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Abstract.
Solving in an efficient manner many different optimal control tasks within the same underlying environment

requires decomposing the environment into its computationally elemental fragments. We suggest how to find frag-
mentations using unsupervised, mixture model, learning methods on data derived from optimal value functions
for multiple tasks, and show that these fragmentations are in accord with observable structure in the environments.
Further, we present evidence that such fragments can be of use in a practical reinforcement learning context, by
facilitating online, actor-critic learning of multiple goals MDPs.

Keywords: dynamic programming, value functions, reinforcement learning, unsupervised learning, density esti-
mation, mixture models

1. Introduction

Hierarchical structures have recently been the focus of substantial work in the field of rein-
forcement learning (Watkins, 1989; Singh, 1992; Dayan & Hinton, 1993; Kaelbling, 1993;
Sutton, 1995; Thrun & Schwartz, 1995; Dietterich, 1998; Hauskrecht, 1998; Hauskrecht,
Meuleau, Boutilier, Kaelbling & Dean, 1998; Parr, 1998; Parr & Russell, 1998; Precup
& Sutton, 1998; Precup, Sutton & Singh, 1998; Sutton, Precup & Singh, 1998; Moore,
Baird & Kaelbling, 1998). Decompositions, in some of a whole variety of forms, are seen
as being critical for solving large and complex control problems, an insight borrowed and
extended from the literatures on traditional planning methods in artificial intelligence (eg
Fikes, Hart & Nilsson, 1972; Tate, 1977; Korf, 1985; Currie & Tate, 1991) and on stochas-
tic optimisation in large control problems (eg Forestier & Varaiya, 1978).

Although the case can be made that decompositions are always important for solving
large-scale Markov decision problems (MDPs), they are compelling even on the small-
scale when many similar problems must be solved. For instance, consider a maze task in
which the only difference between different problem instances is the location of the goal
(this is often called a ‘multiple-goals MDP’). Information relevant for getting to one goal
is likely to be useful for getting to other goals. In particular, a decomposition that reflects
the underlying structure of the maze will facilitate learning, even to a novel goal location.
In this paper, we consider methods for decomposing multiple-goals MDPs.

Much of the recent work on hierarchies and decomposition in reinforcement learning has
focused ontemporal abstraction, in such forms as macro-actions, options, and hierarchical
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abstract machines (HAMs). Underlying them all is the idea is that it is inefficient always
to plan at the finest level of granularity of actions. In many circumstances, more abstract
abilities (such as knowing how to traverse some particular room in a maze optimally, or
at least having some information about hownot to do so) can be used in order to reduce
significantly the complexity of planning,and, in particular, the amount of exploration
required to learn the task well. Temporal abstraction has its most direct effect onpolicies,
for instance by specifying as elements, complex,multi-step actions.

The main alternative to temporal abstraction isstructural abstraction (also known as state
abstraction or aggregation). In conventional forms of this, groups of states are lumped
together in some manner so that the effective size, and thereby the complexity, of the
optimisation problem is reduced. Structural abstraction has been particularly well studied
in the case that the Markov decision problem admits a formal decomposition, for instance
if the transition matrices can be represented by a collection of sparsely connected belief
networks. Boutilier, Dean & Hanks (1998) provide an excellent review of the way that
structural abstraction provides a link between notions of planning in artificial intelligence
and optimal control in MDPs.

Structural abstraction can be useful for things other than just throwing away all the differ-
ences between functionally similar states (this might be calledlossy state aggregation). In
this paper, we ultimately consider using structural decompositions as a way of specifying
multi-resolution representations of state, for use in temporal difference learning. Provided
that the more abstract levels in the hierarchy are used toaugment rather thanreplace a
basic representation of state (ie lossless state aggregation), they may offer the benefits, in
terms of generalisation, of more rigidly hierarchical learning methods (such as feudalQ-
learning; Dayan & Hinton, 1993), without incurring the cost of partial observability that is
often associated with throwing away state information.

Structural abstraction as presently practised mostly works in a top-down manner, starting
from a formal decomposition of the MDP. In this paper we consider it from a bottom-up
perspective, unleashingunsupervised learning on collections of optimal value functions.
As has been well recognised before (eg Drummond, 1998), value functions, particularly
for a few different goals, contain substantial information about the functional texture of
the underlying MDP, amounting, in many cases, to an appropriate structural decomposi-
tion of the problem. Probabilistic methods in unsupervised learning are concerned exactly
with finding such structure inherent in a collection of input examples, and might thus be
appropriate as a bottom-up method of decomposition.

Section 2 describes the families of multiple-goals navigation problems that we use to
illustrate our analysis; sections 3 and 4 present the probabilistic models we use to capture
structure in value functions together with results demonstrating its efficacy. Section 5
considers an extended use of this same structure in a task involving a succession of
novel goals. Finally section 6 considers the significance of these results.

2. Multiple-Goals MDPs

Figure 1 shows three examples which we use to illustrate the underlying ideas. Each in-
volves a simple discrete grid-world (with96, 98 and256 states), although their structures
are rather different. Note that mazes are by no means the only MDPs susceptible to our
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Figure 1. Simple mazes. The thin grid lines outline the states the agent can occupy; the thick lines show impass-
able walls. Manhattan moves (North, South, East and West) are permitted, but transitions are only stochastically
successful.

methods – they are, however, the ones for which it is easiest to appreciate the resulting
structural decompositions. In the mazes, Manhattan moves are possible everywhere except
at the boundaries and across the barriers (thick lines).Stochasticity affects transitions in
that legal action choices (ie those that do not attempt to cross barriers or go outside the
maze) succeed 80% of the time, and lead to a randomly chosen legal action 20% of the
time. Illegal action choices also lead to a randomly chosen legal action.

