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Abstract
Rationale Decision-making involves two fundamental axes of
control namely valence, spanning reward and punishment, and
action, spanning invigoration and inhibition. We recently
exploited a go/no-go task whose contingencies explicitly
decouple valence and action to show that these axes are
inextricably coupled during learning. This results in a
disadvantage in learning to go to avoid punishment and in
learning to no-go to obtain a reward . The neuromodulators
dopamine and serotonin are likely to play a role in these
asymmetries: Dopamine signals anticipation of future rewards
and is also involved in an invigoration of motor responses
leading to reward, but it also arbitrates between different forms
of control. Conversely, serotonin is implicated inmotor inhibition
and punishment processing.

Objective To investigate the role of dopamine and
serotonin in the interaction between action and valence
during learning.
Methods We combined computational modeling with
pharmacological manipulation in 90 healthy human
volunteers, using levodopa and citalopram to affect dopamine
and serotonin, respectively.
Results We found that, after administration of levodopa,
action learning was less affected by outcome valence when
compared with the placebo and citalopram groups. This
highlights in this context a predominant effect of levodopa
in controlling the balance between different forms of control.
Citalopram had distinct effects, increasing participants’
tendency to perform active responses independent of outcome
valence, consistent with a role in decreasing motor inhibition.
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Conclusions Our findings highlight the rich complexities of the
roles played by dopamine and serotonin during instrumental
learning.

Keywords Pavlovian . Instrumental . Reinforcement
learning . Dopamine . Serotonin . Control

Introduction

The ultimate goal of behavioral control is to select policies that
maximize reward and minimize punishment. To achieve this,
animals are endowed with a flexible controller (typically
referred to as instrumental) that learns choices on the basis of
their contingent consequences. However, animals are endowed
with an additional controller (called a Pavlovian controller)
which produces stereotyped hard-wired behavioral responses
to the occurrence of affectively important outcomes or learned
predictions of those outcomes (Dickinson and Balleine 2002).
Two central forms of Pavlovian control are active approach
and engagement given the prospect of reward, and inhibition
and withdrawal given the prospect of punishment (Gray and
McNaughton 2000). Thus, in Pavlovian control, vigor and
valence are coupled, and this could be a source of suboptimal
behavior. Instrumental and Pavlovian controllers often
prescribe the same policies in a manner that can accelerate
the expression of good performance. These are the most
common circumstances encountered by animals and humans
alike. Everyone knows that obtaining a reward normally
requires some sort of overt behavioral response (go to win),
from picking berries in the forest, to buying them in a shop, or
going to a restaurant to eat them. Similarly, the most efficient
way to avoid a punishment is to avoid those actions that may
lead to it (no-go to avoid losing); it’s better to keep off the road
if you want avoid being driven over. However, when the
Pavlovian and instrumental controllers are in opposition,
behavioral output becomes suboptimal (Boureau and Dayan
2011; Breland and Breland 1961; Dayan et al. 2006). For
example, if an unexpected car threatens a pedestrian while
crossing the street, it is not uncommon that the pedestrian
freezes (which is a highly suboptimal Pavlovian influence)
before starting the appropriate running response (go to avoid
losing). Similarly, a hunter will often need to remain
completely still in the proximal presence of a potential prey
(no-go to win), waiting for the optimal moment to act. Failure
to be inactive during this critical period (another highly
suboptimal Pavlovian influence) results in the prey escaping
and the omission of the potential reward.

An important source of influence on the coupling between
action and valence may arise from monoaminergic
neuromodulation (Boureau and Dayan 2011; Cools et al.
2011; Gray and McNaughton 2000). Dopamine is believed
to generate active motivated behavior (Berridge and Robinson

1998; Niv et al. 2007; Salamone et al. 2007) and to support
instrumental learning (Daw and Doya 2006; Frank et al. 2004;
Wickens et al. 2007) through model-free reward prediction
errors (Bayer and Glimcher 2005; Morris et al. 2006; Schultz
et al. 1997). These joint roles of dopamine on action
invigoration and model-free reward prediction error signalling
resonate with the involvement of dopamine in Pavlovian
behaviors observed in experimental animals (Flagel et al.
2011; Parkinson et al. 1999). On the other hand, the role or
the serotonergic system is more debated, but it appears closely
related to behavioral inhibition in aversive contexts (Crockett
et al. 2009; Dayan and Huys 2009; Soubrie 1986). In order to
manipulate action and valence orthogonally, we and others
have designed go/no-go tasks that involve four different
conditions: go to win, go to avoid losing, no-go to win, no-
go to avoid losing. These tasks have been used to show the
involvement of serotonin in punishment-induced inhibition
(Crockett et al. 2009) and dopamine in invigoration of actions
that lead to reward (Guitart-Masip et al. 2012a).

