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a b s t r a c t

In instrumental conditioning, there is a rather precise definition of goal-directed control, and therefore an
acute boundary between it and the somewhat more amorphous category comprising its opposites. Here,
we review this division in terms of the various distinctions that accompany it in the fields of reinforcement
learning and cognitive architectures, considering issues such as declarative and procedural control, the
effect of prior distributions over environments, the neural substrates involved, and the differing views
about the relative rationality of the various forms of control. Our overall aim is to reconnect some
presently far-flung relations.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Goals and subgoals play rich qualitative roles in the way that
we conceive, describe and indeed model behavior. They provide a
convenient structure to decompose tricky problems into elemental
pieces, and have been the object of much algorithmic attention.
However, they are far from the only way to couch or create
procedures that solve such problems, and it can be hard to show
from just observed behavior whether or not they have a causal
rather than a merely descriptive role.
In this paper, we start from a very sharp operationalization

of the distinction between goal-directed control and non-goal-
directed control coming from studies in animal conditioning
(Dickinson, 1985; Dickinson & Balleine, 2002) which has been
rendered computationally in terms of the difference between
model-based and model-free reinforcement learning (RL; Sutton
& Barto, 1998) control policies (Daw, Niv, & Dayan, 2005). Over the
course of learning, behavior migrates from being goal-directed to
being non-goal-directed. Such an evolution from amore deliberate
to more automatic control has many parallels across fields
of psychology and artificial intelligence (e.g., Anderson (1982),
Anderson and Lebiere (1998), Anderson et al. (2004), Crossman
(1959), Fitts (1964), Logan (1988), Newell and Rosenbloom (1981)
and Newell (1990)), and our aim is to elucidate some of the links.
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In the operationalization from animal conditioning, a goal-
directed action is defined as one that is performed because:
(a) the subject has appropriate reason to believe that it will achieve
a particular goal, such as an outcome; and (b) the subject has a
reason to seek that outcome in the first place. The propensity of the
subject to select a goal-directed action must therefore be affected
by experimental manipulation of either of these two conditions
— notably altering the contingency between action and outcome
(e.g., by presenting the outcome in the absence of the action), and
reducing or enhancing the attractiveness of the outcome (e.g., by
poisoning it). Actions that are not affected by these manipulations
are, by definition, not goal-directed. In the conditioning literature,
they are typically called habits, although that is not to say that they
are in any way unitary. There is substantial evidence that given
only limited experience of a new environment, choices are affected
by the manipulations, but over the course of learning, at least
some become immune, and therefore transfer from being goal-
directed actions to habits. There is also evidence that these two
forms of learning progress in parallel rather than serially, since the
degree of affectedness after small and large amounts of training can
be manipulated by reversible lesions of specific neural areas that
have (therefore) been associated with the two systems (Killcross &
Coutureau, 2003).
Daw et al. (2005) noted that this description of goal-directed

behavior is consonant with a form ofmodel-based optimal control.
In this, subjects are assumed to have (or to build from experience)
a model of the contingencies in the world, including the outcomes
associated with each action at each state of the world, and the
utility of each outcome. This model defines a tree of states, actions,
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and outcomes, with each level of the tree being associated with
a further action in the future. According to model-based control,
actions are chosen by searching this model either forwards to
the leaves of the resulting tree (working out the ultimate utility
consequent on each action) or backwards from the leaves (in this
simple case, working out which action leads to the highest utility
outcome). Varieties of both methods are standard in artificial
intelligence and computer science (Russell & Norvig, 1995).
Unfortunately, in moderate-sized problems, particularly those

such as mazes in which the subjects have to take many actions
(turning in many directions) before getting an outcome (such as
the exit), searching the tree of possibilities to work out which
action is best at a location (i.e. state) imposes computationally
ruinous demands on working memory and calculation. Intuition
for an alternative method in the case of the maze comes from
considering one of two possible functions. One, called an optimal
state-value function, reports how far each location is from the
exit shortest path. The other, called an optimal state-action-value
(or Q function Watkins, 1989), reports how far each location
is from the exit for each possible choice of first action at that
location, assuming that subsequent choices are optimal. Given
either function, most of the complexities of search can be avoided
because it is straightforward simply to move from one location to
the neighboring location that is closest to the exit (using the state-
value function) or to choose the action associatedwith the shortest
distance to the exit (using theQ function). Indeed, these functions
are exactly what the tree search methods produce.
The field of reinforcement learning has focused on finding

