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Abstract

Acetylcholine (ACh) has been implicated in a wide variety of
tasks involving attentional processes and plasticity. Following
extensive animal studies, it has previously been suggested that
ACh reports on uncertainty and controls hippocampal, cortical and
cortico-amygdalar plasticity. We extend this view and consider
its effects on cortical representational inference, arguing that ACh
controls the balance between bottom-up inference, influenced by
input stimuli, and top-down inference, influenced by contextual
information. We illustrate our proposal using a hierarchical hid-
den Markov model.

1 Introduction

The individual and joint computational roles of neuromodulators such as
dopamine, serotonin, norepinephrine and acetylcholine are currently the focus of
intensive study.5, 7, 9–11, 16, 27 A rich understanding of the effects of neuromodulators
on the dynamics of networks has come about through work in invertebrate sys-
tems.21 Further, some general computational ideas have been advanced, such as
that they change the signal to noise ratios of cells. However, more recent studies,
particularly those focusing on dopamine,26 have concentrated on specific compu-
tational tasks.
ACh was one of the first neuromodulators to be attributed a specific role. Has-
selmo and colleagues,10, 11 in their seminal work, proposed that cholinergic (and,
in their later work, also GABAergic12) modulation controls read-in to and read-
out from recurrent, attractor-like memories, such as area CA3 of the hippocampus.
Such memories fail in a characteristic manner if the recurrent connections are op-
erational during storage, thus forcing new input patterns to be mapped to existing
memories. Not only would these new patterns lose their specific identity, but,
worse, through standard synaptic plasticity, the size of the basin of attraction of
the offending memory would actually be increased, making similar problems more
likely. Hasselmo et al thus suggested, and collected theoretical and experimental
evidence in favor of, the notion that ACh (from the septum) should control the sup-
pression and plasticity of specific sets of inputs to CA3 neurons. During read-in,
high levels of ACh would suppress the recurrent synapses, but make them readily
plastic, so that new memories would be stored without being pattern-completed.
Then, during read-out, low levels of ACh would boost the impact of the recurrent
weights (and reduce their plasticity), allowing auto-association to occur.
The ACh signal to the hippocampus can be characterized as reporting the unfa-
miliarity of the input with which its release is associated. This is analogous to its



characterization as reporting the uncertainty associated with predictions in theories
of attentional influences over learning in classical conditioning.4 In an extensive
series of investigations in rats, Holland and his colleagues14, 15 have shown that
a cholinergic projection from the nucleus basalis to the (parietal) cortex is impor-
tant when animals have to devote more learning (which, in conditioning, is es-
sentially synonymous with paying incremental attention) to stimuli about whose
consequences the animal is uncertain.20 We have4 interpreted this in the statisti-
cal terms of a Kalman filter, arguing that the ACh signal reported this uncertainty,
thus changing plasticity appropriately. Note, however, that unlike the case of the
hippocampus, the mechanism of action of ACh in conditioning is not well under-
stood.
In this paper, we take the idea that ACh reports on uncertainty one step farther.
There is a wealth of analysis-by-synthesis unsupervised learning models of corti-
cal processing.1, 3, 8, 13, 17, 19, 23 In these, top-down connections instantiate a generative
model of sensory input; and bottom-up connections instantiate a recognition model,
which is the statistical inverse of the generative model, and maps inputs into cate-
gories established in the generative model. These models, at least in principle, per-
mit stimuli to be processed according both to bottom-up input and top-down ex-
pectations, the latter being formed based on temporal context or information from
other modalities. Top-down expectations can resolve bottom-up ambiguities, per-
mitting better processing. However, in the face of contextual uncertainty, top-down
information is useless. We propose that ACh reports on top-down uncertainty,
and, as in the case of area CA3, differentially modulates the strength of synaptic
connections: comparatively weakening those associated with the top-down gen-
erative model, and enhancing those associated with bottom-up, stimulus-bound
information.2 Note that this interpretation is broadly consistent with existent elec-
trophysiology data, and documented effects on stimulus processing of drugs that
either enhance (eg cholinesterase inhibitors) or suppress (eg scopolamine) the ac-
tion of ACh.6, 25, 28

There is one further wrinkle. In exact bottom-up, top-down, inference using a
generative model, top-down contextual uncertainty does not play a simple role.
Rather, all possible contexts are treated simultaneously according to the individ-
ual posterior probabilities that they currently pertain. Given the neurobiologically
likely scenario in which one set of units has to be used to represent all possible
contexts, this exact inferential solution is not possible. Rather, we propose that a
single context is represented in the activities of high level (presumably pre-frontal)
cortical units, and uncertainty associated with this context is represented by ACh.
This cholinergic signal then controls the balance between bottom-up and top-down
influences over inference.
In the next section, we describe the simple hierarchical generative model that we
use to illustrate our proposal. The ACh-based recognition model is introduced in
section 3 and discussed in section 4.

