
To appear in: Neural Computation, 7:3, 1995.

Competition and Multiple Cause Models
Peter Dayan Richard S Zemel

Department of Computer Science CNL
University of Toronto The Salk Institute
6 King’s College Road PO Box 85800

Toronto, Ontario M5S 1A4 San Diego, CA 92186-5800
Canada USA

dayan@cs.toronto.edu zemel@salk.edu

Abstract

If different causes can interact on any occasion to generate a set of patterns, then
systems modelling the generation have to model the interaction too. We discuss a
way of combining multiple causes that is based on the Integrated Segmentation and
Recognition architecture of Keeler, Rumelhart and Leow (1991). It is more co-operative
than the scheme embodied in the mixture of experts architecture, which insists that just
one cause generate each output, and more competitive than the noisy-or combination
function which was recently suggested by Saund (1994a;b). Simulations confirm its
efficacy.

1 Introduction

Many learning techniques are derived from a generative view. In this, inputs are seen
as random samples drawn from some particular distribution, which it is then the goal
of learning to unearth. One popular class of distributions has a hierarchical structure
– one random process chooses which of a set of high-level causes will be responsible
for generating some particular sample, and then another random process, whose nature
depends on this choice (and which itself could involve further hierarchical steps), is used
to generate the actual sample. Self-supervised learning methods attempt to invert this
process to extract the parameters governing generation – a popular choice has the high-
level causes as multivariate Gaussian distributions, and the random choice between them
to be a pick from a multinomial distribution. Individual input samples are attributed
more or less strongly to the estimated high-level Gaussians, and the parameters of those
Gaussians are iteratively adjusted to reflect the inputs for which they are held responsible.
In the supervised case, a method such as the mixture of experts (Jacobs et al, 1991) has

1



‘expert’ modules as the high-level causes and divides responsibility for the input examples
amongst them.

In these methods, the high-level generators typically compete so that a single winner
accounts for each input example (one Gaussian or one expert). In many cases, however, it
is desirable for more than one cause or expert to account for a single example. For instance,
an input scene composed of several objects might be more efficiently described using a
different generator for each object rather than just one generator for the whole input, if
different objects occur somewhat independently of each other. An added advantage of
such multiple cause models is that a few causes may be applied combinatorially to generate
a large set of possible examples.

The goal in a multiple cause learning model is therefore to discover a vocabulary of
independent causes or generators such that each input can be completely accounted
for by the cooperative action of a few of these possible generators (which are typically
represented in connectionist networks by the activation of hidden units). This is closely
related to the sparse distributed form of representation advocated by Barlow (1961), who
suggested representing an input as a combination of non-redundant binary features, each
of which is a collection of highly correlated properties. For the autoencoder networks
which we treat here, in which the network is trained to reconstruct the input on its output
units, the goal of learning the underlying distribution can be viewed in terms of learning a
set of priors and conditional priors to minimise the description length of a set of examples
drawn from that distribution (Zemel, 1993; Hinton & Zemel, 1994).

Learning multiple causes is challenging, since cooperation (the use of several causes
per input) has to be balanced against competition (the separation of the independent
components in the input). Standard networks tend to err on the side of cooperation, with
widely distributed patterns of activity. One approach that has been tried to counter this is
to add terms to the objective function encouraging the hidden units to be independent and
binary, eg Barlow et al (1989) and Schmidhuber (1992). Another approach is to encourage
sparsity in the activities of the hidden units, eg Földiák (1990) and Zemel (1993).

Saund (1994a;b) advocated a third approach. He considered a form of autoencoder net-
work in which the hidden units signal features and the hidden-output weights describe
the way in which features generate predictions of the inputs. He suggested replacing
the conventional sigmoid at the output layer with a noisy-or activation function (eg Pearl
1986), which allows multiple causes to cooperate in a probabilistically justified manner
to activate the output units and hence reconstruct the input. While the noisy-or function
allows multiple causes to account for a given example, it does not particularly encourage
these causes to account for different parts of the input.

In this paper, we use the probabilistic theory which underlies Keeler, Rumelhart and
Leow’s (1991) Integrated Segmentation and Recognition architecture to suggest a way for
multiple causes to interact that is more competitive than the noisy-or and more cooperative

2



Figure 1: Bar Patterns. Two horizontal and two vertical bar patterns on a 5� 5 pixel grid
taken from the set used for training. The input values for the dots are 0 and those for the
white boxes are 1.

than the unsupervised and supervised schemes, such as the mixture of experts, which
assume that each example is generated by just a single cause. We propose an activation
function which handles the common situation in which several causes combine to generate
an input, but the value along a single output dimension (such as a single pixel in an image)
can always be specified as coming from just one cause (even if there are many active
causes that could have specified it). This discourages two causes from sharing partial
responsibility for an output rather than taking full credit or blame. Sharing hinders
the extraction of the independent elements in the input. We demonstrate that this new
approach can learn appropriate representations.

