
Communicated by Robert Jacobs

Factor Analysis Using Delta-Rule Wake-Sleep Learning

Radford M. Neal
Department of Statistics and Department of Computer Science, University of Toronto,
Toronto M5S 1A1, Canada

Peter Dayan
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology,
Cambridge, MA, 02139 U.S.A.

We describe a linear network that models correlations between real-valued
visible variables using one or more real-valued hidden variables—a fac-
tor analysis model. This model can be seen as a linear version of the
Helmholtz machine, and its parameters can be learned using the wake-
sleep method, in which learning of the primary generative model is as-
sisted by a recognition model, whose role is to fill in the values of hidden
variables based on the values of visible variables. The generative and
recognition models are jointly learned in wake and sleep phases, using
just the delta rule. This learning procedure is comparable in simplicity
to Hebbian learning, which produces a somewhat different representa-
tion of correlations in terms of principal components. We argue that the
simplicity of wake-sleep learning makes factor analysis a plausible al-
ternative to Hebbian learning as a model of activity-dependent cortical
plasticity.

1 Introduction

Statistical structure in a collection of inputs can be found using purely local
Hebbian learning rules (Hebb, 1949), which capture second-order aspects
of the data in terms of principal components (Linsker, 1988; Oja, 1989). This
form of statistical analysis has therefore been used to provide a computa-
tional account of activity-dependent plasticity in the vertebrate brain (e.g.,
von der Malsburg, 1973; Linsker, 1986; Miller, Keller, & Stryker, 1989).

There are reasons, however, that principal component analysis may not
be an adequate model for the generation of cortical receptive fields (e.g., Ol-
shausen & Field, 1996). Furthermore, a Hebbian mechanism for performing
principal component analysis would accord no role to the top-down (feed-
back) connections that always accompany bottom-up connections (Felle-
man & Van Essen, 1991). Hebbian learning must also be augmented by
extra mechanisms in order to extract more than just the first principal com-
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ponent and in order to prevent the synaptic weights from growing without
bound.

In this article, we present the statistical technique of factor analysis as an
alternative to principal component analysis and show how factor analysis
models can be learned using an algorithm whose demands on synaptic
plasticity are as local as those of the Hebb rule.

Our approach follows the suggestion of Hinton and Zemel (1994) (see
also Grenander, 1976–1981; Mumford, 1994; Dayan, Hinton, Neal, & Zemel,
1995; Olshausen & Field, 1996) that the top-down connections in the cortex
might be constructing a hierarchical, probabilistic “generative” model, in
which dependencies between the activities of neurons reporting sensory
data are seen as being due to the presence in the world of hidden or latent
“factors.” The role of the bottom-up connections is to implement an inverse
“recognition” model, which takes low-level sensory input and instantiates
in the activities of neurons in higher layers a set of likely values for the
hidden factors, which are capable of explaining this input. These higher-
level activities are meant to correspond to significant features of the external
world, and thus to form an appropriate basis for behavior.

We refer to such a combination of generative and recognition models
as a Helmholtz machine. The simplest form of Helmholtz machine, with
just two layers, linear units, and gaussian noise, is equivalent to the factor
analysis model, a statistical method that is used widely in psychology and
the social sciences as a way of exploring whether observed patterns in data
might be explainable in terms of a small number of unobserved factors.
Everitt (1984) gives a good introduction to factor analysis and to other latent
variable models.

Even though factor analysis involves only linear operations and gaussian
noise, learning a factor analysis model is not computationally straightfor-
ward; practical algorithms for maximum likelihood factor analysis (Jöreskog,
1967, 1969, 1977) took many years to develop. Existing algorithms change
the values of parameters based on complex and nonlocal calculations. A
general approach to learning in Helmholtz machines that is attractive for
its simplicity is the wake-sleep algorithm of Hinton, Dayan, Frey, and Neal
(1995). We show empirically in this article that maximum likelihood factor
analysis models can be learned by the wake-sleep method, which uses just
the purely local delta rule in both of its two separate learning phases. The
wake-sleep algorithm has previously been applied to the more difficult task
of learning nonlinear models with binary latent variables, with mixed re-
sults. We have found that good results are obtained much more consistently
when the wake-sleep algorithm is used to learn factor analysis models, per-
haps because settings of the recognition model parameters that invert the
generative model always exist.

In the factor analysis models we look at in this article, the factors are
a priori independent, and this simplicity prevents them from reproducing
interesting aspects of cortical structure. However, these results contribute to
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the understanding of wake-sleep learning. They also point to possibilities
for modeling cortical plasticity, since the wake-sleep approach avoids many
of the criticisms that can be leveled at Hebbian learning.

2 Factor Analysis

Factor analysis with a single hidden factor is based on a generative model
for the distribution of a vector of real-valued visible inputs, x, given by

x = µ+ gy+ ε. (2.1)

Here, y is the single real-valued factor, and is assumed to have a gaussian
distribution with mean zero and variance one. The vector of “factor load-
ings,” g, which we refer to as the generative weights, expresses the way
the visible variables are related to the hidden factor. The vector of overall
means,µ, will, for simplicity of presentation, be taken to be zero in this arti-
cle, unless otherwise stated. Finally, the noise, ε, is assumed to be gaussian,
with a diagonal covariance matrix, 9, which we will write as

9 =


τ 2

1 0 . . . 0

0 τ 2
2 . . . 0

· · ·
0 0 . . . τ 2

n

 . (2.2)

The τ 2
j are sometimes called the “uniquenesses,” as they represent the por-

tion of the variance in each visible variable that is unique to it rather than
being explained by the common factor. We will refer to them as the genera-
tive variance parameters (not to be confused with the variance of the hidden
factor in the generative model, which is fixed at one).