methods that can acquire such functions from experience in what
is knownas amodel-freemanner,without requiring themodel to be
constructed or searched (Sutton & Barto, 1998). Daw et al. (2005)
called these model-free methods cached, since they use storage or
caching of values based on experience as an alternative to online
search or calculation. There is a variety of such methods, from
the simplest, which acquire nothing much more than the identity
of the most successful action at a state (almost like instances of
successful choices, Logan, 1988;Williams, 1992), to more complex
ones based on value estimates (Barto, Sutton, & Watkins, 1990).
One property of model-free methods is that the stored values

associated with one state in the environment are not immediately
sensitive to changes in contingencies or outcome utilities at other
states. Rather, new stored values have to be acquired from new
experience as this filters through chains of transitions between
these states. Thus, for instance, subjects might have observed that
an outcome has been poisoned, and therefore has low utility,
but nevertheless have stored values at distant states that are
inconsistent with this fact. Thus, their propensity to choose an
action at one of those states that would lead to the outcomewould
be undiminished. This is exactly the mark of a non-goal-directed
action, i.e. a habit.
Daw et al. (2005) made the Bayesian suggestion that the

choice between model-based and model-free methods should
depend on their relative uncertainties. Model-based methods
learn more efficiently than model-free methods, because they
use calculation to propagate information around the tree of
states, action and outcomes, rather than experience in the world.
However, these calculations present tremendous challenges to
the neural substrate, implying inaccuracies in the values that
are produced. Model-free methods, though inefficient at learning
in new environments, present only minor challenges in use.
Therefore model-based methods are often less uncertain than
model-free methods at the start of learning, but more uncertain
after model-free methods have had sufficient experience in a
domain. This is one account of the experimental observation of the
transition from goal-directed to habitual control.
The precision of the distinction between the two forms of

control in conditioning makes it an ideal foil for the discussion
in the paper of issues and generalizations of the notion of
goal directed control. We briefly discuss (i) declarative versus
procedural control, and (ii) interdependence and independence;
(iii) interpreted versus compiled; and (iv) prior-bound versus data-
bound characterizations of policies; (v) instructed versus learned
control; (vi) prefrontal versus basal ganglia substrates; and finally
(vii) reflexive versus deliberative control (‘system 1’ and ‘system
2’ in the sense of Kahneman and Frederick (2002) and Stanovich
and West (2002)). As we will see, these issues are intertwined.
Our overall aim is to put together, and thereby provide a broader
context for, related strands of research.

2. Antipodes

2.1. Declarative versus procedural control

One key distinction between model-based and model-free RL
control is that the former is declarative in the senses both of
multiple memory systems (e.g., Squire, 2004) and programming
languages such as prolog. That is, the model provides a set of
(semantic) facts about the structure of the environment and the
subject in the form of a forward or generative model (Dayan,
Hinton, Neal, & Zemel, 1995; Kawato & Wolpert, 1998; Wolpert,
Ghahramani, & Jordan, 1995). These facts imply the optimal choice
of action, but they do not by themselves provide an immediate
mechanism for calculating this optimal choice. Indeed, there are
different methods (such as dynamic programming’s policy and
value iteration algorithms, Bertsekas, 2007; Puterman, 2005) that
can perform the search.
By contrast, model-free control is typically procedural in the

sense of memory systems (Squire, 2004) or imperative in the sense
of programming languages. That is, it specifies directly the choice
of action at each state or location as an imperative command, and
is the inverse or recognition model to its generative counterpart
(Dayan et al., 1995; Wolpert & Kawato, 1998).
Paired generative and recognition models have substantial