2 The Bars

A simple example which motivated the model and the need for competition is one of
extracting a number of independent horizontal and vertical bars on an input pixel grid
(Földiák, 1990; Saund, 1994b; Zemel, 1993). Four examples of patterns are shown in
figure 1 for a 5� 5 grid. They were generated in a three stage process. First the direction,
horizontal or vertical, was chosen (in our case, each being equiprobable). Then each of
the five bars in that direction was independently chosen with some probability (p = 0:2).
Finally the pixels corresponding to the chosen bars were turned from off (black; shown
with lines) to on (white) deterministically. In general noise could be introduced at this
stage too (Saund, 1994b). Previous uses of the bars omitted the first stage and allowed
both horizontal and vertical bars in the same image.

We trained an autoencoder network with a single hidden layer to capture the structure in
500 of these patterns using the sigmoid and the noisy-or activation functions at the output
layer and employing a cross-entropy error to judge the reconstructions. Zemel (1993)
described how such autoencoder networks can be seen as generalisations of almost all

3



existing self-supervised learning algorithms and architectures, provided that probabilistic
priors over the activations of the hidden units are appropriately set and the deviations of
these activations from their priors are penalised along with the errors in reconstruction.
This amounts to using an error measure which is the description length of the set of
inputs using as a code the activation of the hidden units. Minimising this error measure
amounts to the use of an (approximate) minimum description length (MDL) strategy.
We employed such an error measure, in this case setting the priors on the hidden unit
activations commensurate with the actual generative model we used, assuming that the
hidden units would come to code for the independent bars. These priors do not force this
as a solution, however, as is evident in the sub-optimal weights in figure 2. 1

Figure 2 shows the weights learned using the sigmoid and noisy-or output activation
schemes, which clearly reveal the generative model they embody. Only 10 hidden units
were allowed, which is the minimum number possible in this case. The sigmoidal scheme
fails to capture the separate generators, and indeed reconstructs the inputs quite poorly (it
never succeeded in extracting the generators, ie the bars, in 100 trials from different random
starting weights). The noisy-or does much better, pulling out all the bars. However, 73%
of the time (73 trials out of 100) it gets stuck at a local minimum in which one or more bars
do not have individual generators (the figure shows one example). These local minima
are significantly sub-optimal in terms of the coding cost. On the same problem, the more
competitive rule described in the next section gets caught in a local minimum 31% of
the time (31 trials out of 100). Figure 3 shows an example of the weights that this rule
produced, and the individual generators are evident.

Although it might seem like a toy problem, the 5 � 5 bar task with only 10 hidden units
turns out to be quite hard for all the algorithms we discuss. The coding cost of making
an error in one bar goes up linearly with the size of the grid, so at least one aspect of
the problem gets easier with large grids. The competitive scheme also worked better than
the noisy-or when horizontal and vertical bars were mixed in the same input example,
although it does fail slightly more often than in the earlier case.2 With appropriate weights,
the imaging model can be correct for all the three schemes, and it is hard to extract from
suboptimal learning behaviour why different tasks have different failure rates. Both the
noisy-or and the competitive activation rules worked well when more than 10 hidden
units were used, but the sigmoid rule consistently failed.

Saund (1994a;b) did not use a set of input-hidden weights to generate the activities of
the hidden units. Instead, he used an iterative inner optimisation loop, which might be

1Zemel (1993) judiciously set the value for this prior probability as a means of encouraging sparsity,
ie discouraging the system from finding solutions in which single hidden units each generate more than
one bar. Here the prior is appropriate to the generative scheme (modulo a lower order effect from the
incapacity of the architecture to capture the correlations between the hidden units that generate bars in the
same direction).

2The noisy-or activation rule failed to extract the bars on 75 out of 100 random trials, the competitive
activation rule failed in 39 of 100 trials.

