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SUMMARY

Reinforcement learning (RL) uses sequential experi-
ence with situations (‘‘states’’) and outcomes to
assess actions. Whereas model-free RL uses this
experience directly, in the form of a reward prediction
error (RPE), model-based RL uses it indirectly,
building a model of the state transition and outcome
structure of the environment, and evaluating actions
by searching this model. A state prediction error
(SPE) plays a central role, reporting discrepancies
between the current model and the observed state
transitions. Using functional magnetic resonance
imaging in humans solving a probabilistic Markov
decision task, we found the neural signature of an
SPE in the intraparietal sulcus and lateral prefrontal
cortex, in addition to the previously well-character-
ized RPE in the ventral striatum. This finding supports
the existence of two unique forms of learning signal
in humans, which may form the basis of distinct
computational strategies for guiding behavior.

INTRODUCTION

One of the most critical divisions in early-20th century animal

learning psychology was that between behaviorist notions

such as Thorndike’s (Thorndike, 1933), that responses are

triggered by stimuli through associations strengthened by rein-

forcement, and Tolman’s proposal (Tolman, 1948), that they

are instead planned using an internal representation of environ-

mental contingencies in the form of a ‘‘cognitive map.’’ Although

the original debate has relaxed into a compromise position, with

evidence at least in rats that both mechanisms exist and adapt

simultaneously (Dickinson and Balleine, 2002), a full character-

ization of their different learning properties and the way that their

outputs are integrated to achieve better control is as yet missing.

Here, we adopt specific computational definitions that have
been proposed to capture the two different structures of

learning. We use them to seek evidence of the two strategies

in signals measured by functional magnetic resonance imaging

(fMRI) in humans learning to solve a probabilistic Markov deci-

sion task.

Theoretical work has considered the two strategies to be

model-free and model-based, and has suggested how their

outputs might be combined depending on their respective

certainties (Daw et al., 2005; Doya et al., 2002). In a model-based

system, a cognitive map or model of the environment is

acquired, which describes how different ‘‘states’’ (or situations)

of the world are connected to each other. Action values for

different paths through this environment can then be computed

by a sort of mental simulation analogous to planning chess

moves: searching forward along future states to evaluate the

rewards available there. This is termed a ‘‘forward’’ or ‘‘tree-

search’’ strategy. In contrast, a model-free learning system

learns action values directly, by trial and error, without building

an explicit model of the environment, and thus retains no explicit

estimate of the probabilities that govern state transitions (Daw

et al., 2005). Because these approaches evaluate actions using

different underlying representations, they produce different

behaviors in experiments aimed at investigating their psycholog-

ical counterparts. Most such experiments (Dickinson and

Balleine, 2002) study whether animals adapt immediately to

changes in the environment. For instance, in classic ‘‘latent

learning’’ studies (Tolman and Honzik, 1930), animals are pre-

trained on a maze, then rewards are introduced at a particular

location to probe whether subjects can plan new routes there

taking into account previously learned knowledge of the maze

layout. The experiment discussed here, though nonspatial,

follows this scheme.

Learning in both model-based and model-free strategies is

typically driven by prediction errors, albeit with different meaning

and properties in each case. A prediction error is a difference

between an actual and an expected outcome and this signal

is commonly thought of as the engine of learning, as it is used

to update expectations in order to make predictions more

accurate.
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Figure 1. Task Design and Experimental

Procedure

(A) The experimental task was a sequential two-

choice Markov decision task in which all decision

states are represented by fractal images. The

task design follows that of a binary decision tree.

Each trial begins in the same state. Subjects can

choose between a left (L) or right (R) button press.

With a certain probability (0.7/0.3) they reach one

of two subsequent states in which they can choose

again between a left or right action. Finally, they

reach one of three outcome states associated

with different monetary rewards (0¢, 10¢, and 25¢).

(B) The experiment proceeded in two fMRI scan-

ning sessions of 80 trials each. In the first session,

subject choices were fixed and presented to them

below the fractal image. However, subjects could

still learn the transition probabilities. Between

scanning sessions subjects were presented with

the reward schedule that maps the outcome states

to the monetary payoffs. This mapping was

rehearsed in a short choice task. Finally, in the

second scanning session, subjects were free to

choose left or right actions in each state. In addi-

tion, they also received the payoffs in the outcome

states.
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In the case of model-free learning, this error signal (called the

reward prediction error, RPE) amounts to the difference between

the actual and expected reward at a particular state. In the

context of reinforcement learning (RL), this error signal is used

to learn values for action choices that maximize expected future

reward (Sutton and Barto, 1998). An abundance of evidence

from both single-unit recordings in monkeys (Bayer and

Glimcher, 2005; Schultz, 1998; Schultz et al., 1997) and human

fMRI (D’Ardenne et al., 2008) suggests that dopaminergic

neurons in the ventral tegmental area and substantia nigra pars

compacta exhibit a response pattern consistent with a model-

free appetitive RPE. Furthermore, BOLD signals in the ventral

striatum (vStr) show response properties consistent with dopa-

minergic input (Delgado et al., 2000, 2008; Knutson et al.,

2001, 2005), most notably correlating with RPEs (Haruno and

Kawato, 2006; McClure et al., 2003; O’Doherty et al., 2003).
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Model-based action valuation requires

predicting which state is currently ex-

pected, given previous states and/or

choices. These expectations can be

learned using a different prediction error,

called the state prediction error (SPE),

which measures the surprise in the new

state given the current estimate of the

state-action-state transition probabilities.