The key point about multiple-goals MDPs is that any of the states can be a goal –ie we
are interested in solving many similar MDPs. The difference between different MDPs lies
in the reward structure and in the dynamics of what happens at the goal, which is absorbing.
We used costsr(x; a) of 1 for each move from statex using actiona to a non-goal state,
and0 to a goal state. Figure 2 shows optimal value functions for the three mazes for two
different locations of the goal. The optimal value function for statex when the goal isg is
defined as

V
g(x) = mina

(
r(x; a) +

X
y

Pxy(a)V
g(y)

)

wherePxy(a) is the transition matrix reporting the probability of statey following state
x, after applying actiona (and, strictly, should be writtenP g

xy
(a), given that the process

absorbs at the goalg). The optimal value function, in conjunction withr(x; a) andP xy(a),
can be used to determine optimal actions at each state.

Figure 2 shows clearly how the optimal value functions lay bare the underlying structure
of the environments. For each pair of value functions, even though the values within each
segment of themaze are quite different, the underlying discontinuities across the barriers
are the same. This is why unsupervised learning of the value functions should extract
appropriate structural decompositions, even withouta priori knowledge such as that the
mazes are posed in two dimensional environments.

In common with many other applications of unsupervised learning, it can be hard to
evaluate the fragmentations that emerge.If the state space can be seen in some conve-
nient two dimensional representation, like a maze, then the fragments can certainly be
inspected. For instance, figure 4 (which is explained below) shows one simple fragmenta-
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Figure 2. Grayscale value functions for the mazes in figure 1 for two different goals in each case. Note the
different scales for each of the mazes. The goals are evident as the darkest points in the mazes.

tion of the maze in figure 1B into four pieces� i(x) for i = 1 : : : 4. The pieces can be seen
to conform closely to the apparent structure of the environment.

However, because we are interested in using the fragmentations to enhance the represen-
tation of state in reinforcement learning, we have a way to test their utility directly. We
do this by solving the multiple-goals MDPs using temporal difference (TD) learning and
an actor-critic architecture (Barto, Sutton and Anderson, 1983; Barto, Sutton and Watkins,
1990). We train a separate actor-critic on each of the MDPs defined by a set of novel goals,
using either a conventional, table look-up state representation, or anaugmented represen-
tation resulting from having both conventional states and fragment membership as inputs
to the system.

3. The Flat Model

We consider the task of learning abstractions as one of unsupervised learning of the struc-
ture inherent in the set ofoptimal value functionsD = fV g(�)g for a collection of goals
g. A large fraction of modern methods of unsupervised learning is based on maximum
likelihood estimation in parameterised probabilistic models,ie finding the parameters� �

that maximise

logP [D; �] (1)

under a modelP [D; �] for the probability density or probability distribution overD. In our
case, the parameters� include one group (calleda) devoted to goal-independent fragmen-
tation, and another (calledeg) to goal-dependent values.

There is no unique best probabilistic model, since value functions do not really come
from the sort of probabilistic generative processes underlying our models. Different models
effectively express different prior expectations about how structure might appear. In this
and the next section, we show how some very simple probabilistic models can be used to
extract the relatively simple structure inherent in the navigation tasks described in section 2.
More sophisticated MDPs will clearly require more sophisticated models. As a particular
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approximation, the models treat the value functions for different goals as being completely
independent, so permittinglogP [D; �] to be written as

logP [D; �] =
X
g

logP [V g(�)j�] : (2)

The models also generally treat the values of states for a particular goal as independent,
hence:

logP [D; �] =
X
g

X
x

logP [V g(x); �] : (3)

In the first model, each element of the value functionV
g(x) is treated as an independent

sample from a mixture of Gaussians distribution (eg McLachlan & Basford, 1988), such
that

P [V g(x); �] =
X
i

�i(x)
1p
2�!

g

i

e
�(V g(x)�e

g

i
)2=2!g

i (4)

Here, the different components of the mixture are like spatialfragments. The two groups
of parameters are the goal-independenta, which governs the inclusion of statex within
fragmenti according to:

�i(x) =
e
ai(x)P
j
eaj(x)

(5)

and the goal-dependent valueseg
i

and variances!g

i
which are attached to mixture com-

ponenti. Although they could also be optimised, in this paper, we fix the variances
!
g

i
= ! = 10 throughout learning.

Under the probabilistic model of equation 4, the mean of the value function is

�V g(x) =
X
i

�(x)e
g

i
(6)

and so this model might be described as a mixture of constants. The variance! can be
seen as capturing the residuals between the trueV

g(x) and these mean values.
Fitting the model in this case means maximisinglogP [D; �] with respect to both goal-

independent and goal-dependent parameters. However, the fragmentation that results is
then given only by the optimal values of the fragmentation parametersa. We employ an
online, gradient ascent method for optimising these parameters, each iteration of which
uses the optimal values for a goal drawn randomly from a training set of goals (which, in
many cases, is far smaller than the set of all possible goals). On each iteration, however,
we first choose the optimal set of parameterse

g� which maximises
P

x
logP [V g(x)ja; e]

using a form of the expectation-maximisation algorithm (EM; Dempster, Laird & Rubin,
1977).

