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Abstract

Physiological investigations into the neural

basis of sensory attention have led to puz-

zling and contradictory results. Attention

can seemingly lead to increased, decreased

and unchanged neural activities, according

to features of attentional experiments that

are not well understood. We take one par-

ticular case in which activities increase as a

result of attention, model its possible sta-

tistical underpinning, and relate our model

to other attentional suggestions. Increased

activities in population codes are associ-

ated with increased certainty about the en-

coded quantities. This increased certainty

has to come from somewhere { in our model

it emerges from particular changes in the

model's processing strategy.

1 Introduction

Although hard to de�ne very precisely, at-

tention has been a highly seductive target

for experiments and models alike. The core

idea, that some stimuli or stimulus features

are treated di�erently from others (in par-

ticular, more e�ectively) for the purposes of

representation, processing and/or learning,

is common to a whole set of observable ef-

fects, a set whose neural basis may well be

far from unitary. The range of experiments

include cases for which features and/or lo-

cations are pitted either against nothing (ie

background noise) or against one another.

One common starting point for understand-

ing attentional e�ects is to build models in

which competition is a natural consequence

of the structure of a computational task. A

good example comes from the �eld of animal

conditioning, in which multiple conditioned

stimuli (CSs) such as lights and tones have

to be used to predict unconditioned stimuli

(USs) such as rewards and punishments (see

Dickinson, 1980; Mackintosh, 1983). There

are rich interactions in the ways that collec-

tions of CSs learn, that have been modeled

in terms of attentional competition amongst

the CSs (Mackintosh, 1975; Pearce & Hall,

1980; Grossberg, 1988). Arguing from a sta-

tistical perspective, Dayan & Long (1998)

separated two underlying components of at-

tentional competition, one governing repre-

sentation, based on how reliable a CS is at

predicting a US, and one governing learn-

ing, based on how uncertain the quantita-

tive prediction made of a US by a (reliable

or unreliable) CS (Sutton, 1992).

In both these cases, di�erent forms of at-

tention, which would likely have completely

di�erent neural implementations, arise as

statistically rational solutions to particular

problems in learning. Our long term aim

is to provide similarly rational accounts for

aspects of sensory attention, albeit based on

quite di�erent statistical premises.

2 Attention in the ventral

stream

Attention is multi-faceted, and an incred-

ible wealth of quite di�erent experiments,

designed to test quite di�erent things, bear

on it. For instance, since attentive vi-

sion is partly de�ned by opposition to pre-

attentive vision, the many experiments that

test things like surround suppression and

contour enhancement for texture segmenta-

tion, pop-out and contour integration (see
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Figure 1: Attentional e�ects in V4. A) De-

layed match to sample paradigm. The ani-

mal is instructed to pay attention either to

orientation or colour (shown here as grey)

in blocks of trial. Within a single trial, it

has to respond if the attended feature in

the test pattern is the same as that in the

sample, irrespective of the unattended stim-

ulus. The dashed line shows an example

receptive �eld. B) Responses of a single

V4 cell to di�erent orientations in the at-

tended (upper) and unattended (lower) con-

ditions. C) Attended (�lled squares) and

unattended (open circles) tuning functions

for the cell. Black (attended) and gray

(unattended) dashed lines at the bottom

show the undriven activity of the cell. From

McAdams & Maunsell (1999).

Li, 1998 for models and references to the

data) are of obvious relevance. We focus

on neurophysiological �ndings (eg Moran

& Desimone, 1985; Spitzer, Desimone &

Moran, 1988; Motter, 1993; 1994a;b; Des-

imone & Duncan, 1995; Connor, Gallant,

Preddie & Van Essen, 1996; Connor, Pred-

die, Gallant & Van Essen, 1997; Motter,

1998) in particular a core result involving a

very simple visual display in which there is

competition (McAdams & Maunsell, 1999).

Figure 1A, from McAdams & Maunsell

(1999) shows a basic delayed match to

sample paradigm. Here, two stimuli (one

coloured, one oriented) are shown in circum-

stances under which the animal has been in-

structed to pay attention for a whole block

of trials to just one or the other. In this case,

the animal is supposed to remember the

orientation of the oriented cue in the sam-

ple phase and act at the test according to

whether the orientation is the same or di�er-

ent, ignoring any similarities or changes in

the colour. The dashed line shows schemat-

ically the receptive �eld of the neuron being

tested { it comfortably contains just one of

the two stimuli. The location of the oriented

stimulus during the test is always the same

as that of the oriented stimulus during the

sample.

