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The selection of actions, and the vigor with which they
are executed, are influenced by the affective valence of
predicted outcomes. This interaction between action
and valence significantly influences appropriate and
inappropriate choices and is implicated in the expression
of psychiatric and neurological abnormalities, including
impulsivity and addiction. We review a series of recent
human behavioral, neuroimaging, and pharmacological
studies whose key design feature is an orthogonal
manipulation of action and valence. These studies find
that the interaction between the two is subject to the
critical influence of dopamine. They also challenge exist-
ing views that neural representations in the striatum
focus on valence, showing instead a dominance of the
anticipation of action.

Introduction
Subjects should rationally choose which actions to emit
(see Glossary), and with what vigor, based on the rewards
or punishment potentially gained or avoided. Actions are
thus instructed by valence. Because subjects might just as
well act vigorously or withhold a response studiously to
gain a reward or avoid a punishment, there should be no a
priori dependence between action and valence (Figure 1)
and they are duly studied mostly in isolation. This research
has revealed that, among other regions, supplementary
motor cortex and sensorimotor sectors of the basal ganglia
are involved in controlling motor performance [1–4]
whereas the ventral striatum and its dopaminergic inner-
vation, as well as medial and orbital prefrontal regions, are
associated with the representation and calculation of
expected affective value [5–9].

This a priori independence between action and valence
is gracefully satisfied in instrumental control [10,11]. How-
ever, instrumental control competes and cooperates with
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Glossary

Action: the behavioral output. Action can be reduced to two categorical

extremes: (i) the emission of a behavioral response, or a ‘go’ choice; and (ii) the

absence of a particular overt behavioral response, or a ‘no-go’ choice.

Sometimes, action and vigor are synonyms, reporting the alacrity of behavioral

outputs.

Action-based value: the value associated with the performance of an action at a

state.

Conditioned suppression: a form of PIT in which the Pavlovian stimulus

predicts the occurrence of a punishment. Presenting it decreases the likelihood

and vigor of the instrumental response directed to obtaining reward.

Instrumental control: the determination of behavioral output (the generation or

inhibition of overt motor behavior) by an animal or human in the light of the

contingency (dependency) between this output and an outcome. A laboratory

example is the Skinner box, in which an animal presses a lever to obtain a food

pellet.

Omission schedule: an experimental setting in which emitting a particular

behavioral response results in the omission of a reward. Negative automain-

tenance is a type of omission schedule in which a Pavlovian approach to a

rewarding stimulus results in omission of a reward.

Pavlovian control: the reflex behavioral output elicited in animals and

humans by stimuli that have a contingent relationship with an outcome that

can be either a reward or a punishment. The provision or prevention of the

outcome is independent of the response. When presented, the outcomes

themselves also engender sometimes different Pavlovian responses. The

most famous example is the salivation response to the sound of a bell

observed in dogs by Pavlov after repeated pairings of the presentation of

food with the sound of the bell. The reflex responses differ between

species.

Pavlovian–instrumental transfer (PIT): PIT experiments show that Pavlovian

responses can influence instrumental control. A typical PIT experiment

involves three phases: (i) a Pavlovian training phase, which establishes a

stimulus’ ability to predict the delivery of an outcome; (ii) an instrumental

training phase in which a particular response is learned to be performed to

obtain an outcome; and (iii) a transfer phase in which the (Pavlovian) stimulus

is presented while the subject is allowed to perform the instrumental response.

Positive PIT: if the Pavlovian stimulus predicts the occurrence of a reward,

presenting it increases the likelihood and vigor of appetitively directed

instrumental responses, particularly if the Pavlovian and instrumental out-

comes are the same.

Reward-prediction error: the difference between the value obtained when

entering a new state or performing an action (reward) and the expected

value of being in that state or performing that action. Reward-prediction

errors are more complex in tasks that are substantially extended over

time.

State-based value: the value associated with being in a given state, averaging

over the actions that are taken at that state.

Two-factor theory of active avoidance: this proposes that active avoidance

involves two processes or ‘factors’, one Pavlovian and the other instrumental.