In the E phase of EM,posterior probability or responsibility

q
g

i
(x) =

�i(x)e
�(V g(x)�e

g

i
)2=2!

=
p
!P

j
�j(x)e

�(V g(x)�e
g

j
)2=2!

=
p
!

(7)
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is calculated for each statex and fragmenti. This represents the extent to which fragment
i is responsible forV g(x), given both its prior weight�i(x) and the proximity ofeg

i
to

V
g(x). In the M phase, the set of parameterse

g is changed to minimise

E(eg) =
X
x

X
i

q
g

i
(x)

�
(V g(x) � e

g

i
)2

!

�
(8)

Calculating the global minimum with respect to all the parameters in the M phase is com-
putationally straightforward. E and M phases are alternated for a few (about10) iterations,
which is usually ample to get adequately near convergence. Although the EM steps are
guaranteed not to decrease the likelihood (for fixeda) there is no equivalent guarantee that
EM will find a global minimum – we have not yet tried to use sophisticated initialisation
methods or multiple restarts or the like to avoid bad local minima.

Given the optimising valueseg� for the goal-dependent parameters, the fragmentation
parametersa are changed according to

�ai(x) / q
g�

i
(x)� �i(x) (9)

whereqg�
i
(x) is defined according to equation 7 using the valuese

g� produced at the end
of the EM procedure. One intuition underlying this is that the prior responsibility� i(x)

should be the mean value of the posterior responsibilitiesq
g�

i
(x), averaging across all the

goals – and equation 9 is the appropriate method for achieving this. The whole process is
repeated for uniformly randomly chosen goal positions from the set. If EM was guaranteed
to find essentially the same local minimum with respect toe

g each time the same goal is
selected and a suitably small learning rate was used in equation 9, then the likelihood
would increase, on average. Of course, EM can, in principle, find different local minima
each time, a concern that proved not to present a problem in practice. We initialisee

g

i
= 10

at the start of each complete optimisation for goalg.
We choose the number of components in the mixture at the outset. However, one major

focus of current work in unsupervised learning is model selection, in this case, the auto-
matic determination of the number of components (eg Ghahramani & Beal, 2000; Attias,
2000), and these methods would apply directly.

3.1. Structure Results

Figures 3A;B show the results of applying the flat model to the maze of figure 1A in
the case that there are two fragments. The figures show�1(x) (A) and�2(x) (B). The
unsupervised learning procedure has taken the states and found a structural decomposition
that seems appropriately sensitive to the structure of the environment, taking account of
spatial proximity and, where appropriate, the barriers. Although there is no explicit term
in the likelihood forcing�i(x) to adopt extreme values, one can see that this is, in fact,
what happens. Even though random factors such as the initial values of the parameters can
in general affect the solutions, they all closely resemble figure 3.

The structure of this rather simple environment can actually be gleaned from just a single
goal. Figures 3C;D show�1(x) and�2(x) after training on the optimal values for only one
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Figure 3. Structural decompositions into two flat regions of the maze in figure 1A. (A;B)�1(x) and�2(x) when
trained on all the goals. (C;D)�1(x) and�2(x) when trained on just one goal (shown by the star). The internal
barriers are shown in gray.
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Figure 4. Structural decompositions into four flat regions (�1(x); �2(x); �3(x) and�4(x)) of the maze in
figure 1B, trained on all the goals.
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Figure 5. Structural decompositions into four flat regions (�1(x); �2(x); �3(x) and�4(x)) of the maze in
figure 1B, using the value functions for only two goals whose positions are indicated by the stars.

goal, indicated by the star. The resulting decomposition closely resembles that found using
all the goals.

Figure 4 shows the decomposition that results from applying the flat model with four
components to the two-room maze in figure 1B. Once again, the decomposition is appro-
priately sensitive to the underlying structure of the task, and can be captured using only 2
goals (figure 5; goal positions shown by the stars). Note that we have provided no prior in-
formation about the spatial structuring of states, such as their position within a coordinate
frame – all necessary such information is contained within the training values. A diverse
enough sample of goals is likely to be desirable, as suggested by the poorer fragmenta-
tion found using two goals that were rather close together, in effect occupying the same
fragment (figure 6).

Some insight into the nature of these decompositions can be gained by fitting the same
number of fragments to a similarly structured environment that contains four times as many
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Figure 6. Structural decompositions into four flat regions (�1(x); �2(x); �3(x) and�4(x)) of the maze in
figure 1B, using the value functions for two nearby goals (positions indicated by stars).

states (392 states). The resulting decomposition is essentially equivalent to that for the
smaller state space (compare figure 5 with figure 7), demonstrating that the decompositions
scale almost perfectly with the essential complexity of the environmental structure rather
than with the size of the state space. The unsupervised learning algorithm we use actually
learns more quickly for the larger state space (ie in fewer iterations) than for the smaller,
indicating thatthis kind of scaling is not necessarily a problem, although the larger state
space clearly uses a greater number of optimal values, the determination of which takes
longer than for the small state space.
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Figure 7. Structural decompositions into four flat regions (�1(x); �2(x); �3(x) and�4(x)) of a maze resembling
that of figure 1B but containing 392 states, again using the value functions for only two goals whose positions are
indicated by the stars.

3.2. Reinforcement Learning Results

As we described above, we judge the fragmentations partly by using them to augment
the state representation for an actor-critic system, comparing performance with that of a
conventional actor-critic, and also with an actor-critic augmented with a randomly assigned
fragmentationformed by assigning a random real number between 0 and 0:5 to each
�i(x).