The model parameters, µ, g, and 9, define a joint gaussian distribution
for both the hidden factor, y, and the visible inputs, x. In a Helmholtz ma-
chine, this generative model is accompanied by a recognition model, which
represents the conditional distribution for the hidden factor, y, given a par-
ticular input vector, x. This recognition model also has a simple form, which
for µ = 0, is

y = rTx+ ν, (2.3)

where r is the vector of recognition weights and ν has a gaussian distribution
with mean zero and varianceσ 2. It is straightforward to show that the correct
recognition model has r = [ggT +9]−1g and σ 2 = 1− gT[ggT +9]−1g, but
we presume that directly obtaining the recognition model’s parameters in
this way is not plausible in a neurobiological model.

The factor analysis model can be extended to include several hidden fac-
tors, which are usually assumed to have independent gaussian distributions
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with mean zero and variance one (though we discuss other possibilities in
section 5.2). These factors jointly produce a distribution for the visible vari-
ables, as follows:

x = µ+Gy+ ε. (2.4)

Here, y is the vector of hidden factor values, G is a matrix of generative
weights (factor loadings), and ε is again a noise vector with diagonal co-
variance. A linear recognition model can again be found to represent the
conditional distribution of the hidden factors for given values of the visible
variables. Note that there is redundancy in the definition of the multiple-
factor model, caused by the symmetry of the distribution of y in the gen-
erative model. A model with generative weights G′ = GUT, where U is
any unitary matrix (for which UTU = I), will produce the same distribution
for x, with the hidden factors y′ = Uy again being independent, with mean
zero and variance one. The presence of multiple solutions is sometimes seen
as a problem with factor analysis in statistical applications, since it makes
interpretation more difficult, but this is hardly an issue in neurobiological
modeling, since easy interpretability of neural activities is not something
that we are at liberty to require.

Although there are some special circumstances in which factor analysis
is equivalent to principal component analysis, the techniques are in general
quite different (Jolliffe, 1986). Loosely speaking, principal component anal-
ysis pays attention to both variance and covariance, whereas factor analysis
looks only at covariance. In particular, if one of the components of x is cor-
rupted by a large amount of noise, the principal eigenvector of the covari-
ance matrix of the inputs will have a substantial component in the direction
of that input. Hebbian learning will therefore result in the output, y, being
dominated by this noise. In contrast, factor analysis uses εj to model any
noise that affects only component j. A large amount of noise simply results
in the corresponding τ 2

j being large, with no effect on the output y. Principal
component analysis is also unaffected by a rotation of the coordinate sys-
tem of the input vectors, whereas factor analysis privileges the particular
coordinate system in which the data are presented, because it is assumed in
equation 2.2 that it is in this coordinate system that the components of the
noise are independent.

3 Learning Factor Analysis Models with the Wake-Sleep Algorithm

In this section, we describe wake-sleep algorithms for learning factor anal-
ysis models, starting with the simplest such model, having a single hidden
factor. We also provide an intuitive justification for believing that these
algorithms might work, based on their resemblance to the Expectation-
Maximization (EM) algorithm. We have not found a complete theoretical
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proof that wake-sleep learning for factor analysis works, but we present
empirical evidence that it usually does in section 4.

3.1 Maximum Likelihood and the EM Algorithm. In maximum like-
lihood learning, the parameters of the model are chosen to maximize the
probability density assigned by the model to the data that were observed
(the “likelihood”). For a factor analysis model with a single factor, the like-
lihood, L, based on the observed data in n independent cases, x(1), . . . , x(n),
is obtained by integrating over the possible values that the hidden factors,
y(c), might take on for each case:

L(g, 9) =
n∏

c=1

p(x(c) | g, 9) =
n∏

c=1

∫
p(x(c) | y(c), g, 9) p(y(c)) dy(c) (3.1)

where g and 9 are the model parameters, as described previously, and p(·)
is used to write probability densities and conditional probability densities.
The prior distribution for the hidden factor, p(y(c)), is gaussian with mean
zero and variance one. The conditional distribution for x(c) given y(c) is
gaussian with meanµ+gy(c) and covariance9, as implied by equation 2.1.

Wake-sleep learning can be viewed as an approximate implementation
of the EM algorithm, which Dempster, Laird, and Rubin (1977) present as a
general approach to maximum likelihood estimation when some variables
(in our case, the values of the hidden factors) are unobserved. Applications
of EM to factor analysis are discussed by Dempster et al. (1977) and by Rubin
and Thayer (1982), who find that EM produces results almost identical to
those of Jöreskog’s (1969) method, including getting stuck in essentially the
same local maxima given the same starting values for the parameters.1

EM is an iterative method, in which each iteration consists of two steps.
In the E-step, one finds the conditional distribution for the unobserved vari-
ables given the observed data, based on the current estimates for the model
parameters. When the cases are independent, this conditional distribution
factors into distributions for the unobserved variables in each case. For the
single-factor model, the distribution for the hidden factor, y(c), in a case with
observed data x(c), is

p(y(c) | x(c), g, 9) = p(y(c), x(c) | g, 9)∫
p(x(c) | y, g, 9) p(y) dy

. (3.2)