The central questions for the current

study are whether the human brain

computes the SPE as well as the RPE,

and, if so, what the different neural signa-

tures of these two signals are. One indi-

cation that the brain may compute SPEs

is that neural signals marking gross viola-
tions of expectations have long been reported, particularly using

EEG (Courchesne et al., 1975; Fabiani and Friedman, 1995) and

EEG in combination with fMRI (Opitz et al., 1999; Strobel et al.,

2008). Unlike the prediction error signals associated with dopa-

mine activity, which are largely reward-focused and associated

with model-free RL (Holroyd and Coles, 2002), these respond

to incorrect predictions of affectively neutral stimuli. Here, we

study quantitatively how state predictions are learned, and

seek trial-by-trial neural signals that reflect the dynamics of

this learning.

We designed a probabilistic sequential Markov decision task

involving choices in two successive internal states, followed by

a rewarded outcome state (see Experimental Procedures). The

task has the structure of a decision tree, in which each abstract

decision state is represented by a fractal image (Figure 1A). In

each trial, the participants begin at the same starting state and



Figure 2. Theoretical Model for Data Analysis

We used both a model-free SARSA learner and a model-based FORWARD

learner to fit the behavioral data. SARSA computes an RPE using cached

values from the previous trials to update state-action values. The FORWARD

learner, on the other hand, learns a model of the state space Tðs; a; s0Þby

means of a SPE, which is then used to update the state transition matrix.

Action values are derived by maximizing over the expected value at each state.

In session 2, a HYBRID learner computes a combined action value as an

exponentially weighted sum of the action values for the SARSA and

FORWARD learner. The combined action value is then submitted to softmax

action selection (see Experimental Procedures for details).
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choose between a left or right button press. Probabilistically,

they reach one of two subsequent states, each of which presents

another choice between a left or right action. Finally, they reach

one of three probabilistic outcome states providing a reward of

0¢, 10¢, or 25¢.

In order to dissociate SPEs and RPEs, volunteers were first

exposed to just the state space in the absence of any rewards,

much as in a latent learning design. This provides a pure assess-

ment of an SPE. Further, to ensure adequate and equivalent

experience, all choices in the first scanning session were

instructed; subjects only had to register them with the respective

button press (Figure 1B). The instructed choices in session 1

were created so as to reflect the underlying transition probabili-

ties of the decision tree exactly, albeit in a randomized order.

Next, during a break, the subjects were told the reward contin-

gencies and rehearsed the reward mapping with a simple choice

task (see Supplemental Experimental Procedures, available

online). Finally, in the second scanning session, they were able

to make choices on their own to gain rewards at the outcome

states (Figure 1B).

We hypothesized that participants would acquire knowledge

about the transition probabilities during session 1, despite the

absence of any rewarding outcomes. This state knowledge
can therefore be only acquired through model-based learning,

potentially updated via an SPE. Behaviorally, such knowledge

is ‘‘latent’’ during the first session and its presence or absence

can only be revealed subsequently when employed to guide

choices toward reward. However, we sought neural evidence

of state expectation formation during initial training. Specifically,

we expected to see correlates of SPEs, perhaps in the lateral

prefrontal cortex (latPFC), an area which has previously been

suggested to be involved in model-based RL (Samejima and

Doya, 2007). We hypothesized that such signals would be

distinct from neural RPEs, which are often reported in the vStr

(Haruno and Kawato, 2006; McClure et al., 2003; O’Doherty

et al., 2003; Seymour et al., 2004).

RESULTS

Behavioral Assessment of State-Based Learning
We first assessed the participants’ performance at the beginning

of the free-choice session, as a simple test of whether they were

able to make optimal choices by combining the knowledge they

acquired about state transitions and reward contingencies. In

terms of the two learning approaches described above, this

would be possible with model-based, but not model-free,

learning, because the latter focuses exclusively on predicting

rewards without building a model of the environment and there-

fore learns nothing during session 1. If, in accordance with the

model-based theory, the subjects were able to combine their

knowledge of the state space with the reward information pre-

sented prior to session 2, their first choice in session 2 would

be better than chance. Indeed, of all 18 subjects, 13 chose R

(the optimal choice) and 5 chose L in state 1 in the very first trial

of session 2 (p < 0.05, sign-test, one-tailed), indicating that their

choice of behavior cannot be completely explained by traditional

model-free reward learning theory.

Computational Models of Model-Free
and Model-Based Learning
In order to assess the behavioral and neural manifestations of

state and reward learning more precisely, we formalized the

computational approaches described above as trial-by-trial

mathematical models. Based on recent empirical support

(Morris et al., 2006), we used a variant of model-free RL, the

so-called SARSA learner (state-action-reward-state-action) for

implementing value learning via an RPE. By contrast, our

model-based FORWARD learner learned a state transition model

via an SPE (see Figure 2 and Experimental Procedures), and

used this to evaluate actions. In the second session, the mean

correlation of these prediction error signals from both models

was �0.37 (±0.09 SD) across all subjects. (In the first session,

the RPE is 0 throughout, due to the lack of rewards, and only

the SPE is nonzero.) Finally, since previous theoretical proposals

suggest that the brain implements both approaches (Daw et al.,

2005; Doya, 1999; Doya et al., 2002), we implemented a HYBRID

learner that chooses actions by forming a weighted average of

the action valuations from the SARSA and FORWARD learners.