For the critic, for each goal, we consider the linear combination of a table-lookup repre-
sentation (labelled S) and the fragmentation (labelled F):

U(x) = u
S(x) +

X
i

�i(x)u
F
i (10)
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Figure 8. Faster actor-critic learning with the augmented representation. The flat model decomposition of fig-
ure 5(4 fragments trained on 2 goals) was used in the 2-room environment of figure 1B. (A) The curves show
the mean number of steps, measured over non-learning trials for every state and for 96 goals, for the augmented
actor-critic (solid), conventional actor-critic (dashed) and an actor-critic augmented with a random fragmentation
(dotted). The number of steps taken by a naive actor (ie before any learning) is643 � 8. (B) The same results
shown in terms of thepercent excess steps, ie the number of extra steps taken by the conventional (solid line)
and randomly augmented (dotted line) actor-critics, expressed as a percentage of the performance of the correctly
augmented fragmentation. The optimised learning rates in each case were as follows, in the format (�,�;�0,�0)
(see text for key): Augmented= (0.742, 2.97; 0.085, 0.0065). Conventional= (0.875, 3.5;-,-). Random= (.928,
3.71; .68, .052).

and update the parameters according to the TD(0) rule (Sutton, 1988)

�u
S(x(t)) = �Æ(t)x(t) (11)

�u
F
i = �

0
Æ(t)�i(x(t)) (12)

Æ(t) = r(x(t); a(t)) + U(x(t+ 1))� U(x(t)) (13)

whereÆ(t) is the temporal difference error,� and� 0 are learning rate parameters for the
table-lookup and the fragmentation respectively. Updates are made in an on-line manner,
after every step in the maze. The unadorned and randomly adorned representations are
used in just the same way (dropping the fragmentation component from equation 10 for
the unadorned case).

For the actor, each action choicea(t) 2 A is made probabilistically using the Boltzmann-

like distributionP (a(t) = a;x(t)) = e
10z(a;x(t))

P
a02A

e10z(a
0 ;x(t))

, where

z(a; x(t)) = z
S(a; x(t)) +

X
i

�i(x)z
F
i
(a) (14)

the components of which are updated like the critic parameters after every step taken,
according to

�z
S(a(t); x(t)) = �Æ(t)x(t) (15)

�z
F
i
(a(t)) = �

0
Æ(t)�(x(t)) (16)
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Figure 9. The contribution of the fragmentation to value learning. Shown are the values of states, averaged over
1000 simulated runs to the same goal position, after trials 2, 4, 6 and 40. In the adorned case (left column), value
information is transmitted rapidly throughout the environment. In the conventional actor-critic (right column), it
spreads out more slowly, only eventually reaching the farthest states. Since we are using a discount factor of1,
the absolute values of the surfaces are irrelevant.
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whereÆ(t) is given by equation 13. The learning rates,�, � 0, � and�0, were jointly opti-
mised.

In each simulation run, we average the performance over all goalsexcept the two goals
used to find the fragmentation. For each goal, all weights are set to zero before 200 learning
trials, each starting in a randomly chosen state, and terminating with either the goal state,
or a time-out of 5000 steps. Every 10 trials, the mean number of steps is found over 98
non-learning trials, one from each possible state.

Figure 8A shows the mean and standard error for 50 simulation runs, revealing that
learning is faster when the state representation is augmented with the learned fragmentation
(solid line), than without it (dashed line) or with a random fragmentation (dotted line). The
significance of this improvement is clearer from figure 8B which displays the same data,
but in terms of the averageexcess steps to the goal, expressed as a percentage of the number
of steps taken by the fully augmented actor-critic. It is notable that such coarse fragments
(as shown in figure 5) learned from only two goals, are nevertheless of considerable value
for reinforcement learning.

Further insight into the mechanism by which state augmentation speeds learning can be
gained by considering the behaviour of the value function. Figure 9 shows themean val-
ues (over1000 independent simulation runs to the same, novel goal position) at different
stages of learning, for an actor-critic adorned with the fragmentation shown in figure 5
(left column) and an unadorned actor-critic (right column). State augmentation serves to
transmit value information throughout the state space more quickly – by the end of trial
2, a clear improvement over the unadorned values is already evident. However, because
information about individual states remains available, the full value function is flexibly
captured, as shown by the virtually indistinguishable value functions at trial 40. By con-
trast, methods based on lossy state aggregation cannot capture the true value function in
this way.

4. The Hierarchical Model

In many cases, environments are too complicated for their structure to be captured by the
sort of flat representation that we have hitherto considered. These mixture models generate
exclusive decompositions, in which the�i(x) are near0 or 1 for most statesx, and are
not substantially distributed. A natural generalisation is to a hierarchical fragmentation
in which states are free to belong simultaneously to many fragments at different levels,
reflecting, for example, their position in rooms, in particular parts of rooms, and the like.