Figure 1B shows the e�ect of the prior in-

struction on the activity of a single, orien-

tation selective, neuron in V4. In the so-

called attended condition, when the monkey

is forced to attend to orientation, the neuron

responds more strongly than in the unat-

tended condition, when the monkey attends

to colour (although see Moran & Desimone,

1985). Although the neuron is more active

in the face of attention, its tuning curve has

essentially the same width in both condi-

tions, and the baseline activity also does

not change. 55% of the 223 orientation-

tuned cells recorded were modulated by at-

tention, and, for most of them, activities in

the attended condition were higher than in

the unattended condition. Only about 9%

of the cells exhibited signi�cantly di�erent

tuning widths in the two conditions, and

of these some were broader and some nar-

rower. McAdams & Maunsell (1999) show

that something similar is true for cells in V1,

although the magnitude of the e�ect is much

smaller and a smaller proportion of the cells

(31%) are modulated by attention.

We later discuss various possible interpre-

tations of this change in the activity. For

the present, consider one consequence that

emerges naturally from considering the ac-

tivity of the cells as part of a population

code for orientation that is providing the

basic information required for the monkey's

inferences (Paradiso, 1988; Seung & Som-

polinsky, 1993; Snippe, 1996). Many popu-

lation coding models turn the activity of the

cells into a posterior probability distribution

over the variable they code (in this case, ori-

entation). The tightness of the posterior dis-

tribution is a measure of the quality of the

coding scheme, and is well quanti�ed by the

Fisher information the code provides about

the variable. If neuron i has tuning curve

fi(�) for orientation � and is corrupted by

Poisson noise, then the Fisher information

for � is proportional to F(�) /
P

i

(f 0

i
(�))2

fi(�)

where the individual components of the sum

take the form of signal/noise ratios. Ampli-

fying the tuning curves fi(�), thereby mul-

tiplicatively increasing the �ring rates, pro-
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portionally increases the Fisher information

(at least ignoring the baseline). Something

similar is true for some population coding

models that consider the activity as deter-

mining a full probability distribution over �

(Anderson, 1994; Zemel, Dayan & Pouget,

1998; Hinton & Ghahramani, personal com-

munication); for many of them, the stronger

the �ring, the tighter the posterior distribu-

tion over �, and so the increased certainty.

The key point of this paper is that, from

a statistical perspective, the increased cer-

tainty has to originate somewhere. In the

end, we would like an algorithmic account

of its provenance and its instantiation in the

ampli�cation of tuning curves; however, in

this paper we merely seek a computational

account. One suggestion is that the neu-

rons always have available all the informa-

tion needed to report on � accurately, but

that the metabolic cost of doing so by spik-

ing fast is very high. In this case, atten-

tion can be seen as changing the loss func-

tion, weighing accuracy about a given vari-

able more heavily and the energetic cost less

heavily, and so making higher activity levels

appropriate.

A (not necessarily mutually exclusive) al-

ternative is that, through the medium of

attention, the information on which neu-

ron i is basing its activity has changed.

The key question is why this information

might change in a way that licenses more

certain inference. In the next section we

present an example, based on the rather

standard (eg Pelli, 1985; Graham, 1989;

Palmer, 1984), though not wholly complete

(Downing, 1988; Kontsevick & Tyler, 1999)

psychophysical idea of a model of positional

uncertainty.

3 Attentional control

over receptive �elds

Figure 2A shows the structure of a simple

inference problem. The brightness of each

little patch shows the activity r of a sin-

gle input unit as a function of position (x)

and angle (�). The activities are caused by

a characteristic noisy, Gaussian-shaped in-

put which can be centred anywhere along

the x and � coordinates (actually using cir-

cular boundary conditions in x to avoid

edge e�ects). The inferential task for the

units shown in the circle on top is to repre-

sent the angle of the characteristic stimulus,

marginalising away the e�ect of positional

uncertainty. We consider the V4 orientation

selective cell whose responses are shown in

�gure 1B;C as an example of one of the cells

in the circle reporting on the net angle of

the stimulus, and each V1 cell within its re-

ceptive �eld corresponds to an input unit.

Furthermore, in keeping with distributional

interpretations of population codes, the V4

units must represent the posterior uncer-

tainty about this angle given all the input

r. That is, their activity must represent the

distribution

P [�jr] =

Z
x

P [�; xjr]dx /

Z
x

P [rj�; x]dx

(1)

assuming a at prior over x and �. Fig-

ure 2B shows an example of the true

marginal posterior distribution over � given

the entire input { in this case it has a uni-

modal shape centered roughly on the true

value of the angle (�=0). This is designed

to be one of the simplest possible cases in

which a set of units is intended to have pat-

tern selectivity (for Gaussian bump stimuli)

whilst marginalising across input position.