The relative weighting is expected to change over time; indeed,

given suitable prior expectations, there are normative proposals

for determining how (Daw et al., 2005) (see also Behrens et al.,
Neuron 66, 585–595, May 27, 2010 ª2010 Elsevier Inc. 587



Table 1. Behavioral Model Fit

Parameter

Actual

Experiment

Random Trial

Sequence

SARSA learning rate 0.20 0.37 (0.19–0.65)

FORWARD learning rate 0.21 0.29 (0.21–0.44)

Offset for exp. decay 0.63 0.40 (0.20–0.64)

Slope of exp. decay 0.09 0.53 (0.20–0.93)

Inverse softmax

temperature

4.91 3.75 (2.22–4.82)

Lik AIC Lik AIC

SARSA 1217.94 2439.88

FORWARD 1319.75 2643.49

HYBRID 1202.28 2414.56 1256.56 2523.12

Model parameters, negative model likelihoods (Lik), and Akaike’s

Information Criterion (AIC), for the actual experiment and for the permu-

tation analysis with random trial sequences. The latter lists the median

parameter value from 1000 permutation samples and the interquartile

range (25th–75th percentile).
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2007). Given the singularity of the transition from nonrewarded to

rewarded trials, we built three simple models for the change in

weighting over time, finding that an exponential decay from

FORWARD to SARSA (Camerer and Ho, 1998) (Figure 2) fitted

best (see Table S1, available online).

Evaluating Behavioral Model Fit
These models not only make different predictions about the first

free-choice trial, as examined thus far, but also about how

subjects adjust their choice preferences, trial by trial, in response

to feedback thereafter. In order to test whether either model or

their combination best accounted for these adjustments, we

fitted the free parameters for each model across subjects by

minimizing the negative log-likelihood of the obtained choice

data over the entire free-choice session. The fit parameters,

the resulting model likelihoods, and Akaike’s information criteria

(AIC) are outlined in Table 1 (actual experiment). Thus fit, the

HYBRID learner provided a significantly more accurate explana-

tion of behavior than did SARSA or the FORWARD learner

alone even after accounting for the different numbers of free

parameters (likelihood ratio tests, HYBRID versus SARSA:

c2(2) = 21.32, p = 2.35 3 10�5; HYBRID versus FORWARD:

c2(2) = 224.94, p = 0). The expected values and estimated state

transition probabilities from all models are visualized in Figure S2

(available online) for the optimal choice trajectory. Finally, we

also computed the probability of correctly predicted choices

by our HYBRID model and a pseudo-R2 measure for each partic-

ipant (Daw et al., 2006) that indicating how much better our

HYBRID learner performs compared to a null model of random

choices for each subject (Table S2).

Further Behavioral Evidence for Model-Based Learning
We conducted an additional analysis to demonstrate in great

detail how behavioral choices are affected by model-based

learning. Although the entirety of all predetermined trials in

session 1 reflected the true transition probabilities exactly, the

specific random sequence of these trials in each participant
588 Neuron 66, 585–595, May 27, 2010 ª2010 Elsevier Inc.
would create different learning trajectories. If participants’ beliefs

about the transition probabilities were updated by error-driven

model-based learning (with a fixed learning rate, as assumed

in FORWARD), this may have left a bias toward the most recently

experienced transitions, resulting in particular beliefs at the end

of the session. These particular beliefs could in turn lead to

subject-specific choice trajectories as session 2 progressed,

which would be reflected in the fit of the model to those choices.

Conversely, if the subjects did not learn anything about the tran-

sition probabilities from their particular transitions using an SPE

(with a fixed learning rate), then we would not expect any influ-

ence of their particular sequence of trials in session 1 on their

choices in session 2. Thus, in the case of no model-based

learning in session 1, any sequence of trials (including the

actually experienced sequence) should lead to the same quality

of model fit to the choices, whereas in the case of state learning

with the FORWARD model, we would expect a better model fit

under the actual trial sequence compared to any other random

sequence.

We tested this by refitting the model 1000 times using

randomly permuted session 1 trial sequences and randomly

permuted intermediate states (See Supplemental Experimental

Procedures for details), and compared the model fit for the

session 2 choices against the fit based on the actual trial

sequence. The results of this additional analysis are presented

in Table 1 (random trial sequence) and confirm that our partici-

pants had indeed acquired knowledge about the particular

sequence of state transitions during the first session: 99.6% of

permutation samples provided a poorer explanation of choices

than the original (p = 0.004).

In conclusion, the behavioral results indicate (1) that the

participants successfully acquired knowledge about the state

transition probabilities in session 1 through a model-based

FORWARD learner and (2) that the participants’ behavior reflects

both model-based and model-free learning processes. This

invites a search for their neural manifestations in terms of SPEs

and RPEs.

Neural Signatures of RPE and SPE
We sought neural correlates of the prediction errors from both

models. For this, we derived an RPE from the SARSA learner

for session 2 and an SPE from the FORWARD learner for

both sessions and included them as parametric modulators at

the second decision state and the final outcome state in the

single-subject analyses (see Experimental Procedures). The

voxel-wise parameter estimate (beta) for these regressors indi-

cates how strongly a particular brain area covaries with these

model-derived prediction errors. These beta images were

included in a repeated-measures ANOVA at the second level

testing for the effect of each error signal across the group (see

Experimental Procedures).

In order to determine those brain areas that covaried with the

SPE, we pooled across both sessions and found significant

effects bilaterally in the posterior intraparietal sulcus (pIPS)

reaching on the left side into the superior parietal lobule and on

the right side into the angular gyrus, and in the lateral prefrontal

cortex (latPFC) (dorsal bank of the posterior inferior frontal gyrus

[pIFG], see circled areas in Figures 3A and 3B and Table 2). Other



Figure 3. Neural Representations of State

Prediction Errors and Reward Prediction

Errors

The SPE is pooled across both scanning sessions,

whereas the RPE is only available in the rewarded

session 2. BOLD activation plots on the right are

the average percent signal change (across

subjects, error bars = SEM) for those trials in which

the prediction error (PE) is low, medium, or high

(33rd, 66th, and 100th percentile PE range). Data

are extracted using a cross-validation procedure

(leave-one-out) from the nearest local maximum

from the coordinates listed in the Table 2 (circled

areas, see Experimental Procedures for details).