For simplicity, we consider a 2-level hierarchy only. We use a hierarchical fitting scheme
which is similar in some respects to the hierarchical mixture of experts model of Jordan
and Jacobs (1993), in that low-level fragment membership probabilities are treated as con-
ditional on higher level ones, but similar in other respects to the pyramidal representation
of Burt and Adelson (1983), in that actual value contributions (ie experts) are modeled at
all levels of the hierarchy. The solution to the problem of fitting a hierarchy of contribut-
ing experts is under-constrained and so, inspired by Burt and Adelson, we first train at the
higher level and then train lower levels on theresidual error from the higher level. The
hierarchical model incorporates prior information that the flat model did not: that there
should be a certain number of low-level fragments tied to each high-level fragment.
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We take the residuals after fitting the best decomposition�
�
i
(x) and the best parameters

e
g�

i
for each goalg, and find a new fragmentation

�jji(x) =
e
a
0

ij
(x)P

k
ea

0

ik
(x)

(17)

with fragmentation parametersa0 designed to fit the new data set of residual value func-
tions,U g = (V g � V

g�), where

V
g�(x;����

; e
g�) =

X
i

�
�(x)e

g�

i

The lower level fragmentation is trained using a gradient ascent procedure with an EM
inner loop as before. However, in the E phase, the joint posterior probabilities are given by

q
g

ij
(x) =

�i(x)�jji(x)e
�(Ug(x)�e

0
g

ij
)2=2!0

=
p
!
0P

k
�k(x)

P
l
�ljk(x)e

�(Ug(x)�e
0g

kl
)2=2!0=

p
!0

(18)

where the low-level fragments are modeled as mixtures of gaussians, with parameterse
0
g

ij

and!0 (here,!0 = 7). Similarly, the marginal probabilitiesq g
i
(x) and conditional proba-

bilities q
g

jji
(x) may be calculated. In the M phase, the set of low-level parameterse

0
g is

changed to minimise

E(e
0
g) =

X
x

X
i

X
j

q
g

ij
(x)

 
(Ug(x)� e

0
g

ij
)2

!0

!
(19)

In the outer loop, the fragmentation parametersa
0 are changed according to

�a
0

ij
(x) / �

q
g

i
(x)
�
�
q
g

jji(x) � �jji(x)
�

(20)

Again, the whole process is repeated for uniformly randomly chosen goal positions from a
training set of goals, which is often smaller than the set of all goals.

4.1. Structure Results

Figure 10 shows the consequence of fitting a hierarchy of four flat fragments in the upper
level, and eight flat fragments at the lower level (which are trained on the residual values
from the upper level), using four training sets, each with a larger number of goals. From
the all-goals decomposition, one can see that the natural intuition about an appropriate
higher level decomposition – that it should correspond to the four rooms – turns out to be
correct. Moreover, although the one goal decomposition is rather different, as the number
of training goals is increased, the decomposition clearly comes to resemble the all goals
decomposition, and moreover does so with a much smaller number of goals (4) than all
(256). As before, this number would be expected to increase if more than one goal occupied
the same room.
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C: 4 Goals
*

*

*
*

D: All Goals

A: 1 Goal
*

B: 2 Goals
*

*

Figure 10. Hierarchical structural decompositions for the four room environment, found using optimal values
from one goal (A), two goals (B), four goals (C) and all possible goals (D). In each case, the top row shows the
decomposition at the higher level (rooms), while the remaining two rows show the decomposition at the lower
level (fragments). The decompositions from four goals and from all goals closely resemble each other, indicating
that such structure as can be found with this method only requires optimal values from a subset of possible goals
(4 out of 256). The iconic mazes in A;B;C show the locations of the goals.
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Figure 11. Hierarchical decompositions and actor-critic learning: (A) The percent excess steps, relative to an
actor-critic adorned with the fragmentation found using all goals (figure 10D), taken by a conventional, unadorned
actor-critic (solid line), a randomly, hierarchically adorned actor-critic (dotted line) and an actor-critic adorned
with structure found by the flat model fitting 8 fragments to the larger environment (dashed line; flat-model
trained on all goals, fragmentation not shown). (B) The percent extra steps, relative to the same baseline as for
figure A, taken by a conventional, unadorned actor-critic (solid line), an actor-critic adorned with a hierarchical
fragmentation found from just 1 goal (figure 10A; dotted line), an actor-critic adorned with the fragmentation
found from 2 goals (figure 10B; dashed line), and an actor-critic adorned with the fragmentation found from 4
goals (figure 10C; dash-dotted line). The optimised learning rates in each case were as follows, in the format
(�,�;�0,�0;�00,�00): Hierarchical augmentation (same for all numbers of training goals)= (0.74, 2.97; 0.085,
0.0065; 0.037, 0.0012). Flat augmentation= (0.74, 2.97; 0.085, 0.0065;-,-). Conventional= (0.875, 3.5;-,-;-,-).
Random hierarchical augmentation= (0.93, 3.71; 0.68, 0.052; 0.074, 0.0024).

4.2. Reinforcement Learning Results

Once again, the utility of the decompositions found was tested using an actor-critic scheme,
which learns to navigate to all goals within the large environment. For the hierarchi-
cal case, the linear combination of table-lookup representation, low-level and high-level
fragmentation was considered, effectively adding a third component to the quantities in
equations 10 and 14. Three sets of learning rates were optimised (� and�, � 0 and�0 for
the low-level fragmentation, and� 00 and�00 for the high-level fragmentation). Again, all
the goals considered were novel (except for the model trained on all goals), since the four
goals shown in figure 10C were dropped from the training set.

Figure 11A, showing the result of 25 simulations in each case, reveals that learning is
significantly speeded up for the actor-critic augmented with a hierarchical fragmentation,
when compared with a conventional actor-critic (solid line), and an actor-critic augmented
with a random hierarchical fragmentation (dotted line). Moreover, the importance of the
hierarchy can be gauged relative to the performance of an actor-critic augmented with a
flat fragmentation of 8 fragments (dashed line).