However, the precise role played by these neuromodulators
during learning has yet to be investigated. To explore these
effects, we manipulated dopaminergic and serotoninergic
systems during learning. Participants received placebo,
levodopa, or citalopram. The pharmacological agents are
assumed to affect postsynaptic levels of dopamine (Koller
and Rueda 1998) and serotonin (Spinks and Spinks 2002),
respectively. However, the balance of their influences on
phasic and tonic aspects of these neuromodulators and the
anatomical location of their sites of action are not clear. If the
predominant effect were to enhance the coupling between
action and valence typically associated with the Pavlovian
control system, we would expect to see increased valence-
specific Pavlovian interference on instrumental learning.
Indeed, based on the bulk of the literature reviewed above,
one would exactly expect that after levodopa administration.
However, if the predominant effects of the drugs lay elsewhere,
for instance, in the modulation of the contribution of prefrontal
cortex to control (Hitchcott et al. 2007), then other effects
might arise, such as a decrease in the extent of suboptimal
behavior. Our results bear out the latter expectation. We found
differential, but not opposing, roles for dopamine and serotonin
on instrumental learning whereby boosting dopamine levels
decreased the coupling between action and valence on the one
hand, while boosting serotonin resulted in a valence-
independent decrease in behavioral inhibition.

Methods and materials

Subjects

Ninety healthy volunteers were recruited from a subject pool
associated with University College London’s Psychology
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Department and completed the pharmacological experiment.
They received full written instructions and provided written
consent in accordance with the provisions of University
College London Research Ethics Committee. Participants
were randomly assigned to one of three treatment groups: 30
participants received levodopa (13 female; age range, 17 years;
mean, 24.07, SD=4.08 years), 30 participants received
citalopram (17 female; age range, 15 years; mean, 23.31,
SD=3.77 years), and 30 participants received placebo (13
female; age range, 11 years; mean, 24.38, SD=3.22 years).
The study was double blind. All participants were right-
handed and had normal or corrected-to-normal visual acuity.
None of the participants reported a history of neurological,
psychiatric, or any other current medical problems. Two
participants were excluded (one from the placebo and one
from the citalopram groups) because of deterministic
performance. Two further participants did not complete the
task, one because of technical problems and the other because
of gastrointestinal side effects after receiving citalopram.

Experimental procedure for the drug study

Participants completed the task (see below) 60 min after
receiving levodopa (150 mg+37.5 mg benserazide; time to
reach peak blood concentration after oral administration 1–
2 h) or 180 min after receiving citalopram (24 mg in drops
which is equivalent to 30 mg in tablet; time to reach peak
blood concentration after oral administration 1–4 h). To
ensure participants and investigators were blind to the
treatment condition, each participant received one glass
containing either citalopram or placebo. Two hours later, they
received a second glass containing either placebo or levodopa
and waited for another hour before engaging with the go/no-
go learning task. The participants in the placebo group
received a placebo in both occasions. Participants earned
between £10 and £35, according to their performance in the
current task. In addition, after performing the go/no-go task,
participants engaged in an unrelated task and received
between £5 and £20 for their participation in this second task.
Participants completed a subjective state analogue-scales
questionnaire on three occasions. We did not detect any
difference in subjective ratings between treatment groups
(data not shown).

Behavioral paradigm

We used the learning version of an experimental design that
orthogonalizes action and valence (Guitart-Masip et al.
2012b). The trial timeline is displayed in Fig. 1. Each trial
consisted of three events: a fractal cue, a target detection task,
and a probabilistic outcome. At the beginning of each trial,
one of four distinct fractal cues was presented which indicated
whether the best choice in a subsequent target detection task

was a go (emitting a button press to a target) or a no-go
(withholding any response to a target). The fractal also
reported the valence of any outcome consequent on the
subject’s behavior (reward/no reward or punishment/no
punishment). The meaning of fractal images (go to win; no-
go to win; go to avoid losing; no-go to avoid losing) was
randomized across participants. As in Guitart-Masip (2012b),
but unlike Guitart-Masip et al. (2011), subjects had to learn
these by trial and error. Participants were instructed that
correct choice for each fractal image could be either go or
no-go and about the probabilistic nature of the task.