4



Input-Hidden Hidden-Output

Sigmoid : 32.1 Sigmoid : 32.1

Bias:

Noisy-Or : 9.5 Noisy-Or : 9.2

Bias:

Figure 2: Bar weights. The input-hidden, hidden-output, and hidden unit and output
bias weights based on learning from 250 horizontal and 250 vertical bar patterns, with
each bar coming on with probability 0:2 in patterns of its direction. The top two rows
show the case for sigmoidal output activation – only a few of the underlying generators
are visible in the hidden-output weights and reconstruction is poor. Only the sigmoid
activation function employs biases for the output units. The bottom two rows show the
improvement using the noisy-or (note that hidden-output weights for the noisy-or should
be probabilities and the ones shown are passed through a sigmoid before being used).
However when the conjugate gradient minimisation procedure gave up, one of the hidden
units takes responsibility for more than one bar, and the magnitude of the weights made
recalcitrant this suboptimal solution. Black weights are negative, white positive, and the
scale for each group (indicated by the number in each figure) is the magnitude of the
largest weight.

5



Input-Hidden Hidden-Output

Competitive : 20.3 Competitive : 22.2

Bias:

Figure 3: Bar weights using the competitive activation function described in section 3 (in
this case hidden-output weights for this scheme represent odds, and the values shown
are passed through the exponential function before being used). These weights exactly
capture the generative scheme underlying patterns as there are individual generators for
each bar.

expected to be more powerful for both the noisy-or and the competitive rule. We did not
use such an inner loop because we are interested in hierarchical unsupervised learning
(Dayan et al, 1994). The error surface for the activations of units in multiple layers has
multiple modes, and these are computationally expensive to explore.

3 A competitive activation function

For simplicity, we describe the model for the self-supervised learning case, but it applies
more generally. The noisy-or activation function comes from a particular form of stochastic
generative model. Our competitive activation function comes from a different model
which we now describe. The starting point for both models is the same – a set of binary
representation units si whose activations are independent choices from binomials, with
P[si = 1] = pi (pattern indices are omitted for clarity). An overall pattern is generated
by picking a set of these to be active (like picking a set of bars in the example above) and
then using this set to generate the probability that the activity yj of binary output unit j is
1. Since the output units are binary, a cross-entropy error measure is used.

The bars example (figure 1) naturally fits a write-white model in which a pixel j is generally

6



black (yj = 0) unless one of the causes seeks to turn it white. Given binary activities si,
Saund (1994) recommended the use of the noisy-or (NO) combination function to calculate
the probability that outputs should be white. If cij is the probability that yj = 1 given the
presence of cause si, then

pNO
j � P

NO[yj = 1] = 1�
Y

i

(1� sicij) (1)

since just one of the causes has to turn the pixel on for it to be white. A trouble with
this is that if ci1j < 1 for some potential cause i1, then the other causes that are active are
encouraged, using the noisy-or, to have cij > 0 to increase the overall value of pNO

j . In the
same way that (Nowlan, 1990; Jacobs et al., 1991) showed that learning for the mixtures
of experts is much more straightforward using their competitive rule than it was for the
more cooperative rule used in (Jacobs, Jordan & Barto 1991), we might expect that having
the system infer the independent causes would require a measure of competition.

Our generative model uses a more competitive procedure (C) for generating a pixel that
forces at most one cause to take responsibility on any occasion. Define cij < 1 to be the
probability that cause si seeks to turn pixel j white. The easiest way to describe the model
involves a set of responsibility flags fij, which are chosen to be 0 or 1 according to:

P[fij = 1] =

(
cij if si = 1

0 if si = 0

If fij = 0 for all i, then we set yj = 0; if fij = 1 for exactly one i, we setyj = 1; and otherwise
we pick a new set of fij from the distribution above and look again. It is clear that just one
cause will take responsibility for generating pixel j on any occasion – this is the required
competition. The fij do not appear explicitly in the calculations below, however they are
responsible for the resulting conditional probabilities.

This makes the overall probability that yj = 1

pCj � P
C[yj = 1]

= P[yj = 1 j at most one cause turns j white]

=
P[yj = 1 & at most one cause turns j white]

P[at most one cause turns j white]

=
P[a single cause turns j white]

P[no cause turns j white] + P[a single cause turns j white]
(2)

=
X

i

P[only cause i turns j white]
P[no cause turns j white] +

P
kP[only cause k turns j white]

(3)

More quantitatively, the probability that only cause i turns j white is,

sicij
Y

l6=i

(1� slclj); (4)

7



the likelihood that no cause turns j white is the complement of the noisy-or,
Y

l

(1� slclj) (5)

and substituting these into equation 3, we get

pCj =
X

i

sicij
Q

l6=i(1� slclj)
Q

l(1� slclj) +
P

k skckj
Q

l 6=k(1 � slclj)
(6)

= 1�
1

1+
X

k

skckj

1� ckj

(7)

using the facts that the ratio of equations 4 and 5 is just the odds sicij
1�cij

that cause i generates
j, and si is either 0 or 1. The sum of the odds in the denominator of equation 7 plays an
equivalent role in the Integrated Segmentation and Recognition (ISR) system. We return
to this point below.