For the learned hierarchical fragmentation, the degree of speed-up increases with the
number of goals upon which the fragmentation was trained (figure 11B). This can be re-



STRUCTURE IN THE SPACE OF VALUE FUNCTIONS 15

1 5 10 100 200
10

100

iterations

st
ep

s 
to

 g
oa

l

A B

0 50 100 150 200
0

50

100

150

200

250

300

iterations

%
 e

xc
es

s 
st

ep
s

Figure 12. Generalisation to novel goals problems using a combinatorial representation of state and goal, with
both components augmented by a learned fragmentation (see text): (A) The number of steps taken by an aug-
mented actor-critic(solid line) and an actor-critic using only a conventional, look-up table representation
(dashed line), averaged over 76 novel goals. (B) The same data expressed in terms of the number of excess
steps taken by the conventional actor-critic, as a percentage of the number of steps taken by the augmented actor-
critic. The optimised learning rates in each case were as follows, in the format (�

SS, �SS; �FS, �FS; �SF, �SF; �FF,
�

FF): Augmented actor-critic= (0.75, 6; 0.005, 0.00125; 0.1, 1; 0.01, 0.1). Conventional actor-critic= (0.75,
3;-,-;-,-;-,-).

lated to the structural result evident in figures 10A to 10D, and provides some evidence
for a link between the apparent correctness of the representations and their usefulness for
reinforcement learning.

5. Goal Generalisation

The efficacy of the structure-finding methods we have presented can be further illustrated
by considering generalisation not just between states, but also between goals, in a task
composed of successive navigation problems to novel goals. We consider a combinatorial,
look-up table representation for every combination of current location and goal (labelled
SS). However, an adorned actor-critic can augment this look-up table with three additional
combinatorial fragmentation representations, so that, for example, the value of occupying
locationx with respect to goalg is estimated as:

U(x; g) = u
SS(x; g) +

X
i

�i(x)u
FS
i

+
X
j

�j(g)u
SF
j

+
X
i

X
j

�i(x)�j(g)u
FF
ij

(21)

The critic, actor and update rules for each are exactly analogous to those described in
equations 11 to 16, with updates touFS

i
, zFS

i
(a), uSF

j
andzSF

j
(a) proportional to the fragment

membership probabilities in each case; for the FF representation, updates are proportional
to the product�i(x)�j(g) for eachuFF

ij
andzFF

ij
(a).
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We make use of the same decompositions as previously (medium-sized environment, fig-
ure 1B; four flat fragments learned from 2 goals, figure 5). As before, each simulation run
involves 96 goal-finding problems, each to a novel goal (with the two goals used to find
the fragmentation excluded). However, weights are only set to zero at the beginning of
the simulation run, and not between goals, and the choice of goals follows a randomised,
non-repeating sequence. Moreover, in order to gauge the extent to which the new com-
binatorial actor-critic can apply prior experience to novel problems, performance is only
measured over the last 76 goal-finding problems (ie results from the first 20 goal problems
are excluded). The average numbers of steps for both conventional and adorned actor-critic
are shown in figure 12A, though note that learning trials are measured after every trial,the
better to observe rapid learning. The rapid learning effect is clearly evident. For com-
parison with previous results, the same results are shown in terms of the percent excess
steps taken by the conventional actor-critic over the adorned actor-critic (figure 12B).

6. Discussion

We have presented a new method for extracting structure in MDPs in which unsupervised
learning techniques are applied to a collection of value functions, decomposing them into
their elemental pieces. The technique is rather general – we illustrated it using some sim-
ple multiple-goals MDPs and flat and hierarchical statistical structural models, which we
fit using EM-based maximum likelihood techniques. Fragmentations inferred on the ba-
sis of only a handful of goals have been shown to offer ways of augmenting conventional
representations of state in a form of lossless state aggregation.Such fragmentations signif-
icantly speed up simple temporal difference learning methods for finding optimal policies.

The method poses a number of questions. First, there is a formal equivalence between
the sort of maximum likelihood modeling we have performed and various methods of
minimum description length modeling (MDL; Rissanen, 1989; Hinton & Zemel, 1994).
Indeed, Moore, Baird & Kaelbling (1998) justify their method of temporal abstraction
partly by considering the savings in the representation of the optimal policies for all the
goals, although they do not count representational cost using MDL methods. In the sim-
plest model of the link between our method and MDL, one might imagine communicating
all the value functions by communicating the fragmentationa, then the optimised values
e
g� and the residual errors in the model of the value functionsV

g(x) for each goal. More
sophisticated and cheaper codes involving whole distributions overe

g would also be con-
ceivable (Hinton & Zemel, 1994; Frey & Hinton, 1997). Good fragmentations involve only
a few components, so onlyrequiring a few bits to communicateeg� , and offer accurate
renditions of the value function, so onlyrequiring a few bits to communicate the residual
errors. Minimising, or approximately minimising, the complete description length also of-
fers a principled way of optimising thenumber of fragments (Ghahramani & Beal, 2000;
Attias, 2000), although we have not addressed this issue directly.