1 It may seem surprising that maximum likelihood factor analysis can be troubled by
local maxima, in view of the simple linear nature of the model, but this is in fact quite
possible. For example, a local maximum can arise if a single-factor model is applied to
data consisting of two pairs of correlated variables. The single factor can capture only one
of these correlations. If the initial weights are appropriate for modeling the weaker of the
two correlations, learning may never find the global maximum in which the single factor
is used instead to model the stronger correlation.
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In the M-step, one finds new parameter values, g′ and 9 ′, that maximize
(or at least increase) the expected log likelihood of the complete data, with
the unobserved variables filled in according to the conditional distribution
found in the E-step:

n∑
c=1

∫
p(y(c) | x(c), g, 9) log

[
p(x(c) | y(c), g′, 9 ′) p(y(c))

]
dy(c). (3.3)

For factor analysis, the conditional distribution for y(c) in equation 3.2 is
gaussian, and the quantity whose expectation with respect to this distri-
bution is required above is quadratic in y(c). This expectation is therefore
easily found on a computer. However, the matrix calculations involved re-
quire nonlocal operations.

3.2 The Wake-Sleep Approach. To obtain a local learning procedure,
we first eliminate the explicit maximization in the M-step of the quantity
defined in equation 3.3 in terms of an expectation. We replace this by a
gradient-following learning procedure in which the expectation is implicitly
found by combining many updates based on values for the y(c) that are
stochastically generated from the appropriate conditional distributions. We
furthermore avoid the direct computation of these conditional distributions
in the E-step by learning to produce them using a recognition model, trained
in tandem with the generative model.

This approach results in the wake-sleep learning procedure, with the
wake phase playing the role of the M-step in EM and the sleep phase playing
the role of the E-step. The names for these phases are metaphorical; we are
not proposing neurobiological correlates for the wake and sleep phases.
Learning consists of interleaved iterations of these two phases, which in the
context of factor analysis operate as follows:

Wake phase: From observed values for the visible variables, x, randomly fill
in values for the hidden factors, y, using the conditional distribution
defined by the current recognition model. Update the parameters of the
generative model to make this filled-in case more likely.

Sleep phase: Without reference to any observation, randomly choose values
for the hidden factors, y, from their fixed generative distribution, and
then randomly choose “fantasy” values for the visible variables, x, from
their conditional distribution given y, as defined by the current param-
eters of the generative model. Update the parameters of the recognition
model to make this fantasy case more likely.

The wake phase of learning will correctly implement the M-step of EM
(in a stochastic sense), provided that the recognition model produces the
correct conditional distribution for the hidden factors. The aim of sleep
phase learning is to improve the recognition model’s ability to produce this
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conditional distribution, which would be computed in the E-step of EM.
If values for the recognition model parameters exist that reproduce this
conditional distribution exactly and if learning of the recognition model
proceeds at a much faster rate than changes to the generative model, so that
this correct distribution can continually be tracked, then the sleep phase
will effectively implement the E-step of EM, and the wake-sleep algorithm
as a whole will be guaranteed to find a (local) maximum of the likelihood
(in the limit of small learning rates, so that stochastic variation is averaged
out).

These conditions for wake-sleep learning to mimic EM are too stringent
for actual applications, however. At a minimum, we would like wake-sleep
learning to work for a wide range of relative learning rates in the two phases,
not just in the limit as the ratio of the generative learning rate to the recogni-
tion learning rate goes to zero. We would also like wake-sleep learning to do
something sensible even when it is not possible for the recognition model
to invert the generative model perfectly (as is typical in applications other
than factor analysis), though one would not usually expect the method to
produce exact maximum likelihood estimates in such a case.

We could guarantee that wake-sleep learning behaves well if we could
find a cost function that is decreased (on average) by both the wake phase
and the sleep phase updates. The cost would then be a Lyapunov function
for learning, providing a guarantee of stability and allowing something to
be said about the stable states. Unfortunately, no such cost function has
been discovered, for either wake-sleep learning in general or wake-sleep
learning applied to factor analysis. The wake and sleep phases each sepa-
rately reduces a sensible cost function (for each phase, a Kullback-Leibler
divergence), but these two cost functions are not compatible with a single
global cost function. An algorithm that correctly performs stochastic gradi-
ent descent in the recognition parameters of a Helmholtz machine using an
appropriate global cost function does exist (Dayan & Hinton, 1996), but it
involves reinforcement learning methods for which convergence is usually
extremely slow.

We have obtained some partial theoretical results concerning wake-sleep
learning for factor analysis, which show that the maximum likelihood so-
lutions are second-order Lyapunov stable and that updates of the weights
(but not variances) for a single-factor model decrease an appropriate cost
function. However, the primary reason for thinking that the wake-sleep
algorithm generally works well for factor analysis is not these weak theo-
retical results but rather the empirical results in section 4. Before presenting
these, we discuss in more detail how the general wake-sleep scheme is ap-
plied to factor analysis, first for a single-factor model and then for models
with multiple factors.

3.3 Wake-Sleep Learning for a Single-Factor Model. A Helmholtz ma-
chine that implements factor analysis with a single hidden factor is shown
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Figure 1: The one-factor linear Helmholtz machine. Connections of the gener-
ative model are shown using solid lines, those of the recognition model using
dashed lines. The weights for these connections are given by the gj and the rj.

in Figure 1. The connections for the linear network that implements the
generative model of equation 2.1 are shown in the figure using solid lines.
Generation of data using this network starts with the selection of a random
value for the hidden factor, y, from a gaussian distribution with mean zero
and variance one. The value for the jth visible variable, xj, is then found by
multiplying y by a connection weight, gj, and adding random noise with
variance τ 2

j . (A bias value, µj, could be added as well, to produce nonzero
means for the visible variables.)

