anti-Henry
through a normalization pool (solid); although it does not decrease to quite the same extent as the
data. Just reporting the face with the largest � ) (dashed) shows no decrease in reporting Adam given
presentation of anti-Henry. Here + � �/��� ����� � ����� � ��� � � (except for the dashed line in D, for
which � � �/� � �	� to match the peak of the solid curve).

Leopold and his colleagues24 studied adaptation in the complex stimulus domain of faces.
Their experiment involved four target faces (associated with names ‘Adam’, ‘Henry’, ‘Jim’,
‘John’) which were previously unfamiliar to subjects, together with morphed versions of
these faces lying on ‘lines’ going through the target faces and the average of all four faces.
These interpolations were made visually sensible using a dense correspondence map be-
tween the faces. The task for the subjects was always to identify which of the four faces was
presented; this is obviously impossible at the average face, but becomes progressively eas-
ier as the average face is morphed progressively further (by an amount called its strength)
towards one of the target faces. The circles in figure 3A show the mean performance of the
subjects in choosing the correct face as a function of its strength; performance is essentially
perfect 
 l�� of the way to the target face.

A negative strength version of one of the target faces (eg anti-Adam) was then shown to
the subjects for  seconds before one of the positive strength faces was shown as a test.
The other two lines in figure 3A show that the effect of adaptation is to boost the effective
strength of the given face (Adam), since (crosses) the subjects were much readier to report
Adam, even for the average face (which contains no identity information), and much less
ready to report the other faces even if they were actually the test stimulus (shown by the
squares). As for the tilt aftereffect, discrimination is biased away from the adapted stimulus.
Figure 3C shows that adapting to anti-Adam offers the greatest boost to the event that Adam
is reported to a test face (say Henry) that is not Adam, at the average face. Reporting Adam
falls off if either increasing strengths of Henry or anti-Henry are presented. That presenting
Henry should decrease the reporting of Adam is obvious, and is commented on in the paper.
However, that presenting anti-Henry should decrease the reporting of Adam is less obvious,
since, by removing Henry as a competitor, one might have expected Adam to have received
an additional boost.

Figure 3B;D shows our factor analysis model of these results. Here, we consider a case with�� visible units, and 
 factors, one for each face, with generative weights � 2 �	�
Adam qThjhTh �

governing the input activity associated with full strength versions of each face generated
from independent � Y�E*q K ` distributions. In this representation, morphing is easy, consist-



ing of presenting 1 2��
�

Adam 6���� where � is the strength and � � � is noise (variance GMH ).
The outputs ;D2 <B1 depend on � , the angle between the

� � and the noise. Next, we
need to specify how discrimination is based on the information provided by ; . For rea-
sons discussed below, we considered a normalization pool17, 37 for the outputs, treatingY�� �k\�� � z	� `�
 � � Y���@\�� � z�� `�
 as the probability that face # would be reported, where
� is a discrimination parameters. Adaptation to anti-Adam was represented by setting
�1n2x\�� � Adam, where � is the strength of the adapting stimulus.

Figure 3B shows the model of the basic adaptation effect seen in figure 3A. Adapting
to \�� � Adam clearly boosts the willingness of the model to report Adam, much as for the
subjects. The model is a little more extreme than the average over the subjects. The results
for two individual subjects presented in the paper24 are just as extreme; other subjects may
have had softer decision biases. Figure 3D shows the model of figure 3C. The dashed
line shows that without the normalization pool, presenting anti-Henry does indeed boost
reporting of Adam, when anti-Adam was the adapting stimulus. However, under the above
normalization, decreasing � � boosts the relative strengths of Jim and John (through the
minimization in the normalization pool), allowing them to compete, and so reduces the
propensity to report Adam (solid line).

5 Discussion

We have studied how plasticity associated with adaptation fits with regular unsupervised
learning models, in particular factor analysis. It was obvious that there should be a close
relationship; this was, however, obscured by aspects of the redundancy reduction models
such as the existence of multiple sources of added noise and non-informational constraints.
Uniquenesses in factor analysis are exactly the correct noise model for the simple informa-
tion maximization scheme. We illustrated the model for the case of a simple, linear, model
of the tilt aftereffect, and of adaptation in face discrimination. The latter had the interesting
wrinkle that the experimental data support something like a normalization pool.17, 37

Under this current conceptual scheme for adaptation, assumed changes in the input statis-
tics � are fully compensated for by the factor analysis model (and the linear and Gaussian
nature of the model implies that �1 can be changed without any consequence for the genera-
tive or recognition models). The dynamical form of the factor analysis model in equation 6
suggests other possible targets for adaptation. Of particular interest is the possibility that the
top-down weights � and/or the uniquenesses � might change whilst bottom-up weights �
remain constant. The rationale for this comes from suggestive neurophysiological evidence
that bottom-up pathways show delayed plasticity in certain circumstances;13 and indeed it
is exactly what happens in unsupervised learning techniques such as the wake-sleep algo-
rithm.18, 29 Given satisfaction of an eigenvalue condition that the differential equation 6 be
stable, it will be interesting to explore the consequences of such changes.

Of course, factor analysis is insufficiently powerful to be an adequate model for cortical
unsupervised learning or indeed all aspects of adaptation (as already evident in the limited
range of applicability of the model of the tilt aftereffect). However, the ideas about the
extraction of higher order statistical structure in the inputs into latent variables, the roles of
noise, and the way in equation 6 that predictive coding or explaining away controls cortical
representations,32 survive into sophisticated complex unsupervised learning models,19 and
offer routes for extending the present results.

A paradoxical aspect of adaptation, which neither we nor others have addressed, is the way
that the systems that are adapting interact with those to which they send their output. For
instance, it would seem unfortunate if all cells in primary visual cortex have to know the
light level governing adaptation in order to be able correctly to interpret the information
coming bottom-up from the thalamus. In some cases, such as the approximate noise fil-
ter $ , there are alternative semantics for the adapted neural activity under which this is
unnecessary; understanding how this generalizes is a major task for future work.
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