However, describing our method in terms of coding involves a certain prevarication, since
MDL is explicitly unconcerned with computational complexity. The true MDL message
for the value functions for multiple goals would probably consist merely of a description
of the transition matrix and reward structure for the MDP followed by a list of the relevant
goals, just enough information so that the receiver itself can perform dynamic program-
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ming to calculate the relevant value functions. In fact, using the value functions in order
to choose appropriate actions at states requires knowing the transition matrix and reward
structure in any case, making the MDL argument even less appealing. Communicating
the value functions directly is expensive in terms of bits, but valuable in terms of finding
structural decompositions. Finding computational justifications for good representations
is a constant theme of unsupervised learning – density estimation is really a surrogate for
inference about underlying structure (eg Hinton & Ghahramani, 1997), and it can some-
times be hard to do substantially more than what we have done,ie indicating the evident
appropriateness of structural decompositions.

A more telling point is that the underlying Gaussian statistical models we have used are
wrong in two significant respects. Our models explain the correlations in the valuesV

g(x)

of related statesx across many goalsg by positing the existence of underlying structure.
However, they do not capture correlations in the value functions associated withgoals
that are related. Obviously, goals that are nearby give rise to similar value functions –
similarities of which we are not taking direct advantage. Thinking in terms of coding,
one way to take such correlations into account is to notice that there will be generally be
similarities in the optimal values ofeg� andeg

0

� if goals g andg0 are effectively close
(ie taking barriers into account), and therefore cheaper codes can be generated by taking
advantage of this. The structural similarities in these values will be additional sources
of structural knowledge about the underlying MDP. However, at least in multiple-goals
navigation tasks, this hides the symmetry between statesx and goalsg, which we take
advantage of by using the original fragmentation,ie that generated for states, to represent
the goal also (section 5). A further issue when using a combinatorial representation is
that the number of state parameters is greatly increased, and includes many which might
be irrelevant to learning optimal performance,eg a representation of the combination of a
currently occupied state and a very distantly located goal state. An extension to the scheme
might learn which combinations were most relevant. However, the various ways of treating
goal representation remain a topic for future work.

Of course, it would actually be more appropriate to derive the statistical model for rep-
resenting value functions less according to computational convenience (which favors the
sort of simple mixture models we have adopted) and more on the basis of prior expecta-
tions as to the underlying MDPs. Doing this in general requires substantially richer prior
expectations as to the structure of the tasks. However, in some cases, there may be only
limited advantage in incorporating prior expectations of this sort. For example, preliminary
studies extending our fragment fitting to the case oflinear fragments (where the contribu-
tion of the fragment is no longer a single valueeg

i
, but some functioneg

i
+ d

g

i
� x over

an assumed underlying coordinate system)indicate that fragments do not greatly differ
from those found using the purely flat scheme. Moreover, we have found that applying
linear fragments within an actor-critic learning scheme fails to improve performance at all
beyond that achieved with flat fragments, because of the difficulty of using linear pieces to
learn value functions, a result noted elsewhere (eg Boyan and Moore, 1995).

A second problem with the Gaussian statistical models is that they incorrectly suggest
that the cost of coding residual errors varies with the square of the residual error. In fact,
the exact quantities of the value functionV g(x) are irrelevant – all that matters is that
the policies derived from the value function will be correct. In many cases, even just
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theordinal relationships amongst the values neighboring a state will suffice. One way to
address this problem is to use a more sophisticated error model (or quantisation scheme
in the context of coding). A slightly more radical departure would be to think in terms of
rate distortion theory (see, for example, Cover & Thomas, 1991). This is the extension
of standard information-theoretic communication theory to the case that not all the input
information (eg not all the details of the value function) need be coded, but rather in which
there is a quality constraint on some quantity extracted from the code. In this case, the
natural quality constraint would be the expected reward achieved by the policy extracted
from the coarsely quantised value function given a distribution over initial states in the
MDP.

Thrun & Schwartz (1995) suggest a model for finding temporal abstractions that has
something of theflavor of rate distortion theory. They consider communicatingpolicies
(rather than value functions) for multiple goals, in circumstances under which there are
macro-actions (calledskills), which express whole sets of actions at whole sets of states,
and that are intended to be useful for many of the goals. Thrun & Schwartz (1995) construct
a single cost function for judging the net policy for each goal, where the policy includes
a (possibly stochastic) choice of macro-actions and the truly optimal fine-grain actions.
The cost function consists of two terms, one totalling the difference between the optimal
values for states and the value for the given policy, the other counting a form of description
length for the policy. The more the re-use of the macro-actions for different goals, the
less the total description length for the policies, since the actions at many states need not
be separately communicated. The relative weighting of the two terms can be seen as a
Lagrange multiplier in a rate-distortion theory minimisation problem.

Thrun & Schwartz (1995)’s model has some distinct similarities with the present model.
It differs most critically by considering policies rather than value functions, and by treat-
ing methods that are designed to give approximations to the optimal policies rather than
the exact value function. Further, by not charging any cost for representing the choice
between the different macro-actions at states, it has rather little pressure to find the ap-
propriate structural decompositions. It would certainly be possible to use a rather similar
method to the one described above to learn structural decomposition by performing un-
supervised learning on sets of optimal policies rather than values functions (and indeed,
reduced descriptions of value functions such as those consisting only of ordinal relation-
ships amongst states, can be seen as a step in this direction). We considered value functions
because they are richer (since they take on real values) and because of the simplicity of not
having to consider the possibility of there being multiple optimal actions at each state (a
consideration also elided by Thrun & Schwartz, 1995).