currency in unsupervised learning models of sensory plasticity
and inference (Dayan et al., 1995; Kawato, Hayakawa, & Inui,
1993; Rao, Olshausen, & Lewicki, 2002), and indeed the analogy
between these aspects of sensation and action has been made
before (Todorov, 2007). The difficulty of inverting the generative
model in an on-line manner, which is exactly analogous to the
difficulty of searching in the tree of actions and outcomes, led to
suggestions that a recognition model be learned off-line (Dayan
et al., 1995; Hinton, Dayan, Frey, & Neal, 1995), which is exactly
analogous to caching. The question as to whether a single model
can support immediate, cached, recognition as well as on-line
inversion, with the two competing for control and influence, has
been raised (Dayan, 1999), but not satisfactorily addressed. Off-line
learning need not only involve actual experience. Rather, samples
produced (‘dreamt’) by the generative model can be used during
times (notably sleeping, grooming and eating for rats, Diba &
Buzsáki, 2007; Foster & Wilson, 2006; Lee & Wilson, 2002; Louie
&Wilson, 2001; Skaggs &Mcnaughton, 1996) that active control is
suppressed (Hinton et al., 1995; Sutton, 1991).
By comparison with model-based and model-free RL, other

strands of work on automatization, notably associated with the
SOAR, EPIC, CAPS and ACT-R architectures (Anderson et al., 2004;
Just & Carpenter, 1992; Meyer & Kieras, 1997; Newell, 1990),
adopt a rather different perspective, studying the properties
and adaptation of complex policies for cognitively complex
tasks, rather than the relatively simple policies that suffice
for conditioning. However, there are some important links. For
instance, for ACT-R (which we use as our running example),
information from instructions can either be procedural, in the form
of ‘production’ rules, or declarative, in the form of propositions.
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Control based on a declarative representation of the problem is just
likemodel-based control,with the same extremedemands on tree-
based search. Control based on production rules is simple, as for a
recognitionmodel — being just an instantaneous patternmatching
process.
In ACT-R, there is a sophisticated learning process (called

knowledge compilation, (Anderson, 1982) or production compila-
tion, (Taatgen & Anderson, 2002; Taatgen, Huss, Dickison, & An-
derson, 2008)) that creates new procedures, for instance by filling
specific declarative facts into the generic procedures or produc-
tion rules that operate over those declarations, thereby creating
specific productions. Analogous methods appear in other architec-
tures such as chunking in SOAR (Newell, 1990; Newell & Rosen-
bloom, 1981). Of course, if the domain changes, then inconsistency
can arise between the fast-changing declarative knowledge of the
subjects and the filled-in details in the specific productions. The re-
sulting apparent infelicity of behavior is the exact analogy of habit-
ual control. Perhaps more troubling is that maintaining the logical
(or indeed statistical) integrity of the deductions in the declarative
system in the face of change in the world is an instance of the infa-
mous frame problem for artificial intelligence (McCarthy & Hayes,
1969). Any invalidated deductions that are present in the declara-
tive knowledge-base could give rise to habit-like behavior.
Note also that much use is made in ACT-R of a declarative,

blackboard-like (Newell, 1994; van der Velde & de Kamps, 2006),
fact-based working memory. This stores information about state
that is implied by past inputs but is not present in the current
sensation; something which is also required for both model-free
and model-based control (formally, to create something akin to
a Markov decision problem from a partially observable Markov
decision problem). ACT-R’s working memory also remembers
partial results of calculations and subgoals; tree search for model-
based RL requires a simple version of this too.

2.2. Interdependence versus independence

The strict separation between model-based (or declarative)
and model-free (or procedural) methods is an idealization
(Hammond, 1996), with at least four different interdependencies
being discussed in the literature. First, we described model-free
methods as using storage rather than calculation to work out
the future value of present actions at current states. However,
this storage is not best described as a simple look-up table
mapping states to values, but rather as a mapping from an internal
representation of the states to their values. Many different sorts of
representations have been considered — indeed there is a whole
field of unsupervised learning as a model of activity-dependent
development (of which the paired generative and recognition
models mentioned above is one example) that is concerned with
the induction of different representations of sensory inputs based
on their statistical structure (Rao et al., 2002). In the case of control,
one idea has been that states should be represented in terms of
their successors (Dayan, 1993), a representation that is then itself
a form of model of the world (Sutton, 1995). Model-free control
using such representations in the state-value or Q functions can
automatically be endowed with some of the properties of model-
based control.
Second, we described model-based evaluation as searching all

the way to the leaves of the tree of states and actions by which
point the outcomes will be clear. If this is hopelessly intractable,
it is possible to search to some tractable depth, and then use the
model-free state value function to substitute for the search that
would lie below. This is completely conventional, for instance, for
the case of playing board-like games such as chess (though it is not
ubiquitous, for instance not featuring in the most recent work in
the game of GO; (Gelly & Silver, 2008)). This coupling has not been
well explored in behavioral or neurobiological terms.
Third, in architectures such as ACT-R, one of themost important