The Pavlovian factor involves learning that a stimulus predicts an aversive

outcome. The instrumental factor involves learning a behavioral response that

removes or terminates that stimulus, implying safety.
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Figure 1. The two axes of behavioral control – affect or valence – running from

punishment to reward, and effect or action, running from motor inhibition to

motor activation. For an instrumental control system (in blue) these two axes are

mutually independent. Therefore, an instrumental controller should learn equally

well to invigorate action to obtain a reward (‘go to win’), to invigorate action to

avoid a punishment (‘go to avoid losing’), to inhibit action to avoid punishment

(‘no go to avoid losing’), and to inhibit action to obtain a reward (‘no go to win’). By

contrast, action and valence are coupled in a Pavlovian control system (in red) so

that reward is associated with action invigoration (approach and engagement)

whereas punishment is associated with action inhibition (withdrawal and

inhibition). At the neuronal level, the same dual association between action and

valence may be observed within ascending monoaminergic systems. The

dopaminergic system (DA) is involved in generating active motivated behavior

and reward prediction, whereas the serotonergic system (5HT) appears affiliated

with behavioral inhibition, potentially in aversive contexts.
Pavlovian control, which generates prespecified responses
in the light of biologically significant outcomes and their
predictors. Pavlovian responses couple action and valence
(promoting approach and engagement in the face of reward
and inhibition or perhaps active escape in the face of
punishment), forcing interactions even when they are
suboptimal. The importance of these interactions is that
they might help explain a wealth of behavioral anomalies
such as impulsivity and addiction, where the effect of
valence apparently overrides instrumental action selection
[12–14].

It is perhaps surprising that, until recently, only a few
tasks have examined these interactions (e.g., [15,16]). For
example, most imaging tasks that study the representation
of valence in the human brain have either required or at
least permitted particular actions. However, in such
designs it is not possible to distinguish whether a signal
is associated with valence (i.e., reward versus punishment)
or action (i.e., go versus no-go). Thus, a fuller psychological
and neural understanding depends on the simultaneous
and separate manipulation of these factors.

One task (which we call the ‘orthogonalized go/no-go
task’) that was explicitly designed to study the interaction
of action and valence [17] involves four conditions, each
signaled by a different visual stimulus (Figure 1): active
responses to obtain rewards (‘go to win’); active responses
to avoid punishment (‘go to avoid losing’); passive
responses to obtain rewards (‘no go to win’); and passive
responses to avoid punishment (‘no go to avoid losing’).
Variants have been used to study behavior and brain
responses [as measured with functional MRI (fMRI)] when
subjects were either explicitly instructed what to do or had
to learn this for themselves. The effects of manipulating
the dopaminergic and serotonergic systems with systemic
manipulations have also been examined [17–22].

The results of this substantial body of experiments pose
two challenges. First, they reveal that the strength of
coupling between valence and action has particular con-
sequences for learning. This in turn highlights the impor-
tance of orthogonalizing them to elucidate cognitive and
neuronal aspects of value representation and action selec-
tion. Second, these results indicate limits to a dominant
view of the striatum that has emerged from neuroimaging;
namely, that it preferentially encodes valence. Instead,
these studies strongly support the idea that the striatum
encodes a tendency toward action. The experiments also
highlight two distinct contributions of dopaminergic neu-
romodulation: the control of motivation in instrumental
responding and the extent to which action and valence
interact to influence behavior.

Behavioral interactions between action and valence
When carefully instructed on the contingencies of the task,
and given ample practice, subjects correctly choose go/no-
go regardless of valence on more than 95% of trials. Never-
theless, anticipating punishment impairs performance of
well-learned instrumental choices by slowing go responses
[19,20], revealing the essential interaction between action
and valence akin to conditioned-suppression experiments.
Similarly, Crockett and colleagues showed that correct go
responses are slower when feedback involves punishment
[17,22].

Further, when participants learn the action contingen-
cies by trial and error, go performance is better when it
leads to reward and no-go performance for punishment
omission [21]. These results have been replicated in inde-
pendent samples [18,23] and in healthy older adults [24].
Critically, some participants perform substantially worse
than chance in the no go to win condition in which Pavlo-
vian and instrumental systems conflict. This is a human
analog of an omission schedule [12] and suggests the
danger of overlooking Pavlovian influences in seemingly
straightforward instrumental contexts.