The target was a circle on one side of the screen and was
displayed for 1,500 ms starting 250 to 2,000 ms after the offset
of the fractal image. Based on the fractal image, participants
had to decide whether (go) or not (no-go) to press the key to
indicate the target location. A response was classified as a
correct go choice if participants pressed the key corresponding
to the correct side within 1,000 ms after target onset, and a no-
go choice otherwise. At 1,000 ms following offset of the
target, the outcome was displayed for 1,000 ms: A green
upward arrow indicated a £1 win; a red downwards arrow
indicated a £1 loss, and a yellow horizontal bar indicated no
win or loss. The outcome was probabilistic: In win trials, 80%
of correct choices and 20 % of incorrect choices were
rewarded (the remaining 20% of correct and 80% of incorrect
choices led to no outcome); in lose trials, 80 % of correct
choices and 20 % of incorrect choices avoided punishment.

The task included 240 trials in total, i.e., 60 trials per
condition. Before starting with the learning task, subjects
performed 20 trials of the target detection task in order to get
familiarized with the speed requirements.

Behavioral data analysis

The behavioral data were analyzed using the statistics software
SPSS, version 16.0. The probability of correct choice in the
target detection task (correct button press for go conditions and
correct omission of responses in no-go trials) were collapsed
across time bins of ten trials per condition and were analyzed
with a mixed ANOVA with time bins, action (go/no-go), and
valence (win/lose) as within-subject factors and treatment
(levodopa, citalopram, and placebo) as a between-subjects
factor. Greenhouse-Geiser correction was applied when the
sphericity assumption was violated.

Reinforcement learning models

Following Guitart-Masip et al. (2012b), we built six nested
models incorporating different instrumental and Pavlovian
reinforcement-learning hypotheses and fit these to the
observed behavioral data. All models assigned probabilities
to each action a t (here, go or no-go) on each trial t . These
probabilities were based on action propensities w (a t,s t) that
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depended on the stimulus on that trial and which were passed
through a squashed sigmoid function (Sutton and Barto 1998):

p atjstð Þ ¼ exp wð at; stð ÞX
a0
exp w a0; stð Þð Þ

2
4

3
5 1−ξð Þ þ ξ

2
ð1Þ

The models differed in the construction of the action
propensities and the value of the irreducible noise ξ. They
allowed us to test the hypotheses that behavior was purely
instrumental, or included a Pavlovian component (‘Pav’) which
captures the critical coupling between affect and effect: that there
were or were not asymmetries between the subjects’ sensitivities
to reward versus punishment (rew/pun); that they had an intrinsic
propensity to go versus no go (bias), or to repeat or avoid their

previous choice (stick); and that there was or was not irreducible
stochasticity (or trembling) in their behavior (noise).

More completely, ξ was kept at 0 for one of the models
(RW) but was free to vary between 0 and 1 for all other models.
For models RWand RW+noise, w(a ,s)=Q(a ,s) was based on
a simple Rescorla-Wagner or delta rule update equation:

Qt at; stð Þ ¼ Qt−1 at; stð Þ þ ε ρrt−Qt−1 at; stð Þð Þ ð2Þ

where ε is the learning rate. Reinforcements enter the equation
through r t{−1,0,1} and ρ is a free parameter that determined
the effective size of reinforcements. For some models (RW,
RW+noise, and RW+noise+bias), there was only one value
of ρ per subject. This meant that those models assumed that
loss of a reward was equally as aversive as obtaining a
punishment. Other models included different sensitivities to

Fig. 1 Experimental paradigm. On each trial, one of four possible fractal
images indicated the combination between action (making a button press
in go trials or withholding a button press in no-go trials) and valence at
outcome (win or lose). Actions were required in response to a circle that
followed the fractal image after a variable delay. On go trials, subjects
indicated via a button press on which side of the screen the circle
appeared. On no-go trials they withheld a response. After a brief delay,

the outcome was presented: a green upward arrow indicated a win of £1
and a red downward arrow a loss of £1. A horizontal bar indicated of the
absence of a win or a loss. On go to win trials a correct button press was
rewarded, on go to avoid losing trials a correct button press avoided
punishment, in no-go to win trials a correct withholding a button press led
to reward, and in no-go to avoid losing trials a correct withholding a
button press avoided punishment

958 Psychopharmacology (2014) 231:955–966



reward and punishment (RW(rew/pun)+noise+bias, RW(rew/
pun)+noise+bias+Pav, and RW(rew/pun)+noise+bias+
Pav+stick) allowing different values of the parameter ρ on
reward-and-punishment trials, thus assuming that loss of a
reward was not equally as aversive as obtaining a punishment.

