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Abstract

It is a commonplace in statistics that uncertainty about parameters drives learning.

Indeed one of the most influential models of behavioural learning has uncertainty at its

heart. However, many popular theoretical models of learning focus exclusively on error,

and ignore uncertainty. Here we review the links between learning and uncertainty from

three perspectives: statistical theories such as the Kalman filter, psychological models in

which differential attention is paid to stimuli with an effect on the speed of learning associ-

ated with those stimuli, and neurobiological data on the influence of the neuromodulators

acetylcholine and norepinephrine on learning and inference.

1 Introduction

The field of classical conditioning probes the ways that animals learn predictive relationships

in the world, between initially neutral stimuli such as lights and tones, and reinforcers such as

food, water or small electric shocks [1, 2]. This sort of learning is obviously a critical adaptive

capacity for animals, and there is an enormous wealth of (largely qualitative) experimental data

about the speed and nature of learning, a substantial portion of which has been systematised

by a handful of theoretical notions and algorithms. The neural basis of classical conditioning

has also been explored [3, 4], providing a rich source of data for exploring the implementation

of various of the theories. Further, since learning about the correlational structure of the world

is exactly the purview of theoretical statistics, it is possible to build statistical computational

theories [5], in which probabilistic learning models form the computational level description

of learning, and thus provide rational [6] interpretations of the psychological and neural data.

Here we review one set of theories of this sort, showing how they tie together experimental

data at multiple levels.

One of the most fertile areas of experimentation in conditioning concerns the phenomenon

of blocking [7]. The simplest version of this consists of two stages of learning. In the first

stage, one stimulus, a light, say, is shown as being a reliable predictor of the occurrence of

a reinforcer. Then, in the second stage, a new stimulus, a tone, is presented with the light,

followed by the same reinforcer. Experimentally, the second stimulus, despite being in good

temporal and spatial contiguity with the reinforcer, does not undergo any (or perhaps as much)

learning about the reinforcer. Blocking was a main spur towards two different theoretical ideas

about learning, one involving error correction, the other involving uncertainty. Most theoretical

models of learning concentrate on error correction; in the theories reviewed in this paper,

uncertainty has equal importance.
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In the error-correcting account of conditioning, learning is driven by infelicitous predictions.

In the second stage of blocking, there is no prediction error associated with the tone, and there-

fore there is nothing to learn about the relationship between it and the reinforcer. Rescorla &

Wagner [8] described the best known model of this, which was shown [9] to be equivalent to

the well-known delta rule from engineering [10], and has formed the basis of much subsequent

theoretical work on accounts of both psychological [11] and neural [12–14] phenomena.

Pearce & Hall [15] suggested an uncertainty-based alternative theoretical explanation for block-

ing, according to which animals allocate enhanced attention to stimuli like lights and tones if

there is uncertainty about the predictions associated with those stimuli. Given enhanced atten-

tion to a stimulus, an animal would learn about its relationship with any outcome, whether or

not that outcome had already been predicted. In blocking, the animal is never given a reason

(eg through a prediction error) to be uncertain about the predictions associated with the tone,

it therefore never allocates it substantial or enhanced attention, and therefore never accords it

any learning. Although this might seem a rather contrived explanation for simple blocking, at-

tentional accounts of other conditioning phenomena (such as downwards unblocking [16]) are

more natural than their error-correcting equivalents. Furthermore, Holland and his colleagues

(see [17, 18]) have collected evidence about the neural substrate of the enhanced attention (of-

ten called enhanced associability), showing, at least for appetitive conditioning in rats, that

it involves a projection from the central nucleus of the amydala to cholinergic neurons (ie

neurons whose main neurotransmitter is the neuromodulator acetylcholine, ACh) in the basal

forebrain that project to the parietal cortex. Furthermore, lesioning all attentional systems

reveals an underlying error-correcting learning model. This implies that the two theoretical

notions coexist, and may be jointly responsible for the observed phenomena.