Red = SPE, green = RPE. (A and B) Significant

effect for SPE bilaterally in the intraparietal sulcus

(ips) and lateral prefrontal cortex (lpfc). (C) Signifi-

cant effects for RPE in the ventral striatum (vstr).

Color codes in the SPMs correspond to p <

0.001 and p < 0.0001 uncorrected.
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effects visible in Figure 3A (e.g., inferior temporal gyrus) did not

meet our statistical threshold for whole-brain correction and

are not further discussed. The graphs show the average percent

signal change (PSC) in BOLD activation across subjects for both

prediction error signals on trials in which that error signal was

low, medium, or high (bins defined at 33rd, 66th, and 100th

percentile, see Experimental Procedures for details). This reveals

a linear increase in BOLD activation across trials with increasing

SPEs, except for the left IPS, in which the increase in BOLD

activation occurs only for trials with the highest SPE. In contrast,

there is no such systematic relationship between BOLD activa-

tion and the RPE.

Conversely, when we tested for a correlation between BOLD

activation and the RPE, we found a significant effect in the vStr

(Figure 3C), consistent with previous accounts (McClure et al.,

2003; O’Doherty et al., 2003), but no effects for an SPE even at

p < 0.001 uncorrected. The graph of the average PSC across

subjects in this region shows the opposite pattern from that in

the pIPS and latPFC: a linear increase in BOLD activity across

trials with increasing RPE, but no such increase for the SPE.

In a follow-up analysis, to investigate the consistency of SPE

results between the sessions, we identified the peak voxels for
Neuron 66, 585–
the SPE signal in session 2 only, and

then tested for a significant SPE re-

presentation in session 1 in a reduced

spherical search volume (radius: 10 mm,

p < 0.05, family-wise error [FWE] correc-

tion for search volume). This procedure

ensures that the centers for the search

volumes are selected in a way that is

independent of the data in session 1.

We found significant effects of SPE in

session 1 bilaterally in latPFC and in the

right pIPS/angular gyrus (Figure 4), con-

firming that these areas correlate with

an SPE even in the absence of any reward

information (see Table 2). To test for
overlapping voxels with SPE representations in both sessions,

we employed a conjunction analysis (Nichols et al., 2005) and

found evidence that voxels in these regions were activated in

both sessions at p < 0.001 uncorrected.

Relationship between Neural SPE Signal and Behavior
We next considered whether this neural correlate of an SPE is

also behaviorally relevant for making better choices at the begin-

ning of the free-choice session. To address this question, we

correlated in each participant the parameter estimate for the

SPE in those regions possessing a significant SPE representa-

tion in session 1 (bilateral latPFC and right pIPS, extracted and

averaged from a 10 mm spherical volume centered on the group

peak voxel) with the percent correct choices. The latter is

a behavioral measure defined as the choice of the action with

the highest expected value (reward magnitude 3 true transition

probability) (see Figure S1), and is independent of the computa-

tional models employed for the imaging analysis. We observed

a significant correlation between the neural and the behavioral

data of r = 0.57 (p = 0.013) in the right pIPS, but not in latPFC

(left: r = 0.28, p = 0.27; right; r = 0.38, p = 0.12). This suggests

that the degree to which pIPS encodes an SPE representation
595, May 27, 2010 ª2010 Elsevier Inc. 589



Table 2. Statistical Results

Contrast Region Hemi BA x y z Z p

Average SPE in both sessions post IPS/SPL L 7 �27 �54 45 5.29 0.004

post IPS/angular gyrus R 40 39 �54 39 5.12 0.009

latPFC (dorsal pIFG) L 44 �45 9 33 5.62 <0.001

latPFC (dorsal pIFG) R 44 45 12 30 4.73 0.049

Reward prediction error in session 2 ventral striatum L 25 �12 6 �9 5.18 0.006

SPE signals in session 1 (within sphere [10 mm radius]

based on SPE signals in session 2)

post IPS L 7 n.s.

post IPS/angular gyrus R 40 36 �66 39 3.68 0.01*

latPFC (dorsal pIFG) L 44 �39 9 33 4.49 0.001*

latPFC (dorsal pIFG) R 44 48 9 36 3.20 0.039*

48 45 15 30 3.12 0.049*

Conjunction between SPE signals from both sessions latPFC (dorsal pIFG) L 44 �39 9 33 4.49 <0.001**

latPFC (dorsal pIFG) R 44 48 9 36 3.20 0.001**

post IPS/angular gyrus R 40 33 �66 39 3.75 <0.001**

post IPS/angular gyrus R 40 39 �54 39 3.31 <0.001**

SPE in both session > unsigned reward prediction

error [abs(RPE)]

Post IPS/angular gyrus R 40 36 �66 39 5.49 <0.001

All peaks are corrected for the entire brain volume at p < 0.05 unless stated otherwise. (*), corrected for 10 mm spherical search volume centered on the

peak of the SPE contrast in session 2. (**), uncorrected threshold of p < 0.001. IPS, intraparietal sulcus; SPL, superior parietal lobule; latPFC, lateral

prefrontal cortex; pIFG, posterior inferior frontal gyrus; BA, Brodmann Area.
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across subjects correlates significantly with the extent to which

subjects deploy a forward model in guiding their choices at the

beginning of session 2 (see Figure 5).

Differentiating the SPE Signal from Nonspecific
Attention or Salience
A possible explanation for the SPE signal is that it merely reflects

a general attentional or salience signal, with subjects deploying

greater attention on trials in which a given state was more unex-

pected, compared to those in which it was less unexpected.