An alternative way of looking at this conditional probability is that whereas for noisy-or

P
NO[yj = 1] = 1�P[no cause turns j white]; here,

P
C[yj = 1] = 1�

P[no cause turns j white]
P[at most one cause turns j white]

Both of these schemes are monotonic: if a single model increases its probability of turning
a pixel white, then the probability that that pixel is white also increases. The competi-
tive scheme, however, has a different behaviour from the noisy-or for a fixed probability
P[no cause turns j white], in that distributing the probability that a cause turns j white
among various causes decreases the probability that j will be white. Consider the differ-
ence between having one cause whose c1j = 0:75 and two causes whose cij = 0:5 each.
P[no cause turns j white] = 0:25 in both cases. For the noisy-or, PNO[yj = 1] = 0:75 in
both cases, while in the competitive scheme, PC[yj = 1] = 0:75 for the first case but only
0.67 in the second case.

An alternative way of comparing these two functions is shown in figure 4. When the first
of two causes (s1 = s2 = 1) is not keen to turn pixel j white (c1j = 0:1), the probability that
pixel j is white depends directly on the value of c2j for both the noisy-or and the competitive
functions. However, when the first cause is keen to take responsibility for j (c1j = 0:9), then
the two functions have different behavior: in order to increase pj, the noisy-or attempts
to increase c2j, while for the competitive scheme, pj is largely independent of c2j, at least
until c2j � c1j.

Equation 7 is exactly the generative version of the forward model Keeler, Rumelhart and
Leow (1991) used for their Integrated Segmentation and Recognition (ISR) architecture.
They wanted to train networks to perform the segmentation and recognition necessary to

8



0.0 0.2 0.4 0.6 0.8 1.0
c2j

0.0

0.2

0.4

0.6

0.8

1.0

p
j

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
pj

NO(0.1,c2j)
pj

C(0.1,c2j)

0.0 0.2 0.4 0.6 0.8 1.0
c2j

0.90

0.92

0.94

0.96

0.98

p
j

0.0 0.2 0.4 0.6 0.8 1.0

pj
NO(0.9,c2j)

pj
C(0.9,c2j)

Figure 4: Noisy-or versus competitive scheme. The probability pj that pixel j is white
is plotted as a function of c2j, the responsibility that cause 2 takes for turning pixel j

white. The plot on the left shows that the noisy-or and competitive activation functions
have similar behavior when the other cause is unlikely to take responsibility for pixel j
(c1j = 0:1). The plot on the right shows that when this cause is likely to turn j white
(c1j = 0:9), the noisy-or can still increase pj by increasing c2j, whereas the competitive
scheme largely ignores c2j until c2j � c1j since the first cause will already largely take
responsibility for j. Note the difference in the scale of pj.

9



extract the 5 digits in a zip-code. During training, they only specified whether or not a
digit was present in a particular image, and the network had to work out how to assign
credit at the different spatial positions in an input to recognisers for the different digits.
Weights were shared for the recognisers for each digit across all locations. They regarded
the output of the digit recognisers as being the equivalent of cij, the probability that digit
j is at position i, and, using a constraint that each digit should appear either no times or
just once in any image, calculated the overall outputs of the network as the sums of the
odds over all positions in the image (so si = 1;8i), just as in equation 7. Of course, cij in
the competitive scheme (equation 7) are learned weights rather than activities.

There is also an interesting relationship between this activation function and that in the
mixture of experts architecture (Jacobs et al, 1991). In the mixture of experts, the output of
each expert module is gated by its responsibility for the input example. The competitive
scheme computes a similar quantity. For this simple write-white example, we take the
output of each cause, or expert module, to be 1 for pixel j, and also use a null cause
with output 0 to account for the case that no cause takes responsibility for j. Equation 7
sums across the active causes, where the responsibility that cause i bears for the input is
normalised across the other causes k and the null cause.