Another method which is closely related to ours is that of Drummond (1998). This
dissects value functions in two-dimensional mazes using a visual processing algorithm
(called the ‘snake’, Cohen & Cohen, 1993) to search for features such as the discontinuities
that mark boundaries in the environment. It then uses the resulting ‘rooms’ to build a more
abstract, graph-based, representation of the underlying MDP. The method constructs an
initial approximation to the value function for a new goal by explicitly manipulating (ie
stretching and rotating) the segments of the value functions for the original goal within each
room. Multiple decompositions and value functions are stored, and a matching process is
used to find the most appropriate one for a new goal.
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Drummond’s decomposition method, by relying on a visual processing algorithm that
originated to segment two dimensional images, is rather more restricted than our unsu-
pervised learning method, which should be able to find structure in arbitrary problems,
and also structure more subtle than just discontinuities. It can also more easily integrate
information across multiple value functions to find a single good decomposition, rather
than being left with a set of possible decomposition candidates. On the other hand, by
directly calculating an approximate value function for a new goal, Drummond’s method
is rather more ambitious than ours, since we merely use the fragmentation to augment a
standard representation of state for a reinforcement learner. It would be interesting to gen-
eralise Drummond’s manipulation operators to work in more arbitrary domains which our
unsupervised learning method could also handle.

We have described our method on a set of stochastic shortest-path problems, which are
the obvious candidates for multiple goals MDPs. However, we believe that useful decom-
positions also exist for other MDPs, and can be found using unsupervised learning of value
functions. Consider, for instance, a task like elevator scheduling (Crites & Barto, 1996) in
the cases of different characteristic load patterns (eg morningversus evening), or busyver-
sus quiet periods. Structure in the space of value functions should come from aspects of the
task, such as the limit on the number of people each elevator can carry, or the time it takes
for an elevator at the top of a building to reach the bottom. Finding this structure should
again be useful in generalising the solution for one load pattern to others. Less certain is
whether it is possible to take a single large MDP and perform structural decomposition as
one finds the single solution. In theory, decompositions can help make exploration more
efficient (see, for example, the arguments in Dayan & Hinton, 1993), and one could imag-
ine using unsupervised learning on just a single value function as it changes over learning
(rather than a set of optimal value functions for different goals). Demonstrating this is a
task for the future.

Although it is valuable to have abstract methods for structural decomposition as a tool
for understanding something essential about the underlying tasks, it is interesting to see a
way that the resulting abstractions can be at all useful in a practical reinforcement learning
context. We studied this issue by using the abstractions to construct augmented repre-
sentations of the state for a standard on-line reinforcement learner (the actor-critic). To
the extent that the structural decompositions carve the MDPs at their true computational
joints, augmenting the basic representation of a state with information about how the state
fits into the higher level structure of the MDP makes for faster learning. Of course, the
fragmentations have been fit to optimal value functions, rather than the suboptimal value
functions of approximate policy iteration or asynchronous value iteration that determine
the intermediate stages of reinforcement learning solutions. Nevertheless,our results sug-
gest that even these intermediate value functions reflect the underlying structure of
the environment, since the decompositions are useful for the intermediate as well as
the final stages of reinforcement learning. Our investigations in the opposite direction,
however, are rather primitive – in particular in the important direction of inferring
fragmentation at the same time as performing policy iteration. Although we use the
actor-critic, there is nothing about the fragmentation that makes it specially well adapted to
this form of reinforcement learning. It is a quite general phenomenon in machine learning
that good representations make for good (ie fast, less overfitting, better generalising) learn-
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ing, and so we can expect the fragmentations to help other reinforcement learning systems
such asQ-learning (Watkins, 1989) and SARSA (Rummery & Niranjan, 1994; Sutton &
Barto, 1998).

Augmenting the representation of the state with extra information is rather different from
the standard notion of lossy state aggregation, in which acquisition of the optimal policy
for an MDP is speeded byignoring distinctions between certain states, even though in
the flat model at least, the nature of the extra information is just a single value associated
with all the states in a given fragment. Further, although the theory of the effects of state
aggregation has been quite well developed (eg Singh, Jaakkola & Jordan, 1995; Gordon,
1996), there is little theory as to how augmentation can help (or indeed hinder) learning.
In our actor-critic investigations, we have not considered some of the recent methods (eg
see Kivinen & Warmuth, 1997) that have been developed for working out which parts of
a representation are relevant towards making predictions, something that should help the
course of learning.

The advantage of augmenting a complete representation rather than replacing it is that
one avoids falling into the trap of partial observability – although the disadvantage is that
the number of states involved in planning, and therefore the direct complexity, has not been
reduced. The literature contains few suggestions as to which states should be aggregated –
the methods in this paper may be seen as contributions in this direction. From a different
perspective, methods such as backpropagation acquire hidden representations of states in
the service of learning value functions. The probabilistic unsupervised learning methods
in this paper can be seen as systematic approaches along these lines.

The most important theoretical direction for the future is to build models of value func-
tions that are more comprehensively hierarchical. We have found that a hierarchy of the
form of section 4 works well, both as a model for value functions, and as augmented repre-
sentations. Preliminary results even suggest that appropriately augmented representations
offer all the advantages in terms of speed-up of feudal Q-learning, at least in simple maze
tasks. Our hierarchy is strict in the probabilistic sense that given the state at the upper level,
just one of the lower level units can be selected; it is also slightly unconventional in that
the lower level is used to fit residual errors based on the estimate from the upper level. The
utility of rich, strict, hierarchies of methods of temporal abstraction such as HAM (Parr
& Russell, 1998), MAXQ (Dietterich, 1998) and the airport hierarchy (Moore, Baird &
Kaelbling, 1998) suggests that it is important to widen our scope.
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