However, we might expect that attention would be grabbed

equally by the delivery of unexpected rewards or omissions of

reward, and certainly more by either of these than the unex-

pected presentations of the somewhat less behaviorally salient

visual stimuli, which denote the different states in our task.

Thus, we tested the null hypothesis that the areas identified as

correlating with an SPE could be also explained by an unspecific

surprise signal by examining the correlations between our fMRI

data and the absolute value of our signed RPE signal [abs(RPE)],

which exactly captures the unexpectedness of the delivery or

omission of reward. This abs(RPE) signal correlated with a

number of brain regions including an IPS locus anterior to where

we found SPE correlates at p < 0.001 uncorrected (Figure S3).

However, a direct comparison between SPE and abs(RPE) re-

vealed a region of both posterior IPS that was significantly better

explained by the SPE than by the abs(RPE) signal at p < 0.05

corrected, as well as a region of latPFC that showed a difference

at p < 0.001 uncorrected (Figure S4). We also tested whether the

conjunction of SPE and abs(RPE) showed a significant effect in

our target region, in order to assess whether these signals

were even partially overlapping. No voxel survived the conjunc-

tion contrast, even at an uncorrected threshold. Taken together,
590 Neuron 66, 585–595, May 27, 2010 ª2010 Elsevier Inc.
these findings suggest that the SPE signal we observe in parietal

cortex and latPFC is unlikely to reflect a nonspecific arousal or

attentional signal.

DISCUSSION

We used a probabilistic Markov decision task to investigate the

neural signatures of RPEs and SPEs associated with model-free

and model-based learning. Our behavioral analysis demon-

strated that participants successfully acquired knowledge about

the state transition probabilities in the first nonrewarded session,

in which only the model-based system could usefully learn. They

were able to use that knowledge to make better choices at the

beginning of the second, free-choice, session. Subsequent

choices were most consistent with a hybrid account, combining

model-based and model-free influences. However, we found

that the supremacy of the model-based learner in the HYBRID

declined rapidly over the course of continuing learning. In the

imaging data we found trial-by-trial correlations of the model-

based SPE in the pIPS and latPFC, whereas a model-free RPE

correlated with the BOLD signal in the vStr. The fMRI data,

together with the computational modeling, therefore allowed

us to assess a trial-by-trial parametric signal of latent expecta-

tion formation during the training phase, even though its

behavioral consequences on choice are only observable in the

rewarded phase of the task.

Our findings of neural correlates of our SPE signal in latPFC

may relate to studies of human causal learning, which report

activity in the region while subjects learn causal relationships

between cues and consequences (Fletcher et al., 2001). Predic-

tion errors have been proposed as a putative mechanism for

guiding learning of such causal associations (Dickinson, 2001),



Figure 4. Neural Representations of the

State Prediction Error in pIPS and latPFC

Separately for Both Sessions

Data are extracted in the same way as in Figure 3

and plotted according to low, medium, or high

SPE (error bars = SEM across subjects, see

Experimental Procedures for details). Color codes

in the SPMs correspond to p < 0.001 and p <

0.0001 uncorrected.
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although to our knowledge, the precise mathematical form of

how such a putative causal learning error signal is implemented

in the brain has not yet been specified (Fletcher et al., 2001), and

previous imaging studies have not examined its trial-by-trial

computational dynamics. Furthermore, recent recording studies

in monkeys have associated neuronal activity in this area with

sequential planning behavior (Mushiake et al., 2006) and with

the monkey’s performance during dynamic competitive games

(Barraclough et al., 2004; Lee et al., 2004). On these grounds

the latPFC has been proposed to contribute toward the imple-

mentation of model-based RL, possibly in the form of Bayesian

belief states (Samejima and Doya, 2007), an account consistent

with our proposed role of this area in model-based RL. The

present results, when taken together with these previous find-

ings, could suggest a very general role for latPFC in learning

probabilistic stimulus-stimulus associations.

The finding that BOLD activity in pIPS correlates with an SPE

may be interpreted in the context of previous neurophysiological

studies into the activity of neurons in the lateral intraparietal area

(LIP) during saccadic decision-making. Putative pyramidal cells

report expectations about as-yet unknown characteristics about
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the state of the world (Gold and Shadlen,

2002), possibly coded in terms of the

expected values of saccades (Platt and

Glimcher, 1999; Sugrue et al., 2004).

Other subregions of posterior parietal

cortex (PPC) appear to be specialized

for different movement modalities (Cui

and Andersen, 2007), though less is

known about their behavior with respect

to decision variables. Under the view

that the fMRI BOLD signal reflects in

part the input into an area and intrinsic

computations within it (Logothetis et al.,

2001), it is straightforward to envision

the SPE input that we recorded as being
necessary for learning the structure of the environment neces-

sary to support these predictions. The finding that SPE signals

are present in pIPS while subjects are learning state transitions,

even in the complete absence of reward (session 1 of our task),

suggests that this region is involved also in pure state-learning,

and not just in encoding value-based representations. Further-

more, it is interesting to note that SPE signal in right pIPS is

predictive of subsequent successful choice behavior, whereas

the same signal in the left latPFC is not. This underlines the

importance of the state space representation that is built in the

parietal cortex, and suggests that the latPFC, despite maintain-

ing a similar representation of the SPE, may be concerned with

integrating other learning signals too, and therefore does not

exhibit the same clear link to subsequent choice behavior.