Neuromodulators such as ACh and norepinephrine (NE) are neurotransmitters that are be-

lieved to affect the ways that other neurotransmitters (such as glutamate and GABA) function,

and also the ways that the synapses associated with these other neurotransmitters change

their strength or efficacy [19]. Because of this capacity, neuromodulators have been described

as being involved in metaplasticity [20]. They have extensive connections to cortical and sub-

cortical regions, and are richly interconnected. ACh is particularly interesting with respect

to uncertainty and attention, because of evidence (see [21–23]) about its roles in reporting

unfamiliarity to control read-in to hippocampal storage of new memories, and in reporting un-

certainty in top down information, with the effect of boosting bottom-up, sensory, information

in cortex at the expense of top-down expectations. Norepinephrine is also relevant, because of

data as to its association with attention and its involvement in reporting unexpected changes

in the external environment, such as the appearance of novel objects and changes in learned

stimulus-reward contingencies (see [24–26]).

This paper focuses on ways in which uncertainty controls learning. It is organised around

versions of a Kalman filter[27], which is a well-known construct in engineering and statistics.

In section 2, we review part of the analysis of [28, 29] which links uncertainty in learning to

Kalman filtering [30]. In section 3, we extend this to the consideration of joint uncertainty

in the associations of multiple stimuli, to accommodate a conditioning paradigm called back-

wards unblocking [32–34]. In section 4, we show how the model can be further extended to

consider the interaction of acetylcholine and norepinephrine in reporting expected and unex-
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pected uncertainty [35].

2 Uncertainty, associability and the Kalman filter

Sutton [30, 36] suggested an account of classical conditioning in which animals are trying to

‘reverse-engineer’ the experimental setting (see figure 1A). This account makes the assumption

that the course of the experiment can be described by a statistical model which parameterises

key features such as the relationship between stimuli and reinforcers. The parameters (w(t)

in the figure) are determined by the experimenter and may change over time: for instance,

almost all experiments involve more than one stage with different relationships in each stage.

In this account, learning stimulus-reinforcer relationships is just statistical inference about

the parameters, typically in a Bayesian (or approximately Bayesian) context. Although this

description of the problem might seem strange, it is actually exactly analogous to statistical

models of unsupervised learning that are used as accounts of cortical plasticity (see [37]).

In Sutton’s model, parameters associated with different stimuli change at different speeds,

because of the different past histories of observations associated with the stimuli. As will be

apparent, the more uncertain the animal is about a stimulus, the faster it learns about that

stimulus. This is exactly the effect that Pearce & Hall [15] described and formalized in terms of

different associabilities of the stimuli. Holland, Gallagher, and their colleagues [17, 18, 38, 39]

have carried out a series of studies on the neural basis of Pearce & Hall’s associabilities, impli-

cating the central nucleus of the amygdala, the cholinergic basal forebrain, the hippocampus,

and various of their targets. Other information about the neural basis comes from demonstra-

tions such as accelerated or retarded learning in behavioural tasks induced by pharmacological

boosting or suppression of ACh [40].

In Sutton’s model, the relevant parameters are the weights w(t) = {wi(t)}, one for each stim-

ulus, which represent the association between the stimuli and the reinforcer (or perhaps the

motivational value of the reinforcer [41, 42]), which is represented by r(t). Here, t is an index

over trials (which we sometimes omit below); more sophisticated models must be built to take

account of time within each trial [29, 43]. Since experimental circumstances can change (for

instance, many conditioning experiments involve more than one stage, with different relation-

ships in each stage), the weights must be allowed to change too. In the simple model, they

undergo slow, random evolution, with

w(t + 1) = w(t)+υυυ(t) ie wi(t + 1) = wi(t)+ υi(t) (1)

where υυυ(t) has a Gaussian distribution, with mean 000 and variance σ 2I. Equation 1 plays the

critical role of ensuring enduring uncertainty in w(t) because of the continual random change.

Figure 1B shows an example of the sort of drift in the weights implied by this equation.