effects of a procedure (which we have identified more closely
with model-free control) is to post a subgoal in working memory.
Solving this subgoal then becomes the object of other effort. By
itself, the subgoal is a declarative fact; it may be solved either
by mechanisms operating directly over declarative knowledge
about the domain, and thus be model-based, or procedurally,
given a more advanced stage of knowledge compilation. Thus,
just as we argued that model-based control should stealthily
adoptmodel-free values, procedural control should steathily adopt
declarative control where necessary to construct a whole policy.
Reinforcement learning has embraced subgoals in the form of
options (Sutton, Precup, & Singh, 1999), but currently lacks a
range of sophisticated and powerful methods for inducing options
automatically from the observed structure of a task.
Finally, one of themost important lessons from the explicitness

of large-scale cognitive architectures is that model-based or
declarative control is not a self-contained method of control, but
rather depends richly on model-free, procedural, mechanisms for
its calculations and instantiation. The procedural explicitness of
ACT-R in this respect makes possible the seamless co-existence of
declarative and procedural control, blurring the divide described
above.

2.3. Interpreted versus compiled control

Even after the proceduralization of declarative rules in ACT-
R, there is the possibility of further specialization, generalization
and tuning of the collection of productions to achieve superior
performance (the ‘autonomous’ stage of performance in the terms
of Fitts (1964)). Dayan (2007) considered the two extremes
in the context of a neural proposal for the implementation
of rules to solve problems such as the conditional one-back
task (Frank, Loughry, & O’Reilly, 2001) that are much simpler than
columnar arithmetic or air-traffic control (Anderson & Lebiere,
1998) but might nevertheless pose severe difficulties for non-
human primates.
Dayan (2007) noted that such problems can either be solved

with simple rules that are only relevant in very particular
circumstances and therefore need substantial checking to ascertain
that they are valid, or with complex rules that operate over
wide domains, and thus require less checking. He suggested a
uniform, neurally-inspired, architecture for combining simple and
complex rules, with an associative recall for the rules coupled to an
explicit process for testing the match between the preconditions
of the rules and the current working memory (and sensory
input). However, unlike Anderson (1982), this study did not
articulate an explicit method which actually carries out the
ultimate automatization of generating the complex rules.
One can make the analogy between these two forms of

solution and interpreted and compiled programming languages.
Rule matching and checking associated with the simple rules
are the on-line operations necessary for interpretation. The
creation of the complex, multi-functional rules that operate
autonomously, without the need for repeated checking, is another
form of compilation and automatization (albeit different from
the knowledge or procedure compilation involved in turning
declarative knowledge into procedures).
There is a hierarchy of levels joining paradigmatic examples of

interpretation and compilation. Rather speculatively, Dayan (2007)
suggested that there is a parallel between this sort of hierarchy
and that apparent in the structure of the representation in the
brain of sensory (notably visual Felleman & Essen, 1991) inputs,
and, furthermore, that the same sort of unsupervised learning
procedures that are believed to create the latter in sensory cortical
areas (which we mentioned above) might create the former in
premotor and prefrontal cortical areas.
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2.4. Prior-bound versus data-bound control

From a Bayesian perspective, when solving a new control
problem, it is necessary to combine prior expectations with
observations. These prior expectations can come inmany different
forms — everything from the overall statistics of rewards or
punishments or the strength or reliability of the degree of control
that a subject might be able to exert over the environment (Huys,
2007; Huys & Dayan, 2008). These two factors might also
interact, for instance with the possible asymmetry that, in natural
environments, rewards are typically rare and caused by a subject’s
own actions; whereas punishments (or at least threats) are
typically common, and caused by the actions of others (Dayan &
Huys, 2009).
Even rather generic priors can have a powerful and even