Unexpected events are often considered as leading to the

deployment of attention, in the form of orienting or executive

control. Further, the areas correlated with the SPE signal are

thought to be involved in aspects of attention (the PPC with

orienting/salience [Yantis et al., 2002] and frontal regions with

executive control [Corbetta et al., 2000; MacDonald et al.,

2000]). Thus, it is natural to question whether this correlation is
Figure 5. Relationship between Neural

Representation of an SPE and Choice

Behavior

The y axis represents a measure for the strength of

the relationship between BOLD activity and the

SPE. The x axis shows a measure of correct

performance. A ‘‘correct choice’’ was defined as

the choice of the action with the highest optimal

Q value in a particular state (see Figure S4 for

details on the optimal Q values). Error bars =

SEM across subjects.
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parasitic on some more general forms of attention. Our experi-

mental design does not allow us to rule this out definitively; and

indeed some models of associative learning use a signal akin to

our SPE to control the assignment of salience for learning to

particular stimuli (Pearce and Hall, 1980), according to some

accounts via a cholinergic pathway associated with the PPC

(Bucci et al., 1998). In this context, the model-based approach

used here would provide a computational account of the means

by which such attention is allocated on a trial-by-trial basis, and of

how those allocations change as a function of learning and expe-

rience. Our findings would then be novel evidence about the

mechanisms underlying this form of learning. However, the

appeal of this and other accounts that depend on salience is

weakened by the observation that the SPE is only a possibly

minor but very specific subcomponent of a general surprise

signal, which we would expect to be dominated by reward-

induced salience signals: unexpected delivery or omission of

reward at the end of a trial. Our finding that our model-based

SPE provided a significantly better account for the BOLD signal

in pIPS and latPFC than an unsigned RPE (Figure S4) provides

direct evidence for the distinction between these two signals.

Similarly, we observed that the correlation with the SPE is

present in the first session. The subjects’ choices were in-

structed during this session, which likely requires less engage-

ment of executive control processes compared to the free-

choice decisions in the second session. Therefore, it seems

unlikely that executive control is the sole reason for driving the

correlation between frontal regions and the SPE.

More recently, neuronal correlates of perceptual learning have

also been associated with data recorded from the PPC (Law and

Gold, 2008). Because our stimuli (fractal images, see Figure 1)

were selected for maximal discriminability in terms of color

scheme and shape, low-level perceptual learning resulting in

altered activation due to improvement in stimulus detection

and discriminability was most likely minimized in our study and

cannot account for the SPE signal found in pIPS. However,

perceptual learning—in the sense of subtly changed perceptual

representations due to reinforcement (Seitz and Dinse, 2007)—

may of course be engaged during the task, especially in session

2, although due to the absence of reinforcement in session 1, this

explanation is unlikely to account for the state-learning signals

observed throughout session 1 and 2.

In addition to the SPE signals we observed in pIPS and latPFC,

we also found evidence of RPE signals in the vStr. This is consis-

tent with many previous accounts (McClure et al., 2003;

O’Doherty et al., 2003; Seymour et al., 2004). Our findings

suggest that the two different types of learning signal are at least

partly anatomically dissociable in the brain. Whereas the RPE is

present predominantly in subcortical structures such as the

striatum, appropriate to the rich input into this area from mid-

brain dopaminergic neurons (Haber, 2003) known to broadcast

this signal (Schultz, 1998; Schultz et al., 1997), the SPE was

present instead in dorsal cortical areas, in the parietal and frontal

lobes. The distinct neuroanatomical footprints of these signals

could reflect the suggestion that they are being used to learn

representations in two separate but interacting systems involved

in behavioral control: a model-based (goal-directed) system that

may involve a number of cortical areas in addition to parts of
592 Neuron 66, 585–595, May 27, 2010 ª2010 Elsevier Inc.
anterior medial striatum, and a model-free (habitual) system

that may depend predominantly on dopaminergic-striatal path-

ways (Balleine et al., 2007). However, the data presented here,

in particular the weighted combination of both models in the

hybrid account, suggests that both learning mechanisms act

together to produce effective action selection rather than dual-

istic processing of two learning modules that exert separate

control over choice behavior.

In conclusion, there is an impressive agreement from a wide

variety of animal and human paradigms for the involvement of

at least two systems in decision-making and control. The simpler

of these two, associated with habits and model-free RL, has

attracted a huge wealth of work, and there are ample studies

(also confirmed here) elucidating its basic learning mechanisms

driven by an RPE. By comparison, the more sophisticated,

model-based system, with its rich adaptability and flexibility,

has been more sparsely studied. Here, we have pinned down

what is perhaps the most critical and basic signal for this system,

namely the SPE. In particular, we showed that the two error

signals are computed in partially distinct brain areas and illus-

trated how human choice behavior may emerge through the

combination of the systems.

EXPERIMENTAL PROCEDURES

Participants

Twenty subjects were tested on the experimental paradigm. All subjects were

recruited from the Caltech student population, were free of any neurological or

psychiatric diseases, and had normal or corrected-to-normal vision. Informed

consent was obtained from every subject and the study was approved by the

Caltech Institutional Review Board.

Two subjects were excluded because they did not meet our criterion for

minimal learning during the experiment: we compared the total amount of

monetary rewards that the subjects obtained at the end of the experiment

against a Monte-Carlo simulation of 10,000 randomly behaving agents and

determined the upper 95th percentile of this distribution. Two subjects, whose

outcome was not greater that this threshold, were excluded from the analyses.

The remaining 18 subjects (8 females) had a mean age of 24 years (±7.57 SD).

Experimental Task

We designed a Markov decision task in which the subjects had to make two

sequential choices (‘‘LEFT’’ or ‘‘RIGHT’’), one in each of two successive

decision states in order to obtain a monetary outcome at the end state.