The other key aspect of the model is the way that these parameters are assumed to control the

delivery of reinforcement. It is natural that only those stimuli present on a trial can influence

the reinforcement; however it is experimentally less clear whether the predictions made by dif-

ferent stimuli should be summed (as if the reinforcements they predict are wholly separate) or

3



averaged (as if they are competing by making different predictions of the same reinforcement

[28, 44, 45]). For simplicity (and along with the standard Rescorla-Wagner rule [8]), we assume

an additive model, with

r(t) = x(t) ·w(t)+ η(t) =
∑

i

xi(t)wi(t)+ η(t) (2)

Here, the presence of stimuli such as lights and tones are represented by binary stimulus

variables xi(t) so that, for instance, x1(t) = 1 if the light is shown on trial t, and x1(t) = 0

if it is not shown. Also η(t) is another noise term following a Gaussian distribution with zero

mean and variance τ2.

Sutton [30] suggested that the animals are trying to perform inference about w(t), based on

combined observations of stimuli x(t) and reinforcements r(t). In terms that are common in

unsupervised learning, the model of equations 1 and 2 form a generative model, which amount

to assumptions about the statistical properties of the environments. The task for animals

is to build the inverse of this generative model, called a recognition model. For the simple

generative model of equations 1 and 2, the Kalman filter is the exact recognition model. First,

note the estimate of w(t) (which we call w(t)) has a Gaussian distribution with mean ŵ(t) and

a covariance matrix Σ(t). For the case of two stimuli (the light, for which i = 1, and the tone,

for which i = 2), Σ(t) has the form

Σ(t) =
(
σ 2

1 (t) σ12(t)

σ12(t) σ 2
2 (t)

)
.

σ 2
i (t) are the individual uncertainties about the associations of the stimuli, and σ12 is the cor-

relation between the two. The correlation term σ12 is important for explaining some learning

phenomena such as backwards blocking (as in the next section); for the present, we take it to

be 0. The Kalman filter [27] is a recursive procedure for updating ŵ(t) and Σ(t) on the basis

of the information provided on a trial. The update for the mean estimate ŵ(t) = E [w(t)] is

ŵ(t + 1) = ŵ(t)+
Σ(t)x(t)

x(t)TΣ(t)x(t)+ τ2
(r(t)− x(t) · ŵ(t)) (3)

thus, if both light and tone are shown

ŵ1(t + 1) = ŵ1(t)+
σ 2

1 (t)

σ 2
1 (t)+ σ

2
2 (t)+ τ

2
(r(t)− x(t) · ŵ(t)) (4)

ŵ2(t + 1) = ŵ2(t)+
σ 2

2 (t)

σ 2
1 (t)+ σ

2
2 (t)+ τ

2
(r(t)− x(t) · ŵ(t)) (5)

Although these update equations might look a little complicated, they are actually comprised

of a set of readily interpretable pieces. First, r(t) − x(t) · ŵ(t) is the prediction error on

trial t (also known as the innovation). This is the difference between the actual reinforcement

r(t) and the reinforcement that was predicted based on the best available prior information

about w(t). As mentioned, prediction errors are key to the Rescorla-Wagner learning rule [8].

Temporally more sophisticated versions of such prediction errors are the basis for accounts
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of the phasic activation of the dopamine [12, 13] and potentially the serotonin [31] systems

during conditioning. Second, σ 2
1 (t)/(σ

2
1 (t)+ σ

2
2 (t)+ τ

2) amounts to a competitive allocation

of the error signal to the light, where the competition is based on the uncertainties.

This competitive allocation of learning is directly related to the attentional definition of as-

sociabilities in conditioning. That is, the conventional Rescorla-Wagner rule [8] would have

ŵ1(t + 1) = ŵ1(t)+α(r(t)− x(t) · ŵ(t)), where α is a single learning rate (note that learning

rates are also known as associabilities). In equation 4, the learning rate is determined compet-

itively according to the uncertainties associated with the stimuli. The larger the uncertainty

about the light, ie the larger σ 2
1 , the faster learning to the light, just as in Pearce & Hall’s [15]

suggestion. In many conditioning theories, the associability of a stimulus is supposed to be

determined by an attentional process controlling access to a limiting resource such as a re-

stricted capacity learning processor. Here, we see that attentional competition is actually the

statistically optimal solution to the inference problem of deciding how much responsibility for

a prediction error to lay at the door of each stimulus. Finally, the larger the expected variability

in the reinforcer delivery (τ2), the slower the learning. This is because each trial provides less

information about the relationship between stimulus and reinforcer.