pernicious effect in control problems because of the tradeoff
between exploration and exploitation. In domains that are partially
unknown, subjects have to choose whether to devote effort to
exploring the consequences of actions that they do not knowversus
exploiting their existing knowledge and making the best choice
in the light of that. Exploration is only worthwhile if there is a
good chance of (a) finding an action with a better outcome than
the existing actions; and (b) having this outcome be a reliable
consequence of this action. Both of these are dependent on the
current beliefs about the world. Thus, if, for instance, the agent
starts with complete ignorance but a pessimistic view of the
reward and control characteristics of the environment, then its
willingness to explore will be limited, and thus it might not find
out that more optimism would have been called for. Huys (2007)
andHuys andDayan (2008) suggested this as an account of learned
helplessness (Maier & Seligman, 1976), a prominent animal model
of depression, inwhich exposure to one environment inwhich they
have no control over the termination of an unpleasant event causes
subjects to fail to attempt to exert control over other environments.
We have argued that model-based control, because of its

greater statistical efficiency, dominates in the face of little
evidence. Thus, we would expect it to be more affected by priors
than model-free control, which is data-bound because of the
substantial experience necessary for it to dominate. However, the
exploration–exploitation trade-off described above implies that
priors can affect model-free, habitual, control too. Since biases
about the environment manipulate the way that goal-directed
control performs sampling, they can limit the experience that the
model-free controller uses for learning. This can obviously affect
its ultimate choices.
There is another set of what might be seen as evolutionarily-

specified priors (Bolles, 1970; Breland & Breland, 1961; Dayan,
Niv, Seymour, & Daw, 2006; Dayan & Seymour, 2008; Kahneman
& Frederick, 2007). In Pavlovian conditioning, action-independent
predictions about future outcomes (such as future rewards) lead to
behavioral choices (such as approach) that are not only irrelevant
to the delivery of those outcomes (by experimental design), but can
actually be detrimental to that delivery (as in omission schedules
or negative automaintenance Williams & Williams, 1969). These
powerful prior policy biases are generally appropriate in natural
environments; but their unsuitability in experimentally-controlled
cases is revealing about the underlying mechanisms of control.
Although there is some evidence about the neural structures
involved in these Pavlovian choices (Reynolds & Berridge, 2001,
2002, 2008), it is only a hypothesis, based on the fact that model-
based mechanisms can actually predict the inappropriateness of
the consequences of these Pavlovian responses, that they are more
parasitic on habitual than goal-directed control (Dayan et al.,
2006).
2.5. Instructed versus learned control

Onemain difference between architectures like ACT-R and both
model-free and model-based reinforcement learning is that the
former emphasises, or at least allows, human verbal instruction
whereas the latter emphasises learning. One of the main forms
of verbal instruction is a set of declarative facts that specify
the structure of a control domain, possibly including collections
of goals and subgoals, but without providing the inverse or
recognitionpolicy appropriate to that domain. In fact, the ideal case
of providing ‘pure’ information about goalswithout any corruption
from performance in a domain for reward (that could also train
a model-free system) is hard to conceive without some form of
verbal instruction.
However, verbal instruction is not confined to the goal-directed

system, since precise recipes or procedures are also frequently
provided, or some combination of procedures together with
collections of goals and sub-goals. Further, model-based and
model-free learning can also be structured, for instance through
the shaping of competence, building complex functionality in a
step-by-step manner (Krueger & Dayan, 2009; Skinner, 1938).
The form of instruction that leads to the fastest learning,
and most flexible and robust ultimate skills is under active
investigation (Taatgen et al., 2008); the ongoing and highly
charged debates about themost effectivemethods of teachingwell
illustrates our ignorance in this domain.
Finally, in all cases, turning verbal instructions into the precise

internal representations of either declarative facts or productions
is itself an important problem, whose solution lies in the under-
plumbed complexities of neural processing of language.

2.6. Prefrontal cortex versus basal ganglia substrates

The concrete boundary in the animal conditioning literature
betweenmodel-based andmodel-free control hasmade it possible
to start elucidating the neural substrates of each. Evidence from
lesion studies in rats (Balleine, 2005; Killcross & Coutureau, 2003),
confirmed to a surprising degree in human functional magnetic
resonance imaging (fMRI; Tanaka, Balleine, & O’Doherty, 2008;
Valentin, Dickinson, & O’Doherty, 2007), implicates regions of the
prefrontal cortex and their connections to dorsomedial striatum
in goal-directed control, and the dorsolateral striatum in habitual
control. There is also anatomical (Haber, Fudge, &Mcfarland, 2000;
Joel & Weiner, 2000) and lesion-based (Belin & Everitt, 2008)
evidence that habits migrate along a ventral-dorsal axis of the
striatum as they become more deeply embedded, suggesting that
it will be desirable to make further subdivisions in the category of
non-goal-directed control.
In rats, reversible lesions in the prelimbic and infralimbic