This competitive scheme therefore introduces an unorthodox form of competition. Here
the units are not competing for activity, but instead are competing over responsibility for
the individual output units.

4 Error function and mean-field approximation

It is convenient to use the odds bij =
cij

1�cij
as the underlying adaptive parameter. Then,

given a set of binary si, the function in Equation 7 resembles the positive part of a tanh
activation function.

We use a cross-entropy error measure for pixel j:

�ECj = tj log p
C
j + (1� tj) log(1� pCj )

where tj is the true probability that pixel j is on (which is usually 0 or 1), we have

@ECj

@bij
=

1� pCj

pCj
(tj � pCj )si

Were gradient descent to be used, this would be just a modification of the delta rule
(itself exactly what the sigmoid activation function would give), only weight changes are
magnified if pCj < 0:5 and shrunk if pCj > 0:5. The equivalent for the noisy-or has

@ENO
j

@bij
=

1

pNO
j

(tj � pNO
j )si

10



which lacks the reduction in the gradient as pNO
j ! 1.

In the case that the si are themselves stochastic choices from underlying independent
binomials, we need an estimate of the expected cost under the cross-entropy error measure,
namely

�Efsig[Ej] = Efsig[tj log p
C
j + (1 � tj) log(1� pCj )]

One way to do this would be to collect samples of the fsig. Another way, which is a rather
crude approximation, but which has worked, is to use

tj log �p
C
j + (1� tj) log(1 � �pCj )

where

�pCj =

 
1�

1

1+
P

i pibij

! 
1�
Y

i

(1� pi
bij

1+ bij
)

!
(8)

The term on the left is just a mean field approximation to the activation function from
equation 7 (using pi in place of si). The extra term on the right takes partial account of the
possibility that none of the si are on – this is underestimated in the term

P
i pibij which

is insensitive to the generative priority of the pi in that the si are first generated from the
pi before the fij are picked. For this, we employ just the noisy-or, written in terms of the
odds bij. We used this mean field approximation to generate the results in figure 3.

Figure 5 shows how both the approximation in equation 8 and the simpler approximation
p̂Cj = 1�1=(1+

P
i pibij) compare to the true value of pCj in a case like the one before of two

causes, where p1 = 1, c1j = 0:5 and across different values of p2 and c2j. An anonymous
referee pointed out the substantial difference between the true pCj = 0:67 and �pCj = 0:5 for
p2 = 1 and c2j = 0:5. From our experiments, the important case seems to be as c2j ! 1,
and we can see that �p is better than p̂ in this limit.

5 Discussion

We have addressed the problem of how multiple causes can jointly specify an image, in the
somewhat special case in which they interact at most weakly. We used this last constraint
in the form of a generative model in which the probability distribution of the value of
each pixel is specified on any occasion by just one cause (or a null or bias cause). This is
the generative form of Keeler, Rumelhart and Leow’s summing forward model in their
Integrated Segmentation and Recognition architecture. The model is more competitive
than previous schemes, such as the noisy-or, linear combination, or combination using a
sigmoid activation function, and has application outside the self-supervised autoencoding
examples that have motivated our work. For instance one could use a function based
on this for the supervised learning in Nowlan and Sejnowski’s (1993) model of motion

11



C
j

_

pC
p

j

p
2

c2j

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0.6
0.8

1
1.2
1.4
1.6
1.8

2

C
j

c2j

p

p

2

^p C
j

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0.6
0.8

1
1.2
1.4
1.6
1.8

2

Figure 5: Mean-field approximations to pCj . The graphs show the ratios of �pCj and p̂Cj to
pCj for the case of two causes, where p1 = 1 and c1j = 0:5. The behaviour of p̂Cj at c2j = 1

and small p2 exhibits the insensitivity mentioned in the text.

12



segmentation, in which each local region in an image is assumed to support at most one
image velocity.

There is a natural theoretical extension of this model to the case of generating grey-values
for pixels rather than black or white ones. This uses the same notion of competition as
above—at most one cause is responsible for generating the value of a pixel—but allows
different causes to maintain different probabilities tijk of setting yj = k, where k corre-
sponds to a real-valued activation of the pixel. The bij odds again determine the amount of
responsibility generator i takes for setting the value j, and the tijk would determine what
i would do with the pixel if it is given the opportunity. This scheme also requires a bias
t�jk which is the probability that yj = k if none of the causes wins in the fij competition.