The Kalman filter also specifies a recursive equation for updating the covariance matrix of

uncertainties Σ(t), according to which uncertainty grows because of the possible changes to

w(t) that are mandated by equation 1, but shrinks because of the observations in each trial.

The initial value Σ(1) should be set to reflect the degree of the animal’s initial ignorance about

the relationship (something which itself might be adaptive, if, for instance, it experiences one

family of relationships over many repeated blocks). One particular characteristic of the simple

linear and Gaussian form is that the changes to Σ(t) do not depend on the actual errors that

are made, but only on the sequence of stimuli presented. We consider a more reasonable

model in section 4.

Figure 1C;D show two examples of inference using the Kalman filter: one case of blocking (C),

and one of upwards unblocking (D), in which blocking does not occur because the reinforce-

ment is increased when the second stimulus, the tone, is added. The solid lines show the

course of learning to the light; the dashed lines show that to the tone. In unblocking, that the

tone has higher uncertainty than the light implies that it is allocated most of the prediction

error.

The Kalman filter recognition model thus offers a statistical computational account of the

conditioning data. Behavioural neuroscience data [17, 18] on the anatomical substrate of asso-

ciabilities suggest something about the implementation of the uncertainties, notably that they

are reported cholinergically. There is not a great deal of evidence about the synaptic represen-

tation of the uncertainties σ 2
1 (t),σ

2
2 (t); and certainly nothing to support the suggestion [28]

of the involvement of the nucleus accumbens in the competition between different stimuli to

take responsibility for any prediction error.

These behavioural neuroscience data also contain one main surprise for the model, in suggest-

ing that the enhancement of associabilities to stimuli whose consequences are uncertain (ie

have high σ 2
i ) depends on different neural structures from that of the decrease of associabili-
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ties to stimuli whose consequences are certain. There is no apparent correspondence for this

in the model, unless two different types of uncertainty actually underlie the two condition-

ing paradigms. One possibility is that the experiments in which associability decreases induce

drastic representational changes [46], whereas experiments involving incremental associability

only involve parametric changes within a representation.

3 Joint uncertainty and backwards blocking

In the simple version of the Kalman filter model presented in the previous section, we made

the approximation that the diagonal terms of the covariance matrix are zero (for the case of

just two stimuli, σ12(t) = 0). This means that there is no form of joint uncertainty in the

relationships of the light and the tone. In this section we consider a key learning paradigm

that forces this assumption to be removed.

Since the estimate w(t) of w(t) has a Gaussian distribution, joint uncertainty does not affect

the mean prediction. However, it can affect learning. One important example of this is the

case of backwards blocking. This is a variant of the blocking paradigm we discussed above,

in which the two stages are reversed. That is, in the first stage, the light and tone are shown

together in association with the reinforcer; in second stage, the light by itself is shown with

the reinforcer. The result after the second stage is similar to regular blocking, namely that the

association between the tone and reinforcer is significantly weaker than that of the light, and

also significantly weaker than it was at the end of the first stage of learning. What is unsettling

about backwards blocking is that it seems as if the association of the tone decreases during

the second stage of learning, even though it is not presented. Although somewhat harder to

demonstrate experimentally than conventional blocking, both humans (eg [32]) and animals

(eg [33]) exhibit the phenomenon.

The Kalman filter provides a parsimonious explanation for backwards blocking [34]. During

the first stage of learning, both light and tone are provided, followed by a unit amount of

reinforcer (say r(t) = 1). Then, according to equation 2, the trials only provide information

about the sumw1+w2, and not anything aboutw1 andw2 independently. Therefore, although

the mean values ŵ1 = ŵ2 = 0.5 share the value of the reinforcer equally, the uncertainties are

anti-correlated, that is σ12 < 0. Another way of putting this is that if w1 is actually a bit bigger

than its mean 0.5, then since information from the first stage of trials constrains the sum

w1 +w2, w2 has to be a bit smaller than its mean 0.5. Figure 2A-C represent this graphically.

These two-dimensional plots show the joint distributions of the estimates of w1 and w2 at the

start (A) and end (B) of the first stage of learning. Figure 2B shows that w1 +w2 is arranged

near the value 1, with the slope of the ellipse indicating the anticorrelation.