2 Generative and Recognition Models

Figure 1A shows a very simple case of a hierarchical generative model. The gen-
erative model is a form of hidden Markov model (HMM), with a discrete hidden
state zt, which will capture the idea of a persistent temporal context, and a two-
dimensional, real-valued, output xt. Crucially, there is an extra y layer, between z
and x. The state yt is stochastically determined from zt, and controls which of a
set of 2d Gaussians (centered at the corners of the unit square) is used to generate
xt. In this austere case, yt is the model’s representation of xt, and the key inference
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Figure 1: Generative model. A) Three-layer model z ∈{1−4}⇒ y ∈{1− 4}⇒x∈<2 with
dynamics (T ) in the z layer (P [zt = zt−1] = 0.97), a probabilistic mapping (O) from z → y

(P [yt = zt|zt] = 0.75), and a Gaussian model p[x|y] with means at the corners of the unit
square and standard deviation 0.5 in each direction. The model is rotationally invariant;
only some of the links are shown for convenience. B) Sample sequence showing the slow
dynamics in z; the stochastic mapping into y and the substantial overlap in x (different
symbols show samples from the different Gaussians shown in A).

problem will be to determine the distribution over which yt generated xt, given
the past experience Dt−1 = {x1, . . . ,xt−1} and xt itself.

Figure 1B shows an example of a sequence of 400 steps generated from the model.
The state in the z layer stays the same for an average of about 30 timesteps; and
then switches to one of the other states, chosen equally at random. The transition
matrix is Tzt−1zt

. The state in the y layer is more weakly determined by the state
in the z layer, with a probability of only 3/4 that yt = zt. The stochastic transition
from z to y is governed by the transition matrix Oztyt

. Finally, xt is generated as a
Gaussian about a mean specified by yt. The standard deviation of these Gaussians
(0.5 in each direction) is sufficiently large that the densities overlap substantially.

The naive solution to inferring yt is to use only the likelihood term (ie only the
probabilities P [xt|yt]). The performance of this is likely to be poor, since the Gaus-
sians in x for the different values of y overlap so much. However, and this is why
it is a paradigmatic case for our proposal, contextual information, in this case past
experience, can help to determine yt. We show how the putative effect of ACh in
controlling the balance between bottom-up and top-down inference in this model
can be used to build a good approximate inference model.

In order to evaluate our approximate model, we need to understand optimal in-
ference in this case. Figure 2A shows the standard HMM inference model, which
calculates the exact posteriors P [yt|Dt] and P [zt|Dt]. This is equivalent to just the
forward part of the forwards-backwards algorithm22 (since we are not presently
interested in learning the parameters of the model). The adaptation to include the
y layer is straightforward. Figures 3A;D;E show various aspects of exact inference
for a particular run. The histograms in figure 3A show that P [yt|Dt] captures quite
well the actual states y∗

t that generated the data. The upper plot shows the pos-
terior probabilities of the actual states in the sequence – these should be, and are,
usually high; the lower histogram the posterior probability of the other possible
states; these should be, and are, usually low. Figure 3D shows the actual state se-
quence z∗t ; figure 3E shows the states that are individually most likely at each time
step (note that this is not the maximum likelihood state sequence, as found by the
Viterbi algorithm, for instance).