areas of the medial prefrontal cortex are able to suppress goal-
directed and habitual choices, respectively (Killcross & Coutureau,
2003), which is one of the main sources of evidence that these
systems operate in parallel rather than serially. Furthermore, the
influence of Pavlovian predictions on the selection of actions
appears to involve the nucleus accumbens and ventral striatum
in both rats and humans (Balleine, 2005; Bray, Rangel, Shimojo,
Balleine, & O’Doherty, 2008; Reynolds & Berridge, 2001, 2002;
Talmi, Seymour, Dayan, & Dolan, 2008).
There is also evidence that the orbitofrontal cortex (O’Doherty,

2007; Rolls &Grabenhorst, 2008) and the basolateral nucleus of the
amygdala (Balleine & Killcross, 2006) are involved in representing
model-based values of outcomes, and the central nucleus of the
amgydala in representing model-free values (Balleine & Killcross,
2006). The neuromodulator dopamine has many of the correct
properties to direct learning of the model-free system (Barto,
1995;Montague, Dayan, & Sejnowski, 1996;Morris, Nevet, Arkadir,
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Vaadia, & Bergman, 2006; Roesch, Calu, & Schoenbaum, 2007;
Schultz, Dayan, & Montague, 1997; Suri & Schultz, 1999), at least
for appetitive outcomes (with serotonin having been suggested,
based onmuchweaker evidence, as being involved as an opponent
in learning based on aversive outcomes; Daw, Kakade, & Dayan,
2002; Dayan & Huys, 2009; Deakin, 1983; Deakin & Graeff, 1991).
Dopamine has also been implicated in controlling the vigor of
responding (a critical behavioral measure that has been all but
ignored in standard RL) based on an association with the long-run
rates of reward in an environment (Niv, Daw, Joel, & Dayan, 2007).
Unfortunately, the interaction between the systems at the

levels of the many separate and interconnected regions of the
prefrontal cortex, the amygdala and the striatum, and their
neuromodulatory inputs is far from clear. Just to take the issues
associated with dopamine — answers to such questions as the
involvement of this neuromodulator in model-based evaluation,
the control over the vigor with which goal-directed actions are
executed, the nature of the structurally different projection to
prefrontal cortex compared with the striatum (Lammel et al.,
2008), and the importance of the influence exerted by dopamine
over the control of prefrontal working memory (Braver & Cohen,
2000; O’Reilly, Braver, & Cohen, 1999; O’Reilly & Frank, 2006;
Williams & Goldman-Rakic, 1995) are all murky.
In terms of more complex cognitive problems and human

subjects, there is interesting recent progress using fMRI in two
rather different directions. One set of approaches postulates a
rather strict hierarchy of factors involved in the solution of such
tasks that fit rather snugly into a hierarchy of more or less
well-claimed territories in prefrontal cortex (Badre & D’esposito,
2007; Koechlin & Hyafil, 2007; Koechlin, Ody, & Kouneiher, 2003;
Koechlin & Summerfield, 2007). The other set involves studying
the mapping of more amorphous architectures such as ACT-R
onto neural structures (Anderson, Fincham, Qin, & Stocco, 2008;
Just, Carpenter, & Varma, 1999). This has particularly highlighted
the role of the basal ganglia in implementing the matching and
execution of production-like rules; the links to prefrontal areas of
these (which play a critical role in other models such as Frank et al.
(2001) and Rougier, Noelle, Braver, Cohen, and O’Reilly (2005)) and
other parts of the architecture are still evolving.