The second stage of learning, in which the light alone is shown in conjunction with the same

r(t) = 1, duly provides information that w1 is larger than 0.5, and thus the mean value ŵ1

gets larger and the mean value ŵ2 gets smaller. Figure 2C shows the joint distribution at the

end of this stage; the mean values ŵ1 and ŵ2 have clearly moved in the direction indicated.

6



This behaviour of the means arises from the full learning equation 3, because the change to

ŵ2 is proportional to (r − ŵ1)σ12, which is negative.

The Kalman filter thus shows how joint uncertainty between multiple different potentially pre-

dictive stimuli can account for backwards blocking. Given the apparent involvement of the

cholinergic basal forebrain in representing or implementing the diagonal terms of the covari-

ance matrix σ 2
i , it is natural to wonder about their involvement in the off-diagonal elements

such as σ12, which can be either positive or negative. There is no direct neural evidence about

this. Dayan & Kakade [34] suggested a simple network model that remaps the stimulus repre-

sentation x(t) into a quantity that is approximately proportional to Σ(t)x(t), as required for

equation 3, and showed how it indeed exhibits backwards blocking.

4 Unexpected uncertainty and norepinephrine

One way to think about the role suggested for ACh in the Kalman filter model is that it reports

expected uncertainty [35], since the uncertainty Σ about w1 translates exactly into uncertainty

about the delivery of the reinforcer r when the light is presented, and so the expected amount

of error. We have already discussed how expected uncertainty has a major effect in determin-

ing the amount of learning. Intuitively (and formally, at least in a slightly more complex model

[22, 23]) it should also have a significant effect on inference, if different sources of informa-

tion (notably bottom-up information from sensation and top-down information based on prior

expectations from general and specific knowledge) are differentially uncertain. ACh is also

known to have an effect like this on cortical inference, boosting bottom-up connections (eg of

thalamo-cortical fibres into primary somatosensory cortex [47] via a nicotinic mechanism) and

suppressing top-down and recurrent information (via a muscarinic mechanism [48–50]).

An obvious counterpart to expected uncertainty is unexpected uncertainty, arising in cases in

which the error is much greater than it should be based on Σ, for instance as the experimenter

changes from one stage of an experiment to the next. As we mentioned above, in the simple

Kalman filter model, changes to Σ do not depend on the observed error, and so unexpected

uncertainty has no apparent direct impact. However, in the case of experimental change, it

should have a major effect on both inference and learning: suppressing potentially outdated

top-down expectations from influencing inference, and encouraging faster learning about a

potentially new environment [35]. Indeed, there is evidence that a different neuromodulatory

system, involving cortical NE, plays an important role in reporting various types of changes

in the external world that can be interpreted as involving unexpected uncertainty (see [51]).

Together, then, expected and unexpected uncertainty should interact appropriately to regulate

learning and inference.

One advantage of a Bayesian model such as the Kalman filter is that all the assumptions are

laid bare for refutation. In our case [23], a main problem is that the relationship between

stimuli and reinforcer is modelled as changing slowly via diffusion (equation 1), whereas in

reality there are times, notably the switches between different stages of the trials, at which

the relationship can change drastically. These dramatic changes are formally signalled by
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prediction errors
(
r(t)− x(t) · ŵ(t)

)2
that are much greater than expected on the basis of

Σ(t). The consequence of a dramatic change is that Σ(t) should be reset to something like its

initial value.

One way to formalize this is to change the evolution of equation 1 to

w(t + 1) = w(t)+υυυ(t)+ c(t)φφφ(t) (6)

where c(t) ∈ {0,1} is a binary variable signalling a dramatic change, andφφφ(t) is another Gaus-

sian noise term, but with a large variance (compared to σ 2I). Setting c(t) = 1 is like declaring

that the relationship w(t) between stimulus and reinforcer may have changed dramatically

between times t and t + 1. The probability pc that c(t) = 1 is set to be very small, to capture

the relative rarity of dramatic shifts in w. Figure 3A shows an example in which there is just a

scalar w(t) that changes according to the dual noise processes of equation 6.