The recognition model’s connections are shown in Figure 1 using dashed
lines. These connections implement equation 2.3. When presented with val-
ues for the visible input variables, xj, the recognition network produces a
value for the hidden factor, y, by forming a weighted sum of the inputs,
with the weight for the jth input being rj, and then adding gaussian noise
with mean zero and variance σ 2. (If the inputs have nonzero means, the
recognition model would include a bias for the hidden factor as well.)

The parameters of the generative model are learned in the wake phase, as
follows. Values for the visible variables, x(c), are obtained from the external
world; they are set to a training case drawn from the distribution that we
wish to model. The current version of the recognition network is then used
to stochastically fill in a corresponding value for the hidden factor, y(c), using
equation 2.3. The generative weights are then updated using the delta rule,
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as follows:

g′j = gj + η (x(c)j − gjy(c)) y(c), (3.4)

whereη is a small positive learning rate parameter. The generative variances,
τ 2

j , which make up 9, are also updated, using an exponentially weighted
moving average:

(τ 2
j )
′ = α τ 2

j + (1− α) (x(c)j − gjy(c))2, (3.5)

where α is a learning rate parameter that is slightly less than one.
If the recognition model correctly inverted the generative model, these

wake-phase updates would correctly implement the M-step of the EM al-
gorithm (in the limit as η→ 0 and α→ 1). The update for gj in equation 3.4
improves the expected log likelihood because the increment to gj is propor-
tional to the derivative of the log likelihood for the training case with y filled
in, which is as follows:

∂

∂gj

(
log p(x(c), y(c) | g, 9)

)
= ∂

∂gj

(
− 1

2τ 2
j

(x(c)j − gjy(c))2
)

(3.6)

= 1
τ 2

j

(x(c)j − gjy(c)) y(c). (3.7)

The averaging operation by which the generative variances, τ 2
j , are learned

will (for α close to one) also lead toward the maximum likelihood values
based on the filled-in values for y.

The parameters of the recognition model are learned in the sleep phase,
based not on real data but on “fantasy” cases, produced using the current
version of the generative model. Values for the hidden factor, y( f ), and the
visible variables, x( f ), in a fantasy case are stochastically generated according
to equation 2.1, as described at the beginning of this section. The connection
weights for the recognition model are then updated using the delta rule, as
follows:

r′j = rj + η (y( f ) − rTx( f )) x( f )
j , (3.8)

where η is again a small positive learning rate parameter, which might or
might not be the same as that used in the wake phase. The recognition
variance, σ 2, is updated as follows:

(σ 2)′ = α σ 2 + (1− α) (y( f ) − rTx( f ))2, (3.9)

where α is again a learning rate parameter slightly less than one.
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These updates are analogous to those made in the wake phase and have
the effect of improving the recognition model’s ability to produce the correct
distribution for the hidden factor. However, as noted in section 3.2, the
criterion by which the sleep phase updates “improve” the recognition model
does not correspond to a global Lyapunov function for wake-sleep learning
as a whole, and we therefore lack a theoretical guarantee that the wake-sleep
procedure will be stable and will converge to a maximum of the likelihood,
though the experiments in section 4 indicate that it usually does.

3.4 Wake-Sleep Learning for Multiple-Factor Models. A Helmholtz
machine with more than one hidden factor can be trained using the wake-
sleep algorithm in much the same way as described above for a single-factor
model. The generative model is simply extended by including more than
one hidden factor. In the most straightforward case, the values of these
factors are chosen independently at random when a fantasy case is gener-
ated. However, a new issue arises with the recognition model. When there
are k hidden factors and p visible variables, the recognition model has the
following form (assuming zero means):

y = Rx+ ν (3.10)

where the k × p matrix R contains the weights on the recognition connec-
tions, and ν is a k-dimensional gaussian random vector with mean 0 and
covariance matrix 6, which in general (i.e., for some arbitrary generative
model) will not be diagonal. Generation of a randomνwith such covariance
can easily be done on a computer using the Cholesky decomposition of 6,
but in a method intended for consideration as a neurobiological model, we
would prefer a local implementation that produces the same effect.

One way of producing arbitrary covariances between the hidden factors
is to include a set of connections in the recognition model that link each hid-
den factor to hidden factors that come earlier (in some arbitrary ordering).
A Helmholtz machine with this architecture is shown in Figure 2. During
the wake phase, values for the hidden factors are filled in sequentially by
random generation from gaussian distributions. The mean of the distribu-
tion used in picking a value for factor yi is the weighted sum of inputs along
connections from the visible variables and from the hidden factors whose
values were chosen earlier. The variance of the distribution for factor yi is
an additional recognition model parameter, σ 2

i . The k(k−1)/2 connections
between the hidden factors and the k variances associated with these factors
together make up the k(k+1)/2 independent degrees of freedom in 6. Ac-
cordingly, a recognition model of this form exists that can perfectly invert
any generative model.2

2 Another way of seeing this is to note that the joint distribution for the visible vari-
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Figure 2: A Helmholtz machine implementing a model with three hidden fac-
tors, using a recognition model with a set of correlation-inducing connections.
The figure omits some of the generative connections from hidden factors to vis-
ible variables and some of the recognition connections from visible variables to
hidden factors (indicated by the ellipses). Note, however, that the only connec-
tions between hidden factors are those shown, which are part of the recognition
model. There are no generative connections between hidden factors.