As described in the previous section, the

overall magnitude of the activities of the

units in a population code is a way of en-

coding the overall uncertainty of the values

that they are coding. Rather than build an

explicit encoding model which performs the

mapping in �gure 2A from the input to the

model V4 neurons, we study some particular

general properties the encoding model must

possess if it is to perform correct inference

on its inputs. That is, we focus on the pos-

terior distribution that can be inferred from

the input rates r, and assume that the �r-

ing rates in the model V4 neurons will reect

that distribution. At present, the model ig-

nores the (small) changes in the activities of

V1 neurons.

Since � is an angle variable, a computation-

ally convenient way to characterise its pos-

terior distribution is to �nd the parameters

of the best �tting circular normal distribu-

tion, whose distribution function is f(�) =

exp(k cos(��h�i))=2�I0(k), where h�i is the

angular mean, k is a form of inverse vari-

ance, and I0(k) is the modi�ed Bessel func-
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Figure 3: Histograms of the means (h�i; A)

and inverse variances (k ; B;C) of the circu-

lar normal distributions �t to the posterior

distributions P [�jr]. (A;B) are without focal

attention; (C) shows the e�ect of reducing

the window of attention to 10 units, 20% of

the width of the full input shown in �gure 2.

D) The median of the inverse variances of

the posterior distributions as a function of

the width of the attention.

tion in terms of distinctions such as early

and late selection are unhelpful { it bites

only where there is a deleterious or bene-

�cial interaction between the tuning func-

tion properties of cells (including the loca-

tion of their receptive �elds and the features

to which they are sensitive) and the loca-

tional and/or featural aspects of the current

focus of attention. In our particular case,

as with Moran & Desimone (1985; see also

Desimone & Duncan, 1995), receptive �elds

are the critical processing resource that need

to be managed spatially. However, this is

only one very simple case, and in experi-

ments in which attention to a particular fea-

ture and not to locations is important (eg

Motter, 1994a), one might expect di�erent

attentional processing strategies to be em-

ployed in which the elements from which

the feature is computed are comparatively

favoured, leading once again to greater sta-

tistical accuracy. Note that the same simple

strategy|restricting the range of a dimen-

sion along which a feature may be inferred|

can lead to increased certainty for features

just as for positions. Featural attention, and

the consequences of attention in hierarchical

systems with cells with multiple selectivities

are the most pressing areas for future work.

As always, it is important to distinguish the

computational basis of the model from any

mechanistic substrate. That increased �r-

ing rates are statistically rational says noth-

ing as to how they might arise { in partic-

ular, it is silent as to whether input cells

from locations of the input that are deemed

unattended should also be suppressed as a

whole, or whether input cells from attended

locations should be boosted strongly so that

they overcome input from unattended loca-

tions, or whether only particular outputs of

these input cells should be suppressed or

boosted appropriately. Neurophysiological

data bear on these questions { for instance,

simple forms of models in which the activi-

ties of input cells are suppressed or boosted

as a whole are contradicted by Moran &

Desimone's (1985) results on the circum-

stances under which the activities of cells

in V4 whose receptive �elds cover or do not

cover the locus of attention are una�ected

by attention. However, the various results

are based on di�erent paradigms, and can

be hard to reconcile with each other.

The cases for which it is hardest to account

using our model come when the consequence

of attending to the location of the receptive

�eld of orientation selective cells is actually

to reduce the activity of those cells (Mot-

ter, 1993). One possibility is that this result

reects a competitive interaction between

spatial and featural aspects of attention in

which the fact that those cells are tuned to

other features (such as colour) which are

irrelevant for the task results in their be-

ing suppressed. Motter (1993) found some

weak evidence for this in that the population

of cells in V2 that showed these reductions

were only weakly tuned to orientation.

The main competing computational model

to explain changes in activity in the face of

attention suggests that it represents a basis

function strategy for performing normalisa-

tion, (ie presenting images of translated and

rotated objects in a canonical frame (Ol-

shausen, Anderson & Van Essen, 1993; Sali-

nas & Abbott, 1997; Riesenhuber & Dayan,

1997). This interpretation captures the mul-

tiplicative modulation seen in the sensitiv-

ity of visually responsive parietal cells to

the position of the eyes (see Pouget & Se-

jnowski, 1997), only with some form of at-

tentional focus (possibly with both spatial

and featural dimensions) taking the place of
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eye position (and also head position, hand

position, etc), and has been suggested on

the basis of various experiments (eg Conor

et al, 1996; 1997; McAdams & Maunsell,

1999). Although these ideas are quite com-

pelling for normalisation, they are hard to

relate to some aspects of the neural data,

such as the e�ects of changing the number

and nature of competing stimuli.
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