Unfortunately, statistically exact estimation of w in this new system is significantly compli-

cated by the addition of the binary noise element. This is because of the need to assign at

every time step a probability to whether or not w(t) has shifted (c(t) = 1 or 0). This causes

the hidden space to explode exponentially. In statistical terms, the distribution of the estimate

w is not a single Gaussian as in the regular Kalman filter, but a mixture of Gaussians, with a

number of components that grows exponentialy with the number of observations. This makes

exact inference impractical.

We have proposed a simple and tractable approximate learning algorithm, in which ACh and

NE signal expected and unexpected uncertainty, respectively [35]. As before, we assume the

animal keeps a running estimate of the current weight in the form of a mean ŵ(t) and a

variance Σ(t) (both quantities are scalar in this case). Here, the variance is again supposed to

be reported through ACh. Based on these quantities, a measure of normalized prediction error

can be obtained from quantities related to those in equation 3

β(t) = (r(t)− x(t) · ŵ(t))2/(x(t)TΣ(t)x(t)+ τ2)

We propose that NE signalling is based on β(t), which is effectively a Z-score. If β(t) exceeds

a threshold γ, then we assume ĉ(t) = 1, and reset Σ(t) accordingly large to take into account

the large variance of φφφ. If β(t) < γ, then we assume ĉ(t) = 0 and update ŵ and Σ as in the

basic Kalman filter of section 2. In general, we would predict a higher level of ACh when the

NE system is active.

Figure 3B shows the performance of this approximate scheme on the example sequence of Fig-

ure 3A, with the corresponding evolution of ACh and NE signals in Figure 3C. ŵ closely tracks

the actual w, despite the considerable noise in r . Whenever β(t) > γ, ACh level shoots up

to allow faster learning, and drops back down again as in the basic Kalman filter. In general,

the performance of the approximate scheme depends on the choice of γ, as can be seen in

Figure 3D. Optimal value of γ is slightly larger than 3 for this particular setting of parameters.

When γ is very small, top-down uncertainty is constantly high relative to noise in the obser-

vations, making estimates heavily dependent on r and resulting in errors similar to a scheme

where no internal representation of past observations are kept at all (top line). A very large
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γ, on the other hand, corresponds to a very conservative view toward dramatic changes in w,

resulting in very slow adaptation when dramatic changes do occur, hence the large errors for

large values of γ.

Our example illustrates that a dual-modulatory system, involving both ACh and NE, can com-

petently learn about hidden relationships in the world that both drift slowly at a fine timescale

and change more dramatically on occasions. Interference with the normal signalling of ACh

and NE, as one might expect, would cause malfunctioning in this system. We have shown that

such malfunctioning [35], induced by various disabling manipulations of ACh and NE in simu-

lations, correspond to similar impairments in animals under pharmacological manipulation in

comparable experimental paradigms. For example, simulated NE-depletion causes severe dis-

ruptions in the learning of drastic shifts in w but not the slow drifts [35], just as NE-lesioned

animals are impaired in learning changes in reinforcement contingencies [51, 56] but not in

performing previously learned discrimnation taks [57]. Simulated cholinergic depletion in our

model, on the other hand, leads to a particular inability to integrate differences in top-down

and bottom-up information, causing abrupt switching between the two. This tendency is par-

ticularly severe when the new w(t) is similar to the previous one, which can be thought of as

a form of interference. Hippocampal cholinergic deafferentation in animals also bring about a

stronger susceptibility to interference compared with controls [21].

5 Discussion

We have considered three aspects of the way that uncertainty should control aspects of learn-

ing in conditioning and other tasks. Expected uncertainty comes as the variance of parameter

values such as those governing the relationship between a stimulus and a reinforcer. Such

variances are automatic consequences of probabilistic inference models in which initial igno-

rance and continuing change battle against observations from experiments. The consequence

of expected uncertainty is generally comparatively faster learning – given two stimuli, one

whose relationships are well established from past experience (ie have low variance) and an-

other whose are not; clearly the latter should dominate in having its parameters be changed

to take account of any prediction errors. This theory complements those of the way that two

of the other major neuromodulators (dopamine [12, 13] and serotonin [31]) interact to specify

the prediction error component for learning.