Each state was signaled to the subject by a different fractal image (see Fig-

ure 1A for an example), which indicated to them that during the first two states

they had the choice between left or right button press. The states were inter-

sected by a variable temporal interval drawn from a randomly uniform distribu-

tion between 3 and 5 s. The intertrial interval was also sampled randomly from

a uniform distribution between 5 and 7 s. Upon each state the subjects had 1 s

to make the button press. If they failed to submit their choice in that time

window the trials restarted from the beginning.

The layout of the state transitions followed that of a binary tree (see Fig-

ure 1A). The first state was always the same. Following the first left/right choice

subjects transitioned into one of two different intermediate states with different

state transition probabilities. Following the second left/right choice they tran-

sitioned into one of three different outcome states associated with different

amount of monetary wins (0¢, 10¢, or 25¢) which were rescaled to 0, 0.4,

and 1 for all behavioral modeling. The assignment of fractal images to states

was randomized across subjects.

The experiment proceeded in two separate scanning sessions of 80 trials

each. During the first session, all decisions were predetermined and the

subjects simply had to register them. Subjects also received no rewards at

the outcome states during this part of the experiment (see Figure 1B). Taken
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together, all trials in this first session reflected the underlying transition

probabilities exactly, but they were presented in a randomized order. Subse-

quently, during a break, subjects were exposed to the reward contingencies

(see Supplemental Experimental Procedures). Finally, in the second scanning

session, subjects made their own choices and were rewarded at the outcome

states.

Data Acquisition

Functional imaging was performed on a 3T Siemens (Erlangen, Germany)

Trio scanner. Forty-five contiguous interleaved axial slices of echo planar

T2*-weighted images were acquired in each volume with a slice thickness of

3 mm and no gap (repetition time 2730 ms, echo time 30 ms, flip angle 80�, field

of view 192 mm2, matrix size 64 3 64). Slice orientation was tilted �30� from

the line connecting the anterior and posterior commissure to alleviate signal

drop out in the orbitofrontal cortex (Deichmann et al., 2003). We discarded

the first four volumes to compensate for T1 saturation effects.

Image Processing

Image processing and statistical analyses were performed using SPM5

(available at http://www.fil.ion.ucl.ac.uk/spm). All volumes from all sessions

were corrected for differences in slice acquisition, realigned to the first volume,

spatially normalized to a standard echo planar imaging template included in

the SPM software package (Friston et al., 1995) using fourth-degree B-spline

interpolation, and finally smoothed with an isotropic 8 mm FWHM Gaussian

filter to account for anatomical differences between subjects and to allow

for valid statistical inference at the group level. Images contaminated by

movement artifacts were identified using a velocity cutoff of 0.2 mm/TR.

Furthermore, unphysiological global signal changes were identified using

a cutoff for the global image mean of ± 2.5 SD above or below the session-

specific mean. Nuisance regressors were created for these scans (with a single

1 for the questionable scan and 0 s elsewhere) to be included as covariates of

no interest in the first-level design matrices.

Computational Learning Models

We implemented three learning models, which hypothesize different methods

by which participants might use experience with states, actions, and rewards

to learn choice preferences.

SARSA Learner

We derive an RPE by using a model-free SARSA learner, a variant of classic RL

(Sutton and Barto, 1998) (see also Figure 2). The name refers to the experience

tuple <s; a; r; s0; a0>, where s and s0 refer to the current and next state, a and

a0 to the current and next action, and r represents the obtained rewards. The

learner attempts to estimate a ‘‘state-action value’’ QSARSAðs; aÞ for each state

and action. These values are initialized to 0 at the start of the experiment, and

then at each step of the task the value of the state and action actually experi-

enced, QSARSAðs; aÞ, is updated in light of the reward obtained in the next state,

rðs0Þ and the estimated value QSARSAðs0; a0Þ of the next state and action. In

particular, an RPE dRPE is computed as:

dRPE = rðs0Þ+ gQSARSAðs0; a0Þ �QSARSAðs; aÞ

where g is the temporal discount factor, which we fixed to g = 1 because the

two-step task does not allow subjects to choose between rewards at different

delays.

The RPE is used to update the state-action value as:

QSARSAðs; aÞ= QSARSAðs; aÞ+ adRPE

where a is a free parameter controlling the SARSA learning rate.

FORWARD Learner

We used a dynamic programming approach to implement a FORWARD

learner, which utilizes experience with state transitions to update an estimated

state transition matrix Tðs; a; s0Þof transition probabilities. Each element of

Tðs; a; s0Þ therefore holds the current estimate of the probability of transitioning

from state s to s0 given action a. These transitions are initialized to uniform

distributions connecting each state and action to those on the next level of
the tree. Upon each step, leaving state s and arriving in state s0, having taken

action a, the FORWARD learner computes an SPE:

dSPE = 1� Tðs; a; s0Þ

and updates the probability Tðs; a; s0Þof the observed transition via:

Tðs; a; s0Þ= Tðs; a; s0Þ+ hdSPE

where h is a free parameter controlling the FORWARD learning rate. The esti-

mated probabilities for all states not arrived in (i.e., for all states s00 other than s0 )

are reduced according to Tðs; a; s00Þ= Tðs; a; s00Þ$ð1� hÞ, to ensure that the

distribution remains normalized.