���

����� �	��
� ���	��
��
����� ��� ���	��
��

����� ��� ����� ������� ��� ������ ��� �����  "!�#
$

���� �� ��� �� �	��
�% $ �	��
&�
�� �'��


( ) *

Figure 2: Recognition models. A) Exact recognition model. P [zt−1|Dt−1] is propagated to
provide the prior P [zt|Dt−1] (shown by the lengths of the thick vertical bars) and thus the
prior P [yt|Dt−1]. This is combined with the likelihood term from the data xt to give the true
P [yt|Dt]. B) Bottom-recognition model uses only a generic prior over yt (which conveys no
information), and so the likelihood term dominates. C) ACh model. A single estimated
state z̃t−1 is used, in conjunction with its certainty αt−1, reported by cholinergic activity, to
produce an approximate prior P̃ [z̃t|z̃t−1] over zt (which is a mixture of a delta function and
a uniform), and thus an approximate prior over yt. This is combined with the likelihood to
give an approximate P̃ [yt|Dt], and a new cholinergic signal αt is calculated.
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Figure 3: Exact and approximation recognition. A) Histograms of the exact posterior distri-
bution P [y|D] over the actual state y∗

t (upper) and the other possible states y 6= y∗

t (lower,
written P [ȳ∗]). This shows the quality of exact representational inference. B;C) Comparison
of the purely bottom up P ◦[yt|xt] (B) and the ACh-based approximation P̃ [yt|D] (C) with
the true P [yt|D] across all values of y. The ACh-based approximation is substantially more
accurate. D) Actual zt. E) Highest probability z state from the exact posterior distribution.
F) Single z̃ state in the ACh model.

Figure 2B shows a purely bottom up model that only uses the likelihood terms
to infer the distribution over yt. This has P ◦[yt|xt] = p[xt|yt]/Z where Z is a
normalization factor. Figure 3B shows the representational performance of this
model, through a scatter-plot of P ◦[yt|xt] against the exact posterior P [yt|Dt]. If
bottom-up inference was correct, then all the points would lie on the line of equal-
ity – the bow-shape shows that purely bottom-up inference is relatively poor. Fig-
ure 4C shows this in a different way, indicating the difference between the average
summed log probabilities of the actual states under the bottom up model and those
under the true posterior. The larger and more negative the difference, the worse
the approximate inference. Averaging over 1000 runs, the difference is −70 log
units (compared with a total log likelihood under the exact model of −210).



3 ACh Inference Model

Figure 2C shows the ACh-based approximate inference model. The information
about the context comes in the form of two quantities: z̃t−1, the approximated con-
textual state having seen Dt−1, and αt−1, which is the measure of uncertainty in that
contextual state. The idea is that αt−1 is reported by ACh, and is used to control
(indicated by the filled-in ellipse) the extent to which top-down information based
on z̃t−1 is used to influence inference about yt. If we were given the full exact
posterior distribution P [zt−1, yt−1|Dt−1], then one natural definition for this ACh
signal would be the uncertainty in the most likely contextual state

αt−1 = 1 − maxz P [zt−1 = z|Dt−1] (1)

Figure 4A shows the resulting ACh signal for the case of figure 3. As expected,
ACh is generally high at times when the true state z∗

t is changing, and decreases
during the periods that z∗

t is constant. During times of change, top-down infor-
mation is confusing or potentially incorrect, and so bottom-up information should
dominate. This is just the putative inferential effect of ACh.
However, the ACh signal of figure 4A was calculated assuming knowledge of the
true posterior, which is unreasonable. The model of figure 2C includes the key
approximation that the only other information from Dt−1 about the state of z is in
the single choice of context variable z̃t−1. The full approximate inference algorithm
becomes

P̃ [z̃t−1;αt−1] = αt−1/ny + (1 − αt−1)δz̃t−1·
Dt−1 approximation (2)

P̃ [z̃t|z̃t−1;αt−1] =
∑

z P̃ [z̃t−1 =z;αt−1]Tzzt
prior over z (3)

P̃ [yt, z̃t|z̃t−1;αt−1] = P̃ [z̃t|z̃t−1;αt−1]Oz̃tyt
propagation to y (4)

P̃ [yt, z̃t|Dt] ∝ P̃ [yt, z̃t|z̃t−1;αt−1]P [xt|yt] conditioning (5)
P̃ [yt|Dt] =

∑
z P̃ [yt, z̃t =z|Dt] marginalization (6)