We also considered joint uncertainty in the form of correlations and anti-correlations in the

unknown values of multiple parameters. This neatly accounts for backwards blocking, an

experimental paradigm of some theoretical importance, as it shows apparent revision in the

estimated association of a stimulus even when the stimulus is not present.

Finally, we considered the interaction between expected and unexpected uncertainty, the latter

coming from radical changes in parameter values. These induce large changes in the uncer-

tainty of the parameters, and so, unlike the earlier, simpler models, causally couple error to

uncertainty. That is, unexpected prediction errors in a trial lead to increased expected predic-

tion errors in subsequent trials.
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These suggestions arise from a Kalman filter, which is a fairly standard statistical inference

model. However, they are not merely of theoretical interest, but are tied directly to psycho-

logical data on the associabilities of stimuli, ie the readiness of stimuli to enter into learned

associations, and other sophisticated learning phenomena such as backwards blocking. They

are also tied directly to neural data on the involvement of cholinergic and noradrenergic sys-

tems in modulating learning in cases of expected and unexpected surprise.

Of course, the model is significantly simplified in all respects too. Even in our studies, it

was only consideration of radical change in experimental circumstance that led to the slightly

more complex model of section 4, which makes explicit the link to NE. Further, the effects

of ACh and NE on target tissue (for instance in modulating experience-dependent plasticity,

depending on the behavioural relevance [19]), and also on each other, are many and confusing;

our simple account cannot be the last word. It is also important to address neurophysiological

data from Aston-Jones and colleagues on differential tonic and phasic activities of NE neurons

depending on factors such as attentional demand and, presumably, level of vigilance [24, 25].

Finally, there is a wealth of behavioural experiments on the effects of forms of uncertainty; it

has not been possible to consider them in anything other than a very broad-brush form. Of

particular concern is that the account in section 4 is based on just one single model, whose

parameters are more or less uncertain. One might expect an animal to maintain a whole quiver

of models, and have uncertainty both within each model, as to its current parameters, and

between models, as to which applies.

Various aspects of this account deserve comment. We have concentrated on the effects of un-

certainty on learning. Of equal importance are the effects on inference. This has been studied

in two related frameworks. One is the substantial work of Hasselmo and his colleagues [21]

in the context of recurrent associative memory models of cortex and hippocampus. The sug-

gestion is that ACh and other neuromodulators report on unfamiliarity of input patterns to

affect learning and inference. It is obvious that learning should be occasioned by unfamiliar-

ity; it is less obvious that inference should be affected too. Hasselmo argued that associative

interactions are damaging in the face of unfamiliarity, since the information available through

recurrence is known to be useless. Thus, neuromodulators should turn down the strength of

recurrent input compared with bottom-up input, at the same time as plasticising it. Unfamil-

iarity is a close cousin of uncertainty, and our theory of cortical ACh [22, 23] borrowed this

same key idea, but implemented it in a hierarchical model of cortical information processing,

which is more general than an associative memory. In this model, as in the electrophysiologi-

cal data, ACh comparatively boosts bottom-up input to the cortex (via nicotinic receptors [47])

and suppresses recurrent and top-down input (via muscarinic receptors [48]). There is quite

some evidence for this hypothesis, both direct and indirect, which is reviewed in [23]. The in-

ferential role of NE is less clear. In the model of section 4, it would be possible for NE to have

a role only indirectly via its effects on ACh. Contrary to this, there is evidence that NE and ACh

have very similar effects on cortical processing in promoting stimulus-evoked activities at the

expense of top-down and recurrent processing [53, 54], as well as some less well-understood

mutual interactions. The computation and use of uncertainty here is quite closely related to

certain of the signals in Carpenter & Grossberg’s adaptive resonance theory [55].

A different way for variance to affect inference arises in competitive models of prediction. We

10



mentioned above that the additive model of the Rescorla-Wagner rule, in which the predictions

made by different stimuli are summed, is merely one possibility. In other circumstances, and

indeed to build a quantitative model of a wealth of conditioning data [29, 43], it is important to

consider how the predictions might compete. One natural idea is that they compete according

to a measure of their reliabilities; this can also be formalised in probabilistic terms [28, 44].