Estimated transition probabilities are used together with the rewards at

the end states, r(s) (which were taken as given since the participants were

instructed in them), to compute the state-action value QFWD as the expectation

over the value of the successor state. This is done by dynamic programming,

i.e., recursively evaluating the Bellman equation defining the state-action

values at each level in terms of those at the next level. Here, QFWDðs; aÞ= 0

for the terminal reward states at the bottom of the tree, and for the other states:

QFWDðs; aÞ=
X

s 0
Tðs; a; s0Þ3 ðrðs0Þ+ arg max

a 0
QFWDðs0; a0ÞÞ:

HYBRID Learner

We considered a third, HYBRID learner, which combines state-action value

estimates from both SARSA and FORWARD learners into a single set of value

estimates. The model assumes that the two sets of state-action value esti-

mates are combined according to a weighted average. We assume that the

relative weight accorded to the two functions in determining the hybrid

state-action valuations (and thus choice behavior) can change over the course

of the free-choice scanning session (session 2). Following Camerer and Ho

(1998), we characterize the form of this change with an exponential function:

wt = l 3 e�kt

where wt is the trial-specific weight term for trial number t, and l and k are two

free parameters describing the form of the exponential decay (l: offset, k:

slope).

Q values for the HYBRID learner are then computed as a weighted sum of

the estimates from the two other learners, on trial t:

QHYBðs; aÞ= wt 3 QFWDðs; aÞ+ ð1�wtÞ3 QSARSAðs; aÞ:

Action Selection

Each of the models additionally assumes that participants select actions

stochastically according to probabilities determined by their state-action

values through a softmax distribution:

Pðs; aÞ= expðt 3 Qðs; aÞÞPn
b = 1expðt 3 Qðs;bÞÞ

where Q is QSARSA, QFWD, or QHYB, depending on the model, and the free

‘‘inverse temperature’’ parameter t controls how focused the choices are on

the highest valued action.

We fit each model’s free parameters to the behavioral data by minimizing the

negative log-likelihood �
P

logðPðs; aÞÞ of the obtained choices a given the

previously observed choices and rewards, summed over all subjects and trials.

The HYBRID learner has five free model parameters (a, h, t, l, and k); the

SARSA and FORWARD learners each have 2 (a or h, and t). We estimated

a single set of parameters for all participants because the unregularized

maximum likelihood estimators tend to be very noisy in individual subjects,

leading to very different and sometimes even outlying parameter estimates.

In addition, the resulting regressors for this kind of ‘‘model-based fMRI’’

data analysis tend to perform poorly. A single set of parameters, as frequently

employed in our recent work (Daw et al., 2006; Gershman et al., 2009; Gläscher

et al., 2009) imposes a simple but efficient regularization that stabilizes the esti-

mated model parameters. Goodness of fit was compared between models,

taking into account the different numbers of free parameters using likelihood

ratio tests and AIC.
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Statistical Analysis of Functional Imaging Data

The analysis of the functional imaging commenced with single-subject anal-

yses. We created subject-specific design matrices containing the following

regressors: (1) three regressors encoding the average BOLD response at

each of the three states (two choice states, one outcome state); (2) two regres-

sors encoding the model-derived prediction error signals (RPE and SPE)

modeled at the time of state 2 and the outcome; (3) two regressors of

model-derived value signals modeled at the time of state 1 and state 2 (not

further analyzed in this paper); (4) a nuisance partition containing regressors

modeling the individual scans that were identified as contaminated by

movement and unphysiological global signal change (see Image Processing

subsection above); and (5) a nuisance partition containing six regressors

that encoded the movement displacement as estimated from the affine part

of the image realignment procedure. Because subjects did not receive any

reward information in session 1, we only included the SPE signal; all other

model-derived variables were 0 throughout the entire session 1 because of

the lack of reward information. Both error signals were entered unorthgonal-

ized into the first-level design matrices.

These subject-specific design matrices were estimated and three beta

images for the prediction error signals (SPE from both sessions, RPE from

session 2) were entered into a repeated-measures ANOVA with factors error

(RPE, SPE) and session (sess1, sess2) correcting for nonspherical distribution

of the error term to test for a significant effect across the entire group.

We set our statistical threshold to p < 0.05 FWE corrected for the entire

brain volume. The areas surviving these corrected thresholds are listed in

Table 2 and are discussed in the main paper. However, for display purposes

we show the statistical maps with the significant correlation with both predic-

tion errors at p < 0.001 and p < 0.0001.

For the analysis about the consistency of SPE signal in pIPS and latPFC, we

insure independence of voxel selection by first identifying the cluster peaks in

these regions for the SPE signal in the rewarded session 2. We then defined

a spherical search volume (radius: 10 mm) around these peaks and identified

significant correlations (p < 0.05, FWE for the reduced search volume) between

the SPE and the BOLD signal in the independent session 1. For a formal statis-

tical test of identical voxels in session 1 and 2 that exhibit the correlation with

the SPE signal, we also employed a conjunction analysis (Nichols et al., 2005)

at an uncorrected statistical threshold of p < 0.001.

Plots of the data were created using the rfxplot toolbox for SPM5 (Gläscher,

2009), which is capable of dividing a parametric modulator into different bins

and estimating the average BOLD response for each bin. We extracted

the data for the plots of PSC in Figures 3 and 4 using a cross-validation

leave-one-out procedure: we re-estimated our second-level analysis

(repeated-measures ANOVA, see above) 18 times, always leaving out one

subject. Starting at the peak voxels for the SPE signal in IPS and PFC and

for the RPE in vStr, we selected the nearest maximum in these cross-validation

second-level analyses. From that new voxel we extracted the data from the

left-out subject and sorted all trials into three bins according to the size of

the SPE, and defined by the 33rd, 66th, and 100th percentile of the SPE range.

Then three new onset regressors containing all trials of each bin were created

and estimated for each left-out subject. The parameter estimates of these

onset regressors represent the average height of the BOLD response for all

trials in each bin. The data plots in Figures 3 and 4 are the average (across

all left-out subjects in the cross-validation analyses) parameter estimates

(betas) converted to PSC for these three regressors.
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