Further models added extra factors to the action propensities.
For models that contained a bias parameter, the action weight
was modified to include a static bias parameter b :

wt a; sð Þ ¼ Qt a; sð Þ þ b if a ¼ go
Qt a; sð Þ else

�
ð3Þ

For the model including a Pavlovian factor (RW(rew/
pun)+noise+bias+Pav), the action weight consisted of three
components:

wt a; sð Þ ¼ Qt a; sð Þ þ bþ πV t sð Þ if a ¼ go
Qt a; sð Þ else

�
ð4Þ

V t stð Þ ¼ V t−1 stð Þ þ ε ρrt−V t−1 stð Þð Þ ð5Þ
where π was again a free parameter. Thus, for the “avoid loss”
conditions, in which the V (s ) would be non-positive, the
Pavlovian parameter inhibited the go tendency in proportion
to the negative value V(s ) of the stimulus, while it similarly
promoted the tendency to go in conditions in the “win”
conditions.

For the model including stickiness (RW(rew/pun)+noise+
bias+Pav+stick), the action weight consisted of four
components:

wt a; sð Þ ¼ Qt a; sð Þ þ bþ πV t sð Þ þ cχa¼a t−1ð Þ if a ¼ go
Qt a; sð Þ þ c χa¼a t−1ð Þ else

�
ð6Þ

where c is a free parameter that boosts or suppresses the action
performed on the previous trial. This component was added
because it is often found that subjects have a tendency either to
repeat or avoid doing the same action twice (Lau and Glimcher
2005; Schoenberg et al. 2007; Rutledge et al. 2010) and dietary
tryptophan depletion results in increased value independent of
choice perseveration (Seymour et al. 2012).

As in previous reports (Guitart-Masip et al. 2012a; Huys
et al. 2011), we used a hierarchical Type II Bayesian (or
random effects) procedure using maximum likelihood to fit
simple parameterized distributions for higher-level statistics of
the parameters. Since the values of parameters for each subject
are “hidden”, this employs the expectation–maximization
procedure. On each iteration, the posterior distribution over
the group for each parameter is used to specify the prior over
the individual parameter fits on the next iteration. For each
parameter, we used a single distribution for all participants.
Therefore, the fitting procedure was blind to the existence of
different treatment groups with putatively different parameter
values. Before inference, all parameters except the action bias
were suitably transformed to enforce constraints (log and
inverse sigmoid transforms).

Models were compared using the integrated Bayesian
Information Criterion (iBIC), where small iBIC values
indicate a model that fits the data better after penalizing for
the number of parameters. The iBIC is not the sum of
individual likelihoods, but the integral of the likelihood
function over the individual parameters (for details, see
Huys et al. 2011). Comparing iBIC values is akin to a
likelihood ratio test (Kass and Raftery 1995). The model
fitting and selection procedures were verified on surrogate
data generated from a known decision process (Electronic
supplementary material figures 1 and 2).

The model parameters of the winning model were compared
across treatment groups using a one-way ANOVAwhen these
were normally distributed (the sensitivity to reward and the
action bias) and the Kruskal–Wallis test when not normally
distributed. Normality was assessed by means of Kolmogorov–
Smirnov test. Independent sample t test or Mann–Whitney U
test were used as post hoc test when appropriate.

Results

Levodopa and citalopram differentially impact on the effects
of reward and punishment on go and no-go choices

A mixed ANOVA with time bins, action (go/no-go), and
valence (win/lose) as within-subject factors, and treatment
(levodopa, citalopram, and placebo) as a between-subjects
factor revealed two key patterns across all participants as
previously reported (Cavanagh et al. 2013; Guitart-Masip
et al. 2012a, b). First, overall performance across the entire
experiment was better in the go to win condition compared
with the go to avoid losing condition and in the no-go to avoid
losing condition when compared with no-go to win condition
(see Table 1). This results in a significant action by valence

Table 1 Raw overall behavioral performance

Go to win Go to
avoid

No-go
to win

No-go to
avoid

All groups 0.936±0.011 0.819±0.017 0.539±0.04 0.794±0.021

Placebo 0.955±0.014 0.776±0.04 0.536±0.073 0.856±0.03

Levodopa 0.917±0.027 0.837±0.063 0.648±0.063 0.773±0.038

Citalopram 0.936±0.017 0.843±0.014 0.428±0.07 0.754±0.041

Mean (±SEM) proportion of successful trials across the whole sample and
for each treatment group separately. A successful trial involved a correct
response within the response deadline for the go trials (go-to-win and go-
to-avoid-losing) and withholding response on the no-go trials (no-go-to-
win and no-go-to-avoid-losing). For go trials, anticipation of punishment
decreased the proportion of successful trials whereas for no-go trials
anticipation of reward decreased the proportion of successful trials. Note
that for each experimental condition, we only provide the overall
probability of a correct response across the entire experiment (collapsing
across time bins) because we did not detect any time bin×drug interaction
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interaction (F(1,85)=69.29, p <0.001), which is consistent
with a Pavlovian process linking action to valence. Second,
participants showed an overall better performance on go
compared with no-go conditions reflected in a main effect of
action (F(1,85)=64.17, p <0.001).