This makes:

pCjk = P
C[yj = k] =

t�jk +
P

i sibijtijk

1+
P

l slblj
(9)

for the case of binary si. Note that equation 7 is a simple case of equation 9 where tij1 = 1

for each cause and the bias is zero.

Once again, we can sample from the distribution generating the si to calculate the expected
cost of coding yj using this as the prior. We have considered the case where k can be black
(0) or white (1) as a way of formalising a write white-and-black imaging model (Saund,
1994a;b). Unfortunately a mean field version of equation 9 which combines pCj0 and pCj1
in a manner analogous to equation 8 yields a poor approximation. Causes with bij very
large, pi moderate and tij0 = 1 can outweigh causes with bij moderate, pi = 1 and tij1 = 1.
Saund (1994a;b) used a technique that separates out the contributions from causes that
try to turn the pixel black from those that try to turn it white before recombining them.
This can be seen as a different mean field approximation to equation 9. However it did
not perform well in the examples we tried, suggesting that it might rely for its success on
Saund’s more powerful activation scheme, which has an inner optimisation loop.

The weak interaction that the competitive schemes use is rather particular – in general
there may be causes that are separable on different dimensions but which interact strongly
in producing an output (eg base pitch and timbre for a musical note, or illumination and
object location for an image). The same competitive scheme as here could be used within a
dimension (eg notes at different gross pitches might have roughly separable spectrograms
like the horizontal bars in the figure) but learning how they combine is more complicated,
introducing such issues as the binding problem. Yet it has applications to many interesting
and difficult problems, such as image segmentation, where complex occlusion instances
can be described based on the fact that each local image region can be accounted for by a
single opaque object.

13



Acknowledgements

We are very grateful to Virginia de Sa, Geoff Hinton, Terry Sejnowski, Paul Viola and
Chris Williams for helpful discussions, to Eric Saund for generously sharing unpublished
results, and to two anonymous reviewers for their helpful comments. Support was from
grants to Geoff Hinton, the Canadian NSERC, Terry Sejnowski, and the ONR.

References

[1] Barlow, H (1961). The coding of sensory messages. In Current Problems in Animal
Behaviour. Cambridge, England: CUP, 331-360.

[2] Barlow, H, Kaushal, T & Mitchison, G (1989). Finding minimum entropy codes. Neural
Computation, 1, 412-423.

[3] Dayan, P, Hinton, GE, Neal, RM & Zemel, RS (1994). The Helmholtz machine. Sub-
mitted to Neural Computation.

[4] Földiák, P (1990). Forming sparse representations by local anti-Hebbian learning.
Biological Cybernetics, 64, 165-170.

[5] Jacobs, RA, Jordan, MI & Barto, AG (1991). Task decomposition through competition
in a modular connectionist architecture: The what and where vision tasks. Cognitive
Science, 15, 219-250.

[6] Jacobs, RA, Jordan, MI, Nowlan, SJ & Hinton, GE (1991). Adaptive mixtures of local
experts. Neural Computation, 3, 79-87.

[7] Keeler, JD, Rumelhart, DE & Leow, WK (1991). Integrated segmentation and recog-
nition of hand-printed numerals. In RP Lippmann, J Moody & DS Touretzky, editors,
Advances in Neural Information Processing Systems, 3. San Mateo, CA: Morgan Kauf-
mann, 557-563.

[8] Nowlan, SJ (1990). Competing Experts: An Experimental Investigation of Associative
Mixture Models. Technical report CRG-TR-90-5, Department of Computer Science,
University of Toronto, Canada.

[9] Nowlan, SJ & Sejnowski, TJ (1993). Filter selection model for generating visual motion
signals. In SJ Hanson, JD Cowan & CL Giles, editors, Advance in Neural Information
Processing Systems, 5. San Mateo, CA: Morgan Kaufmann, 369-376.

[10] Pearl, J (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. San Mateo, CA: Morgan Kaufmann.

14



[11] Saund, E (1994a). Unsupervised learning of mixtures of multiple causes in binary
data. In JD Cowan, G Tesauro & J Alspector, editors, Advance in Neural Information
Processing Systems, 6. San Mateo, CA: Morgan Kaufmann.

[12] Saund, E (1994b). A multiple cause mixture model for unsupervised learning. Sub-
mitted for publication.

[13] Schmidhuber, JH (1992). Learning factorial codes by predictability minimization.
Neural Computation, 4, 863-879.

[14] Zemel, RS (1993). A Minimum Description Length Framework for Unsupervised Learning.
PhD Dissertation, Computer Science, University of Toronto, Canada.

15