This method is reminiscent of some of the proposals to allow Hebbian
learning to extract more than one principal component (e.g., Sanger, 1989;
Plumbley, 1993); various of these also order the “hidden” units. In these pro-
posals, the connections are used to remove correlations between the units
so that they can represent different facets of the input. However, for the
Helmholtz machine, the factors come to represent different facets of the
input because they are jointly rather than separately engaged in capturing
the statistical regularities in the input. The connections between the hidden
units capture the correlations in the distribution for the hidden factors con-

ables and hidden factors is multivariate gaussian. From general properties of multivariate
gaussians, the conditional distribution for a hidden factor given values for the visible
variables and for the earlier hidden factors must also be gaussian, with some constant
variance and with a mean given by some linear function of the other values.
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ditional on given values for the visible variables that may be induced by
this joint responsibility for modeling the visible variables.

Another approach is possible if the covariance matrix for the hidden fac-
tors, y, in the generative model is rotationally symmetric, as is the case when
it is the identity matrix, as we have assumed so far. We may then freely rotate
the space of factors (y′ = Uy, where U is a unitary matrix), making corre-
sponding changes to the generative weights (G′ = GUT), without changing
the distribution of the visible variables. When the generative model is ro-
tated, the corresponding recognition model will also rotate. There always
exist rotations in which the recognition covariance matrix, 6, is diagonal
and can therefore be represented by just k variances, σ 2

i , one for each factor.
This amounts to forcing the factors to be independent, or factorial, which
has itself long been suggested as a goal for early cortical processing (Bar-
low, 1989) and has generally been assumed in nonlinear versions of the
Helmholtz machine. We can therefore hope to learn multiple-factor models
using wake-sleep learning in exactly the same way as we learn single-factor
models, with equations 2.4 and 3.10 specifying how the values of all the
factors y combine to predict the input x, and vice versa. As seen in the next
section, such a Helmholtz machine with only the capacity to represent k
recognition variances, with no correlation-inducing connections, is usually
able to find a rotation in which such a recognition model is sufficient to
invert the generative model.

Note that there is no counterpart in Hebbian learning of this second
approach, in which there are no connections between hidden factors. If
Hebbian units are not connected in some manner, they will all extract the
same single principal component of the inputs.

4 Empirical Results

We have run a number of experiments on synthetic data in order to test
whether the wake-sleep algorithm applied to factor analysis finds parameter
values that at least locally maximize the likelihood, in the limit of small
values for the learning rates. These experiments also provide data on how
small the learning rates must be in practice and reveal situations in which
learning (particularly of the uniquenesses) can be relatively slow. We also
report in section 4.4 the results of applying the wake-sleep algorithm to
a real data set used by Everitt (1984). Away from conditions in which the
maximum likelihood model is not well specified, the wake-sleep algorithm
performs quite competently.

4.1 Experimental Procedure. All the systematic experiments described
were done with randomly generated synthetic data. Models for various
numbers (p) of visible variables, using various numbers (k) of hidden fac-
tors, were tested. For each such model, 10 sets of model parameters were
generated, each of which was used to generate 2 sets of training data, the
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first with 10 cases and the second with 500 cases. Models with the same
p and k were then learned from these training sets using the wake-sleep
algorithm.

The models used to generate the data were randomly constructed as fol-
lows. First, initial values for generative variances (the “uniquenesses”) were
drawn independently from exponential distributions with mean one, and
initial values for the generative weights (the “factor loadings”) were drawn
independently from gaussian distributions with mean zero and variance
one. These parameters were then rescaled so as to produce a variance of
one for each visible variable; that is, for a single-factor model, the new gen-
erative variances were set to τ ′2j = f 2

j τ
2
j and the new generative weights

to g′j = fjgj, with the fj chosen such that the new variances for the visible

variables, τ ′2j + g′2j , were equal to one.
In all experiments, the wake-sleep learning procedure was started with

the generative and recognition variances set to one and the generative
and recognition weights and biases set to zero. Symmetry is broken by
the stochastic nature of the learning procedure. Learning was done online,
with cases from the training set being presented one at a time, in a fixed se-
quence. The learning rates for both generative and recognition models were
usually set to η = 0.0002 and α = 0.999, but other values of η and α were
investigated as well, as described below. In the models used to generate the
data, the variables all had mean zero and variance one, but this knowledge
was not built into the learning procedure. Bias parameters were therefore
present, allowing the network to learn the means of the visible variables in
the training data (which were close to zero, but not exactly zero, due to the
use of a finite training set).

We compared the estimates produced by the wake-sleep algorithm with
the maximum likelihood estimates based on the same training sets produced
using the “factanal” function in S-Plus (Version 3.3, Release 1), which uses a
modification of Jöreskog’s (1977) method. We also implemented the EM fac-
tor analysis algorithm to examine in more detail cases in which wake-sleep
disagreed with S-Plus. As with most stochastic learning algorithms, using
fixed learning rates implies that convergence can at best be to a distribu-
tion of parameter values that is highly concentrated near some stable point.
One would in general have to reduce the learning rates over time to ensure
stronger forms of convergence. The software used in these experiments may
be obtained over the Internet.3

4.2 Experiments with Single-Factor Models. We first tried using the
wake-sleep algorithm to learn single-factor models for three (p = 3) and
six (p = 6) visible variables. Figure 3 shows the progress of learning for a