These effects were modulated by the pharmacological
treatments. First, there was a significant action by valence
by treatment interaction (F(2,85)=3.82, p =0.026) which
was driven by the levodopa group. Levodopa decreased
the difference in overall performance between the go to
win and the go to avoid losing conditions and between the
no-go to avoid losing and the no-go to win conditions (see
Fig. 2a). Second, we also observed a trend for a treatment
by action effect (F(2,85)=2.7, p =0.073) driven by an
enhanced main effect of action in the citalopram group
(see Fig. 2b). Interestingly, the two drug treatments only
differed significantly in the no-go to win condition in
which participants who received levodopa showed higher
performance than participants who received citalopram
(t (57)=2.34; p =0.023). This is a key result as it allows
us to distinguish between a decoupling of action and
valence from a facilitation of go responses regardless of
valence. Whereas a decoupling of action and valence is
associated with simultaneous facilitation of the go to avoid
losing and the no-go to win conditions, a facilitation of go
responses regardless of valence is associated with
facilitation of the go to avoid losing condition but
impairment of the no-go to win condition.

Finally, we found a main effect of time (F(2.9,242.3)=
199.1, p <0.001) in the absence of any interaction between
treatment×time (p >0.05). The learning curves for each trial
type because in each treatment group are available in the
supplementary material. These drug effects are unlikely
to be related to unspecific arousal effects because we
did not find any difference in subjective ratings between
treatment groups.

Effects of drugs on model parameters

We examined these effects in more detail using reinforcement-
learning models to parameterize a fine-grained account of the
interaction between action and valence while participants
learnt the reward structure of the environment. We built a
nested collection of models incorporating different
instrumental and Pavlovian reinforcement learning
hypotheses which have been discussed in detail previously
(Guitart-Masip et al. 2012b). In brief, the base model (RW) is
purely instrumental, learning action values independently of
outcome valence using the Rescorla-Wagner rule. This model
was augmented in successive steps: In RW+noise, the model
includes irreducible choice noise to the instrumental system;
in RW+noise+bias, the model further includes a value-
independent action bias that promotes or suppresses go
choices equally in all conditions; in RW(rew/pun)+noise+
bias, the instrumental system includes separate reward and
punishment sensitivities which implies that losing a reward

Fig. 2 Effects of levodopa and citalopram on choice performance. a
Mean (±SEM) difference in proportion of correct trials between go to win
and go to avoid losing (left) and between no-go to avoid losing and no-go
to win (right). These two different scores represent the two terms of the
interaction between action and valence in choice accuracy. Green
represents the differential scores for the placebo group, blue for the
levodopa group, and red for the citalopram group. Levodopa
decreased the disadvantage of learning go to avoid losing when
compared with go to win observed in the placebo group. Levodopa
also decreased the disadvantage of learning no-go to win when

compared with no-go to avoid losing observed both in the placebo
and the citalopram groups. Post hoc comparisons were implemented
by means of t test: *p <0.05. b Mean (±SEM) difference in proportion
of correct trials between go and no-go conditions, that is, the main
effect of action. Green represents the differential scores for the
placebo group, blue for the levodopa group, and red for the citalopram
group. Citalopram increased the advantage of learning the go when
compared with the no-go conditions observed in the levodopa and the
placebo groups. Post hoc comparisons were implemented by means of t
test: *p <0.05
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was not equally as aversive as getting a punishment; in
RW(rew/pun)+noise+bias+Pav, the model further includes
a (Pavlovian) parameter the adds a fraction of the state value
into the action values learned by the instrumental
system, thus effectively coupling action and valence
during learning; finally, the last model RW(rew/pun)+
noise+ bias +Pav+ stick includes a value-independent
perseveration parameter that boosts or suppresses the action
performed on the previous trial.