One important issue about which there is little experimental data is the instantiation of the

computation leading to the putative ACh and NE uncertainty signals. This computation hap-

pens quickly; for instance, as with dopamine cells [4], NE cells change their firing rates within

100ms of the presentation of a stimulus, in addition to showing some rather longer lasting

tonic effects [51, 52]. The amygdala and basal forebrain pathway investigated by Holland et

al [17, 18] does not have an obvious noradrenergic counterpart. An equally pressing concern

is the degree of stimulus-specificity in the neuromodulatory control over learning. Although

there could be some selectivity in the nature of the connections, particularly for ACh, it is

not clear how the delivery of ACh could be specific enough to boost learning to one stimu-

lus but suppress it to another which is simultaneously presented. Unfortunately, the critical

experiment to test whether this occurs in an ACh-sensitive manner, has yet to be performed.

Finally, it is interesting to consider experimental directions for testing and elaborating the the-

ory. Issues of specificity and joint uncertainty are most acute; it would be most interesting to

repeat the experiments on the role of the cholinergic system in enhanced uncertainty but in-

cluding the possibility for stimuli to compete with each other in the final test phase of learning.

The first issue is whether the different stimuli do indeed learn at different rates, and whether

this is controlled by ACh. If so, then it would be interesting to use more selective lesions to

try to ascertain the substrate of the specificity. Another issue is the one we mentioned about

the difference in the neural substrate of incremental and decremental attention. One natural

explanation under our model is that two different forms of uncertainty are masquerading as

being the same; it should then be possible to design an experiment under which the neural

system identified as responsible for increasing attention is demonstrably important also for

decreasing attention.
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Figure 1: Acquisition and the Kalman filter. A) Conceptual scheme. The experimenter (stick

figures) sets the parameters w(t) governing the relationship between stimulus x(t) and reward

r(t) (the pictures of the Skinner box) subject to noise ε(t). Parameters can change over time

according to a diffusion process υυυ(t). The animal has to track the changing relationship based

on observations. B) Example of the change to the weights over time steps. Here, the variance

of υi(t) is 0.1. The thin lines show the distribution of weights at times t = 5 and t = 18

showing the effect of growing uncertainty. C) Blocking. Here learning to the tone (dashed

line) in the second half of the timesteps is blocked by the prior learning to the light (solid

line). The upper plot shows the means of the estimated weights ŵ(t); the lower plot shows the

variances of the weights. Since the tone is unexpected until the second stage, its variance is

set to the same initial value as the light on trial 10 when it is introduced (vertical dotted line).

D) Upwards unblocking. The same as (C) except that the reward is doubled when the tone is

introduced. This unblocks learning to the tone. Since there is more uncertainty associated

with the tone than the light at the time that it is introduced, it takes responsibility for the bulk

of the prediction error, and so ends up with a mean association ŵ2 almost as large as that of

the light.
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Figure 2: Backwards blocking. The three figures show contour plots of the joint distribution of

w(t) (with the mean value ŵ(t) indicated by the asterisk) at three stages during a backwards

blocking experiment, the start (A); at the end of the first stage (B); and at the end of the second

stage (C). (B) shows the anticorrelation between w1 (for the light) andw2 (for the tone) induced

by the first stage of learning (σ12 = −0.34) which explains the basic phenomenon. (C) shows

that during the second stage of learning, the mean values ŵ1 → 1, ŵ2 → 0; and the uncertainty

about w2 grows (hence the vertical orientation of the ellipse). After [34].
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Figure 3: Cholinergic and noradrinergic learning in an adaptive factor analysis model. (A)

Sample sequence of w(t) (‘.’), exhibiting both slow drift and occasional drastic shifts, and a

corresponding sequence of noisy r(t) (‘x’). (B) The mean estimate ŵ from the ACh-NE approx-

imate learning scheme closely tracks the actual w. (C) Corresponding levels of ACh (dashed)

and NE (solid) for the same sequence. (D) MSE of the approximate scheme as a function of

the threshold γ. Optimal γ for this particular setting of parameters is 3.30, for which perfor-

mance approaches that of the exact algorithm (lower line). When γ is too large or too small,

performance is as bad as, or worse than, if w(t) is directly estimated from r(t) without taking

previous observation into account (top line).
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