3 Follow the links from the first author’s home page: http://www.cs.utoronto.ca/
∼radford/
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Figure 3: Wake-sleep learning of a single-factor model for six variables. The
graphs show the progress of the generative variances and weights over the
course of 2 million presentations of input vectors, drawn sequentially from
a training set of size 500, with learning parameters of η = 0.0002 and α =
0.999 being used for both the wake and the sleep phases. The training set was
randomly generated from a single-factor model whose parameters were picked
at random, as described in section 4.1. The maximum likelihood parameter
estimates found by S-Plus are shown as horizontal lines.

typical run with p = 6, applied to a training set of size 500. The figure shows
progress over 2 million presentations of input vectors (4000 presentations
of each of the 500 training cases). Both the generative variances and the gen-
erative weights are seen to converge to the maximum likelihood estimates
found by S-Plus, with a small amount of random variation, as is expected
with a stochastic learning procedure. Of the 20 runs with p = 6 (based on
data generated from 10 random models, with training sets of size 10 and
500), all but one showed similar convergence to the S-Plus estimates within
3 million presentations (and usually much earlier). The remaining run (on
a training set of size 10) converged to a different local maximum, which
S-Plus found when its maximization routine was started from the values
found by wake-sleep.

Convergence to maximum likelihood estimates was sometimes slower
when there were only three variables (p = 3). This is the minimum number
of visible variables for which the single-factor model is identifiable (that
is, for which the true values of the parameters can be found given enough
data, apart from an ambiguity in the overall signs of the weights). Three of
the 10 runs with training sets of size 10 and one of the 10 runs with training
sets of size 500 failed to converge clearly within 3 million presentations,
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but convergence was seen when these runs were extended to 10 million
presentations (in one case to a different local maximum than initially found
by S-Plus). The slowest convergence was for a training set of size 10 for
which the maximum likelihood estimate for one of the generative weights
was close to zero (0.038), making the parameters nearly unidentifiable.

All the runs were done with learning rates of η = 0.0002 and α = 0.999,
for both the generative and recognition models. Tests on the training sets
with p = 3 were also done with learning for the recognition model slowed
to η = 0.00002 and α = 0.9999—a situation that one might speculate would
cause problems, due to the recognition model’s not being able to keep up
with the generative model. No problems were seen (though the learning
was, of course, slower).

4.3 Experiments with Multiple-Factor Models. We have also tried us-
ing the wake-sleep algorithm to learn models with two and three hidden
factors (k = 2 and k = 3) from synthetic data generated as described in sec-
tion 4.1. Systematic experiments were done for k = 2, p = 5, using models
with and without correlation-inducing recognition weights, and for k = 2,
p = 8 and k = 3, p = 9, in both cases using models with no correlation-
inducing recognition weights. For most of the experiments, learning was
done with η = 0.0002 and α = 0.999.

The behavior of wake-sleep learning with k = 2 and p = 5 was very simi-
lar for the model with correlation-inducing recognition connections and the
model without such connections. The runs on most of the 20 data sets con-
verged within the 6 million presentations that were initially performed; a
few required more iterations before convergence was apparent. For two data
sets (both of size 10), wake-sleep learning converged to different local max-
ima than S-Plus. For one training set of size 500, the maximum likelihood
estimate for one of the generative variances is very close to one, making the
model almost unidentifiable (p = 5 being the minimum number of visible
variables for identifiability with k = 2); this produced an understandable
difficulty with convergence, though the wake-sleep estimates still agreed
fairly closely with the maximum likelihood values found by S-Plus.

In contrast with these good results, a worrying discrepancy arose with
one of the training sets of size 10, for which the two smallest generative
variances found using wake-sleep learning differed somewhat from the
maximum likelihood estimates found by S-Plus (one of which was very
close to zero). When S-Plus was started at the values found using wake-
sleep, it did not find a similar local maximum; it simply found the same
estimates as it had found with its default initial values. However, when
the full EM algorithm was started at the estimates found by wake-sleep, it
barely changed the parameters for many iterations. One explanation could
be that there is a local maximum in this vicinity, but it is for some reason not
found by S-Plus. Another possible explanation could be that the likelihood is
extremely flat in this region. In neither case would the discrepancy be cause
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for much worry regarding the general ability of the wake-sleep method to
learn these multiple-factor models. However, it is also possible that this is
an instance of the problem that arose more clearly in connection with the
Everitt crime data, as reported in section 4.4.

Runs using models without correlation-inducing recognition connec-
tions were also performed for data sets with k = 2 and p = 8. All runs
converged, most within 6 million presentations, in one case to a different lo-
cal maximum than S-Plus. We also tried runs with the same model and data
sets using higher learning rates (η = 0.002 and α = 0.99). The higher learn-
ing rates produced both higher variability and some bias in the parameter
estimates, but for most data sets the results were still generally correct.

Finally, runs using models without correlation-inducing recognition con-
nections were performed for data sets with k = 3 and p = 9. Most of these
converged fine. However, for two data sets (both of size 500), a small but ap-
parently real difference was seen between the estimates for the two smallest
generative variances found using wake-sleep and the maximum likelihood
estimates found using S-Plus. As was the case with the similar situation with
k = 2, p = 5, S-Plus did not converge to a local maximum in this vicinity
when started at the wake-sleep estimates. As before, however, the EM algo-
rithm moved very slowly when started at the wake-sleep estimates, which
is one possible explanation for wake-sleep having apparently converged to
this point. However, it is also possible that something more fundamental
prevented convergence to a local maximum of the likelihood, as discussed
in connection with similar results in the next section.