The most parsimonious model turned out to be RW(rew/
pun)+noise+bias+Pav. Critically, this includes a Pavlovian
bias parameter that increased the probability of go choices
proportionally to the overall (action-independent) state value
of each stimulus. This Pavlovian bias parameter thus
increased the probability of go choices when the state values
were positive (winning conditions) and decreased it when the
state values were negative (avoid losing conditions). The fact
that the winning model included a Pavlovian component
demonstrates that the observed learning behavior is best
characterized when including a component that couples action
and valence. Previous incarnations of the learning version of
the task have also implicated this model (Cavanagh et al.
2013; Guitart-Masip et al. 2012b), except that including
separate reward and punishment sensitivity parameters
improved the model fit independently from the Pavlovian
parameter (see Table 2). We did not consider this possibility
in our previous report where the winning model only included
one single reinforcement sensitivity parameter (Guitart-Masip
et al. 2012b).

Once we identified that the model that best characterized
the observed learning asymmetries includes an instrumental
learning system with irreducible noise and a value-
independent action bias along with a Pavlovian system that
effectively couples action and valence during learning, we
examined whether the pharmacological manipulations had
any effect on the parameters of the model. For each parameter
of the winning model, the median and 25th and 75th posterior
percentiles across the whole sample are displayed in Table 3.
We detected a difference between treatment groups on the
Pavlovian parameter (Kruskal Wallis test χ 2(2)=6.5,
p =0.039) and the bias parameter (one way ANOVA

F(2,85)=3.94; p =0.023). As shown in Fig. 3a, levodopa
decreased the Pavlovian parameter compared with placebo
(Mann–Whitney U test Z=2.14, p =0.033) and to citalopram
(Mann–Whitney U test Z=2.2, p =0.028). On the other hand,
citalopram increased the action bias parameter compared with
placebo (Fig. 3b, t test t(56)=2.62, p =0.011) and to levodopa
(t test t(57)=2.27, p =0.027). The effects of citalopram were
not related to changes in stickiness.

A recent study showed that dietary tryptophan depletion
increased a value-independent choice perseveration or
stickiness (Seymour et al. 2012). To rule out the possibility
that the effect of citalopram is explained by increased
stickiness, we compared the action bias and the stickiness
posterior parameter estimates for the model including the
stickiness parameter (despite the fact that this model did not
provide a better account of the data). We did not find any
significant difference in the stickiness parameter between the
placebo and the citalopram group (Mann–Whitney U test
Z =0.63, p =0.53), whereas the difference in action bias
parameter remained significant (t(56)=2.32; p =0.024).

Discussion

The current data reveal differential, but not opponent, effects
of levodopa (L -DOPA) and citalopram, on instrumental
control, which we assume arise from effects on dopamine
and serotonin, respectively. As in previous experiments, we
detected a striking asymmetry during instrumental learning in
the placebo group, whereby participants learnt better to emit a
behavioral response in anticipation of reward and learnt better
to withhold a response in anticipation of punishment. This
asymmetry was attenuated post-administration of levodopa,
and our computational analysis indicated this wasmediated by
a decreased influence of a Pavlovian controller that corrupts
instrumental control. Conversely, administration of citalopram
increased the propensity to perform go choices regardless of
outcome valence, as reflected in an increased magnitude of the
value independent action bias parameter.

A wealth of studies suggests at least three different roles
dopamine might play in guiding behavior. Two of these roles

Table 2 Model comparison

Number of
parameters

iBIC

RW 2 17,120

RW+noise 3 16,998

RW+noise+bias 4 15,398

RW(rew/pun)+noise+bias 5 14,765

RW(rew/pun)+noise+bias+Pav 6 14,011

RW(rew/pun)+noise+bias+Pav+Stick 7 14,016

Table 3 Parameters of the winning model

Percentile 25 Median Percentile 75

Sensitivity to reward 6.07 12.59 18.99

Sensitivity to punishment 6.2 9.33 12.86

Learning rate 0.08 0.18 0.31

Noise 0.93 0.96 0.98

Pavlovian 0.16 0.27 0.48

Action bias 0.35 1.14 2.21

Psychopharmacology (2014) 231:955–966 961



relate to value/action learning via reward prediction errors
(Bayer and Glimcher 2005; Montague et al. 1996; Morris
et al. 2006; Schultz et al. 1997) and action invigoration via
phasic (Satoh et al. 2003) and tonic release (Salamone et al.
1994) in Pavlovian (Lex and Hauber 2008; Parkinson et al.
2002) and instrumental (Dayan 2012; Guitart-Masip et al.
2012a; Niv et al. 2007) contexts. Both are tied to dopamine’s
effects in ventral and dorsal striatum, for example, through
influencing the balance between go-related direct and
no-go-related indirect pathways (Frank et al. 2004;
Wickens et al. 2007).