2.7. System 1 versus System 2

Central to Kahneman and Tversky’s famous heuristics and
biases program (Tversky & Kahneman, 1971), and indeed a wealth
of other dual process theories (e.g., Chaiken and Trope (1999),
Epstein (1994), Evans (2003), Schneider and Shiffrin (1977),
Shiffrin and Schneider (1984), Sloman (1996), Stanovich andWest
(2002)) is the notion that there are competing systems involved
in decision making, one (‘System 1’, in the terms of Stanovich and
West (2002)) being intuitive, and extending the sort of parallel
processing appropriate to perception to the case of judgement,
and the other (‘System 2’) being slower, more deliberate and
controlled. Table 1 in Kahneman and Frederick (2002) provides a
handy summary of some of the properties that have been proposed
to differentiate these systems both in terms of the characteristics
of the processes involved (such as automatic versus controlled)
and the characteristics of the content over which the processes
act (such as being affective versus neutral). Others have added
extra distinctions such as System 1 being concerned with short-
term, and System 2 with long-term, utilities (Mcclure, Laibson,
Loewenstein, & Cohen, 2004, although this is controversial, Kable
& Glimcher, 2007). According to Kahneman and Frederick (2002),
System 2 is effectively in overall control, for instance monitoring
the quality of the proposals made by System 1, ‘which it may
endorse, correct or override’.
Model-free and model-based control seem straightforward,
card-carrying,members of Systems 1 and 2, respectively. However,
on top of the many interdependencies that we have discussed
above, particularly in the context of architectures like ACT-R for
which the distinction is less clear, the clarity of the distinction
in conditioning (if indeed it is fair to generalize this to the cases
for human reasoning that are the actual bailiwick of dual process
theories) suggests that scepticism about some of the distinctions
may be in order, at least with respect to the content over which
their different processes act.
For instance, both forms of control are interested in optimiz-

ing exactly the same form of summed utility, just using differ-
ent mechanisms operating over different forms of knowledge. This
complicates any distinction in terms of either affective charge or
time horizon. Equally, the suggestion that System 1’s content in-
volves ‘causal propensities’ whereas System 2’s involves ‘statistics’
(Kahneman & Frederick, 2002), and is perhaps thereby less respon-
sible for statistical anomalies of reasoning, might seem strange.
Both model-free and model-based methods are sensitive to the
statistics of the structure of the environment, althoughmodel-free
methods combine those statistics with utilities (to create the net
state-value or state-action-value functions), whereasmodel-based
methods learn the statistics directly. Although it may be true that
model-free control is more susceptible to anomalies of Pavlovian
responses (Dayan et al., 2006; Dayan & Seymour, 2008; Kahneman
& Frederick, 2007), it is not clear that there is evidence that its
own calculations are subject to generic statistical flaws (although
there are some known statistical anomalies that arise when learn-
ing and sampling are coupled (Hertwig, Barron, Weber, & Erev,
2004; March, 1996; Niv, Joel, Meilijson, & Ruppin, 2002)).
Finally, we have argued (along with our interpretation of

authors such as Anderson (1982) andAnderson and Lebiere (1998))
that System 1 is in ultimate control rather than System 2, in the
sense that the realization of deliberative judgements (including
those involved in acceding to model-free choices) itself depends
on the execution of procedures.

3. Discussion

In this paper, we have discussed and attempted to link together
various distinctions that have been made between goal-directed
and non-goal-directed decisions, and the systems involved in
calculating and realizing those choices. We suggested that the
operationalization of the difference that is current in conditioning
(Dickinson, 1985; Dickinson & Balleine, 2002), together with
the rendition of this in terms of model-based and model-
free reinforcement learning (Daw et al., 2005), provide precise
characterizations that help sculpt the issues and understand their
generalizations to themore comprehensive cognitive architectures
such as SOAR (Newell, 1990) and ACT(-R) (Anderson, 1982;
Anderson & Lebiere, 1998; Anderson et al., 2008) for which the
distinctions are less acute.Wehave reviewed awealth of issues and
open concerns for the various accounts, arguing in particular that
the pure distinctions mostly fail to apply when complex problems
must be solved.
The most pressing future directions suggested by this discus-

sion involve hybridizing the views from reinforcement learning
and cognitive architectures, a project that is already active, for in-
stance in the work of Anderson (2006, 2008). In particular, to the
mechanisms of ACT-R, it would be important to add the notions of
the prior characteristics of decision problems that structure explo-
ration, the hierarchical representation of procedures suggested as
the product of unsupervised learning of the structure of tasks, and
the powerful representational learning methods believed to oper-
ate in sensory cortices. Conversely, model-based and model-free
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mechanisms could benefit from ACT-R’s emphasis on complete so-
lutions for tasks, and the hierarchical specification, specialization,
generalization and improvement of the parts of policies that the
productions constitute, and also the emphasis on subgoals, and
ways of inducing them in an automatic manner.
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