P̃ [z̃t|Dt] =
∑

y P̃ [yt =y, z̃t|Dt] marginalization (7)

z̃t = argmaxzP̃ [z̃t =z|Dt] contextual inference (8)
α̃t = 1 − maxz P̃ [z̃t =z|Dt] ACh level (9)

where xt, z̃t−1, αt−1 are used as approximate sufficient statistics for Dt, the num-
ber of y states is ny (here ny = 4), δij is the Kronecker delta, and the constant of
proportionality in equation 5 normalizes the full conditional distribution. The last
two lines show the information that is propagated to the next time step; equation 6
shows the representational answer from the model, the distribution over yt given
Dt. These computations are all local and straightforward, except for the represen-
tation and normalization of the joint distribution over yt and z̃t, a point to which
we return later. Crucially, ACh exerts its influence through equation 2. If αt−1 is
high, then the input stimulus controlled, likelihood term dominates in the condi-
tioning process (equation 5); if αt−1 is low, then temporal context (z̃t−1) and the
likelihood terms balance.
One potentially dangerous aspect of this inference procedure is that it might get
unreasonably committed to a single state z̃t−1 = z̃t = . . . because it does not repre-
sent explicitly the probability accorded to the other possible values of zt−1 given
Dt−1. A natural way to avoid this is to bound the ACh level from below by a con-
stant, ϕ, making approximate inference slightly more stimulus-bound than exact
inference. This approximation should add robustness. In practice, rather than use
equation 9, we use

α̃t = ϕ + (1 − ϕ)(1 − maxz P̃ [z̃t =z|Dt]) (10)
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Figure 4: ACh model. A) ACh level from the exact posterior for one run. B) ACh level
αt in the approximate model in the same run. Note the coarse similarity between A and
B. C) Solid: the mean extra representational cost for the true state y∗

t over that in the exact
posterior using the ACh model as a function of the minimum allowed ACh level ϕ. Dashed:
the same quantity for the pure bottom-up model (which is equivalent to the approximate
model for ϕ=1). Errorbars (which are almost invisible) show standard errors of the means
over 1000 trials.

Figure 4B shows the approximate ACh level for the same case as figure 4A, using
ϕ = 0.1. Although the detailed value of this signal is clearly different from that
arising from an exact knowledge of the posterior probabilities (in figure 4A), the
gross movements are quite similar. Note the effect of ϕ in preventing the ACh level
from dropping to 0. Figure 3C shows that the ACh-based approximate posterior
values P̃ [y|D] are much closer to the true values than for the purely bottom-up
model, particularly for values of P [yt|Dt] near 0 and 1, where most data lie. Fig-
ure 3F shows that inference about z is noisy, but the pattern of true values z∗

t is
certainly visible. Figure 4C shows the effect of changing ϕ on the quality of in-
ference about the true states y∗

t . This shows differences between approximate and
exact log probabilities of the true states y∗

t , averaged over 1000 cases. If ϕ=1, then
inference is completely stimulus-bound, just like the purely bottom-up model; val-
ues of ϕ less than 0.2 appear to do well for this and other settings of the parameters
of the problem. An upper bound on the performance of approximate inference can
be calculated in three steps by: i) using the exact posterior to work out z̃t and αt,
ii) using these values to approximate P [z̃t;αt] as in equation 2, and iii) using this
approximate distribution in equation 4 and the remaining equations. The average
resulting cost (ie the average resulting difference from the log probability under
exact inference) is −3.5 log units. Thus, the ACh-based approximation performs
well, and much better than purely bottom-up inference.

4 Discussion

We have suggested that one of the roles of ACh in cortical processing is to report
contextual uncertainty in order to control the balance between stimulus-bound,
bottom-up, processing, and contextually-bound, top-down processing. We used
the example of a hierarchical HMM in which representational inference for a mid-
dle layer should correctly reflect such a balance, and showed that a simple model
of the drive and effects of ACh leads to competent inference.
This model is clearly overly simple. In particular, it uses a localist representation
for the state z, and so exact inference would be feasible. In a more realistic case,
distributed representations would be used at multiple levels in the hierarchy, and
so only one single context could be entertained at once. Then, it would also not be
possible to represent the degree of uncertainty using the level of activities of the



units representing the context, at least given a population-coded representation. It
would also be necessary to modify the steps in equations 4 and 5, since it would
be hard to represent the joint uncertainty over representations at multiple levels
in the hierarchy. Nevertheless, our model shows the feasibility of using an ACh
signal in helping propagate and use approximate information over time.
Since it is straightforward to administer cholinergic agonists and antagonists, there
are many ways to test aspects of this proposal. We plan to start by using the
paradigm of Ress et al,24 which uses fMRI techniques to study bottom-up and
top-down influences on the detection of simple visual targets. Preliminary simu-
lation studies indicate that a hidden Markov model under controllable cholinergic
modulation can capture several aspects of existent data on animal signal detection
tasks.18
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