The role of dopamine in learning provides a plausible
mechanism for acquisition of active responses through
positive reinforcement and passive responses through
punishment. According to a prevalent view in reinforcement
learning and decision making, dopamine neurons signal
reward prediction error signals (Bayer and Glimcher 2005;
Montague et al. 1996; Schultz et al. 1997) in the form of
phasic bursts for positive prediction errors and dips below
baseline for negative prediction errors (Bayer et al. 2007), to
target structures including the striatum (McClure et al. 2003;
O’Doherty et al. 2003, 2004; Pessiglione et al. 2006). In the
striatum, increases of dopaminewhen an unexpected reward is
obtained reinforce the direct pathway and generate go choices,
while dips in dopamine levels when an unexpected
punishment is obtained reinforce the indirect pathway and
generate no-go choices (Frank et al. 2007; Frank et al. 2004;
Hikida et al. 2010; Wickens et al. 2007). However, this
framework provides no clear mechanism for learning to go
to avoid losing or no-go to win. For this reason, we have
argued that a coupling between action and valence within the
corticostriatal system could underlie the strong Pavlovian
influences in instrumental learning observed in our task
(Guitart-Masip et al. 2012b). However, if L-DOPA through
its impact on dopamine mediated this function, then we would

expect increased asymmetries in task performance, rather than
the decrease in asymmetric learning that we observed.

It is known that dopamine depletion results in decreased
motor activity and decreased motivated behavior (Palmiter
2008; Ungerstedt 1971), along with decreased vigor or
motivation to work for rewards in demanding reinforcement
schedules (Niv et al. 2007; Salamone et al. 2005). Conversely,
boosting dopamine levels with levodopa invigorates motor
responding in healthy humans (Guitart-Masip et al. 2012a),
possibly by increasing the invigorating effects exercised by
average reward rate on response time (Beierholm et al. 2013).
Additionally, enhancing dopamine in the nucleus accumbens
increases vigor in appetitive Pavlovian-instrumental transfer
(Lex and Hauber 2008; Parkinson et al. 2002) and invigorates
appetitive instrumental actions (Taylor and Robbins 1984,
1986). However, if this was the predominant effect of
levodopa, then we would have expected increased action
biases and/or Pavlovian influences, which in fact did not
arise.

A third potential role for dopamine arises from its influence
on the balance between different sorts of control (Hitchcott
et al. 2007). This function can be achieved, for instance, by
facilitating the operation of prefrontal processes such as
working memory or rule learning (Clatworthy et al. 2009;
Cools and D’Esposito 2011; Mehta et al. 2005; Williams
and Goldman-Rakic 1995), perhaps reducing the error in their
outputs and thereby increasing their influence on behavior
(Daw et al. 2005). An alternative mechanism by which
dopamine may arbitrate between different sorts of control is
through recruitment of the prefrontal–subthalamic nucleus
pathway (Aron and Poldrack 2006; Fleming et al. 2010)
to raise a decision threshold within the basal ganglia and
thereby prevent execution of a biased decision computed
in the striatum (Cavanagh et al. 2011; Frank 2006;
Zaghloul et al. 2012).

Fig. 3 Effects of levodopa and citalopram on model parameters. a
Maximum a posteriori (MAP)median parameter estimates of the best model
for the Pavlovian parameter. Green represents the differential scores for the
placebo group, blue for the levodopa group, and red for the citalopram
group. Levodopa decreased the Pavlovian parameter when compared with
placebo and citalopram. Post hoc comparisons were implemented by means

of Mann–Whitney U test: *p<0.05. b Maximum a posteriori (MAP)
median parameter estimates of the best model for the action bias parameter.
Green represents the differential scores for the placebo group, blue for the
levodopa group, and red for the citalopram group. Citalopram increased the
action bias parameter when compared with placebo and levodopa. Post hoc
comparisons were implemented by means of t test: *p<0.05
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The involvement of a prefrontal mechanism in overcoming
a Pavlovian interference is supported by recent evidence that
theta power over midline frontal sensors exert a moderating
effect on Pavlovian influences on trials where Pavlovian and
instrumental control conflict (Cavanagh et al. 2013).
Furthermore, successfully learning to perform the no-go
conditions in our task is known to involve a recruitment of
inferior frontal gyrus (Guitart-Masip et al. 2012b). A related
finding is the observation that levodopa increases the degree
to which young healthy participants employ model-based, as
opposed to model-free, control in a two-step choice task
(Wunderlich et al. 2012), a task sensitive to manipulations of
working memory load (Otto et al. 2013). Concomitantly,
depleting dopamine can boost model-free control (de Wit
et al. 2012). Thus, the effects we observe may in part depend
on dopamine’s actions on functions implemented in prefrontal
cortex (Hitchcott et al. 2007). However, future imaging
experiments are required to localize the anatomical site and
component processes that account for the observed effects of
levodopa seen in the context of the current task.