4.4 Experiments with the Everitt Crime Data. We also tried learning
a two-factor model for a data set used as an example by Everitt (1984), in
which the visible variables are the rates for seven types of crime, with the
cases being 16 American cities. The same learning procedure (with η =
0.0002 and α = 0.999) was used as in the experiments above, except that
the visible variables were normalized to have mean zero and variance one,
and bias parameters were accordingly omitted from both the generative and
recognition models.

Fifteen runs with different random number seeds were done, for both
models with a correlation-inducing recognition connection between the two
factors and without such a connection. All of these runs produced results
fairly close to the maximum likelihood estimates found by S-Plus (which
match the results of Everitt). In some runs, however, there were small, but
clearly real, discrepancies, most notably in the smallest two generative vari-
ances, for which the wake-sleep estimates were sometimes nearly zero,
whereas the maximum likelihood estimate is zero for only one of them.
This behavior is similar to that seen in the three runs where discrepancies
were found in the systematic experiments of section 4.3.

These discrepancies arose much more frequently when a correlation-
inducing recognition connection was not present (14 out of 15 runs) than
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when such a connection was included (6 out of 15 runs). Figure 4a shows
one of the runs with discrepancies for a model with a correlation-inducing
connection present. Figure 4b shows a run differing from that of 4a only
in its random seed, but which did find the maximum likelihood estimates.
The sole run in which the model without a correlation-inducing recognition
connection converged to the maximum likelihood estimates is shown in
Figure 4c. Close comparison of Figures 4b and 4c shows that even in this
run, convergence was much more labored without the correlation-inducing
connection. (In particular, the generative variance for variable 6 approaches
zero rather more slowly.)

According to S-Plus, the solution found in the discrepant runs is not an
alternative local maximum. Furthermore, extending the runs to many more
iterations or reducing the learning rates by a large factor does not elimi-
nate the problem. This makes it seem unlikely that the problem is merely
slow convergence due to the likelihood of being nearly flat in this vicinity,
although, on the other hand, when EM is started at the discrepant wake-
sleep estimates, its movement toward the maximum likelihood estimates is
rather slow (after 200 iterations, the estimate for the generative variance for
variable 4 had moved only about a third of the way from the wake-sleep es-
timate to the maximum likelihood estimate). It seems most likely therefore
that the runs with discrepancies result from a local “basin of attraction” for
wake-sleep learning that does not lead to a local maximum of the likelihood.

The discrepancies can be eliminated for the model with a correlation-
inducing connection in either of two ways. One way is to reduce the learning
rate for the generative parameters (in the wake phase), while leaving the
recognition learning rate unchanged. As discussed in section 3.2, there is
a theoretical reason to think that this method will lead to the maximum
likelihood estimates, since the recognition model will then have time to learn
how to invert the generative model perfectly. When the generative learning
rates are reduced by setting η = 0.00005 and α = 0.99975, the maximum
likelihood estimates are indeed found in eight of eight test runs. The second
solution is to impose a constraint that prevents the generative variances
from falling below 0.01. This also worked in eight of eight runs. However,
these two methods produce little or no improvement when the correlation-
inducing connection is omitted from the recognition model (no successes in
eight runs with smaller generative learning rates; three successes in eight
runs with a constraint on the generative variances). Thus, although models
without correlation-inducing connections often work well, it appears that
learning is sometimes easier and more reliable when they are present.

Finally, we tried learning a model for this data without first normalizing
the visible variables to have mean zero and variance one, but with biases
included in the generative and recognition models to handle the nonzero
means. This is not a very sensible thing to do; the means of the variables in
this data set are far from zero, so learning would at best take a long time,
while the biases slowly adjusted. In fact, however, wake-sleep learning fails
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Figure 4: Wake-sleep learning of two-factor models for the Everitt crime data.
The horizontal axis shows the number of presentations in millions. The verti-
cal axis shows the generative variances, with the maximum likelihood values
indicated by horizontal lines. (a) One of the six runs in which a model with a
correlation-inducing recognition connection did not converge to the maximum
likelihood estimates. (b) One of the nine such runs that did find the maximum
likelihood estimates. (c) The only run in which the maximum likelihood esti-
mates were found using a model without a correlation-inducing connection.
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rather spectacularly. The generative variances immediately become quite
large. As soon as the recognition weights depart significantly from zero,
the recognition variances also become quite large, at which point positive
feedback ensues, and all the weights and variances diverge.

The instability that can occur once the generative and recognition weights
and variances are too large appears to be a fundamental aspect of wake-sleep
dynamics. Interestingly, however, it seems that the dynamics may operate to
avoid this unstable region of parameter space, since the instability does not
occur with the Everitt data if the learning rate is set very low. With a larger
learning rate, however, the stochastic aspect of the learning can produce a
jump into the unstable region.

5 Discussion

We have shown empirically that wake-sleep learning, which involves noth-
ing more than two simple applications of the local delta rule, can be used to
implement the statistical technique of maximum likelihood factor analysis.
However, just as it is usually computationally more efficient to implement
principal component analysis using a standard matrix technique such as
singular-value decomposition rather than by using Hebbian learning, fac-
tor analysis is probably better implemented on a computer using either EM
(Rubin & Thayer, 1982) or the second-order Newton methods of Jöreskog
(1967, 1969, 1977) than by the wake-sleep algorithm. In our view, wake-sleep
factor analysis is interesting as a simple and successful example of wake-
sleep learning and as a possible model of activity-dependent plasticity in
the cortex.