Two previous experiments from our laboratory also suggest
a role for dopamine in decoupling the instrumental and
Pavlovian learning systems in the current task, although they
do not pin down the site of its action. In one, older adults
showed the same asymmetric association between action and
valence that we report in younger adults. Furthermore, in older
adults, we also found that the integrity of the substantia nigra/
ventral tegmental area, as measured with structural magnetic
resonance imaging, is positively correlated with performance
in the no-go to win condition, the condition with highest
Pavlovian and instrumental conflict and worst performance
(Chowdhury et al. 2013). In the other, we studied the effects of
levodopa on striatal BOLD signal in subjects who had
explicitly been taught the contingencies of the task rather than
having to learn them for themselves. In this context, striatal
BOLD responses are dominated by action requirements (go>
no-go) rather than valence (Guitart-Masip et al. 2011).
However, after administering levodopa, there was decreased
BOLD response in the no-go to win condition along with
increased BOLD in the go to win case (Guitart-Masip et al.
2012a). This neuronal effect may be a homologue of the
decrease in a Pavlovian bias observed in the current study
after administration of levodopa and suggest yet another
mechanism by which a supposedly prefrontal effect of
levodopa may decrease the Pavlovian bias, namely by
modulation of model-free representations of prediction errors
at a subcortical level (Daw et al. 2011; Doll et al. 2011).

There is good evidence of a role for serotonin in inhibition
(Soubrie 1986) with serotonin depletion in rats impairing their
ability to withhold action in a symmetrically rewarded go/no-
go task (Harrison et al. 1999) and increasing the number of
premature responses in the five choice reaction time task (Carli
and Samanin 2000; Harrison et al. 1997). Furthermore,

selectively inhibiting serotonin neurons and preventing
serotonin increases in the prefrontal cortex abolishes the ability
of rats to wait for rewards during a long delay (Miyazaki et al.
2012). Nevertheless, involvement of serotonin in behavioral
inhibition is typically complicated (Cools et al. 2011; Drueke
et al. 2010). A previous study found that dietary tryptophan
depletion abolishes punishment-induced inhibition (as
measured with reaction times) akin to the disadvantage of
performing a go response in the avoid losing condition when
compared with the winning condition (Crockett et al. 2009),
and recent follow up study suggests that this effect is driven by
a Pavlovian mechanism (Crockett et al. 2012).

By themselves, these results depict a complex picture
without any clear expectation about the effects of citalopram.
Citalopram is a selective serotonin reuptake inhibitor, whose
direct effect is locally increased serotonin availability.
However, acute citalopram administration results in decreased
total postsynaptic serotonin availability, at least at the cortical
level (Selvaraj et al. 2012), possibly through a presynaptic
inhibitory mechanism (Artigas et al. 1996; Hajos et al. 1995).
Citalopram is likely to have weaker effects than dietary
tryptophan depletion, and the study suggesting a Pavlovian
source for punishment-induced inhibition (Crockett et al.
2012) is most equivalent to our steady state or instructed
study, where we did not observe an effect of citalopram
(Guitart-Masip et al. 2012a).

Our data suggest that the effects of citalopram were
confined to a behavioral inhibition independent of valence,
with no apparent modulation of the strength of the Pavlovian
parameter. Given the lack of effect on learning, one might
have thought that citalopram, as in (Guitart-Masip et al.
2012a), would have had no effect at all. However, two
functional differences between taught and learnt versions of
our task are worth noting. First, subjects in the learning
version have to overcome a value-independent action bias that
may have arisen because participants performed 20 target
detection trials in order to get familiarized with the speed
requirements, before embarking on the learning task; second,
as a result of this, they choose go more frequently, rendering
themselves more susceptible to the effects of perseveration.
Our computational model clearly shows that the effects of
citalopram are captured by an increase in action bias, which
may explain why we only find an effect of citalopram when
the task involves the requirement to overcome an action bias.

The current data again highlight the importance of
orthogonally manipulating action requirements and outcome
valence if one wants to reveal the full complexity of the roles
played by dopamine and serotonin in instrumental learning.
We found that boosting dopamine via levodopa decreases the
pervasive coupling between Pavlovian and instrumental
control systems. On the other hand, our data reveal the
differential, but not opponent, effect of reducing motor
inhibition by manipulating serotonin via citalopram. Overall,
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the data speak to a need for wider panoply of methods for
manipulating dopamine and serotonin in human subjects,
allowing the more fine-grained range of effects evident in
more pharmacologically and spatially restricted studies in
animals to be examined.
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