5.1 Implications for Wake-Sleep Learning. The experiments in sec-
tion 4 show that, in most situations, wake-sleep learning applied to factor
analysis leads to estimates that (locally) maximize the likelihood, when the
learning rate is set to be small enough. In a few situations, the parame-
ter estimates found using wake-sleep deviated slightly from the maximum
likelihood values. More work is needed to determine exactly when and why
this occurs, but even in these situations, the estimates found by wake-sleep
are reasonably good and the likelihoods are close to their maxima. The sensi-
tivity of learning to settings of parameters such as learning rates appears no
greater than is typical for stochastic gradient descent methods. In particular,
setting the learning rate for the generative model to be equal to or greater
than that for the recognition model did not lead to instability, even though
this is the situation in which one might worry that the algorithm would
no longer mimic EM (as discussed in section 3.2). However, we have been
unable to prove in general that the wake-sleep algorithm for factor analy-
sis is guaranteed to converge to the maximum likelihood solution. Indeed,
the empirical results show that any general theoretical proof of correctness
would have to contain caveats regarding unstable regions of the parameter
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space. Such a proof may be impossible if the discrepancies seen in the ex-
periments are indeed due to a false basin of attraction (rather than being an
effect of finite learning rates). Despite the lack so far of strong theoretical
results, the relatively simple factor analysis model may yet provide a good
starting point for a better theoretical understanding of wake-sleep learning
for more complex models.

One empirical finding was that it is possible to learn multiple-factor mod-
els even when correlation-inducing recognition connections are absent, al-
though the lack of such connections did cause difficulties in some cases.
A better understanding of what is going on in this respect would provide
insight into wake-sleep learning for more complex models, in which the
recognition model will seldom be able to invert the generative model per-
fectly. Such a complex generative model may allow the data to be modeled
in many nearly equivalent ways, for some of which the generative model is
harder to invert than for others. Good performance may sometimes be pos-
sible only if wake-sleep learning favors the more easily inverted generative
models. We have seen that this does usually happen for factor analysis.

5.2 Implications for Activity-Dependent Plasticity. Much progress has
been made using Hebbian learning to model the development of structures
in early cortical areas, such as topographic maps (Willshaw & von der Mals-
burg 1976, 1979; von der Malsburg, & Willshaw, 1977), ocular dominance
stripes (Miller et al., 1989), and orientation domains (Linkser, 1988; Miller,
1994). However, Hebbian learning suffers from three problems that the
equally-local wake-sleep algorithm avoids.

First, because of the positive feedback inherent in Hebbian learning,
some form of synaptic normalization is required to make it work (Miller
& MacKay, 1994). There is no evidence for synaptic normalization in the
cortex. This is not an issue for Helmholtz machines because building a sta-
tistical model of the inputs involves negative feedback instead, as in the
delta rule.

Second, in order for Hebbian learning to produce several outputs that
represent more than just the first principal component of a collection of
inputs, there must be connections of some sort between the output units,
which force them to be decorrelated. Typically, some form of anti-Hebbian
learning is required for these connections (see Sanger, 1989; Földiák, 1989;
Plumbley, 1993). The common alternative of using fixed lateral connections
between the output units is not informationally efficient. In the Helmholtz
machine, the goal of modeling the distribution of the inputs forces out-
put units to differentiate rather than perform the same task. This goal also
supplies a clear interpretation in terms of finding the hidden causes of the
input.

Third, Hebbian learning does not accord any role to the prominent cor-
tical feature that top-down connections always accompany bottom-up con-
nections. In the Helmholtz machine, these top-down connections play a
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crucial role in wake-sleep learning. Furthermore, the top-down connections
come to embody a hierarchical generative model of the inputs, some form of
which appears necessary in any case to combine top-down and bottom-up
processing during inference.

Of course, the Helmholtz machine suffers from various problems itself.
Although learning rules equivalent to the delta rule are conventional in
classical conditioning (Rescorla & Wagner, 1972; Sutton & Barto, 1981) and
have also been suggested as underlying cortical plasticity (Montague & Se-
jnowski, 1994), it is not clear how cortical microcircuitry might construct
the required predictions (such as gjy(c) of equation 3.4) or prediction errors
(such as x(c)j − gjy(c) of the same equation). The wake-sleep algorithm also
requires two phases of activation, with different connections being primar-
ily responsible for driving the cells in each phase. Although there is some
suggestive evidence of this (Hasselmo & Bower, 1993), it has not yet been
demonstrated. There are also alternative developmental methods that con-
struct top-down statistical models of their inputs using only one, slightly
more complicated, phase of activation (Olshausen & Field, 1996; Rao & Bal-
lard, 1995).

In Hebbian models of activity-dependent development, a key role is
played by lateral local intracortical connections (longer-range excitatory
connections are also present but develop later). Lateral connections are not
present in the linear Helmholtz machines we have so far described, but they
could play a role in inducing correlations between the hidden factors in the
generative model, in the recognition model, or in both, perhaps replacing
the correlation-inducing connections shown in Figure 2.

Purely linear models, such as those presented here, will not suffice to
explain fully the intricacies of information processing in the cortical hierar-
chy. However, understanding how a factor analysis model can be learned
using simple and local operations is a first step to understanding how more
complex statistical models can be learned using more complex architectures
involving nonlinear elements and multiple layers.
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