The most parsimonious of a nested sequence of reinfor-
cement learning models that parameterize alternative
accounts of this behavior (Box 1) recapitulates the learning
asymmetry (relatively impaired learning in ‘go to avoid
losing’ and ‘no go to win’ compared with ‘go to win’ and ‘no
go to avoid losing’, respectively) by specifying an interac-
tion between instrumental and Pavlovian control mechan-
isms [21]. In essence, the latter promotes or inhibits go
choices in the winning and losing conditions, respectively.

There is a formal similarity between these results and
those of Pavlovian to Instrumental transfer (PIT) tasks in
animals and humans, which have previously demonstrated
an interaction between Pavlovian and instrumental con-
trol [25–30]. As here, go responses that result in an instru-
mental approach are promoted or inhibited by appetitive-
or aversive-predicting stimuli, respectively. However, a
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Box 1. Computational modeling of the learning behavior

We built several nested models incorporating different instrumental

and Pavlovian reinforcement-learning hypotheses. All models were

fitted to the observed behavioral data and compared using Bayesian

Information Criteria (BIC). All models learned separate propensities

wðat ; st Þ for action at (go or no-go) on trial t under condition st. The

model assigned probabilities to each action using a sigmoid function.

The base model (RW) was purely instrumental: w(a,s) = Q(a,s). Action

values Q(a,s) were learned independently of the valence of the

outcomes using the Rescorla–Wagner rule:

Qt ðat ; st Þ ¼ Qt�1ðat ; st Þ þ eðrr t � Qt�1ðat ; st ÞÞ (I)

where e is the learning rate. Reinforcements enter the equation

through rt2{-1,0,1} and r is a free parameter that determines the

effective size of reinforcements.

This model was augmented in successive steps. In RW + noise, the

model included irreducible choice noise in the instrumental system

by squashing the sigmoid function:

pðat jst Þ ¼
�

expðwðat ; st ÞP
a0expðwða0; st ÞÞ

�
ð1 � jÞ þ j

2
(II)

where j is the noise parameter, which was free to vary between 0

and 1.

In RW + noise + bias, the model further included a value-

independent and static action bias b that promotes or suppresses

go choices equally in all conditions:

wt ða; sÞ ¼ Qt ða; sÞ þ b i f a ¼ go

Qt ða; sÞ else
:

�
(III)

In RW + noise + bias + Pav, the model also included a (Pavlovian)

parameter p that adds a fraction of the state value V(s) into the action

values learned by the instrumental system, thus effectively coupling

action and valence during learning, promoting a go choice when V(s)

is positive and no-go choice when V(s) is negative:

wt ða; sÞ ¼ Qt ða; sÞ þ b þ pV t ðsÞ i f a ¼ go

Qt ða; sÞ else
:

�
(IV)

V t ðst Þ ¼ V t�1ðst Þ þ eðrr t � V t�1ðst ÞÞ (V)

We also considered the possibility that behavioral asymmetries

arise because of differences in reward and punishment sensitivities.

Thus, in RW(rew/pun) + noise + bias, the instrumental system

included separate reward and punishment sensitivities allowing

different values of the parameter r on reward and punishment trials.

Observed and modeled behavior in the orthogonalized go/no-go

task (Figure I)
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Figure I. shows the learning time courses for all four conditions of our task. Each row of the raster images shows the choices of one of the 47 subjects in each of the four

conditions. Go responses are depicted in white and no-go responses are depicted in grey. The overlaid black lines depict the time-varying probability, across subjects, of

making a go response. The colored lines show the same time-varying probability, but evaluated on choices sampled from the model (blue for RW + noise; green for RW

+ noise + bias; brown, the winning model, for RW + noise + Pav). Adapted from [21].
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notable difference is that, in PIT paradigms, the two sorts
of conditioning are taught separately. The orthogonalized
go/no-go task demonstrates a severe disruption of learning
due to the direct coupling of action and valence character-
istic of Pavlovian responses in a simpler task that lacks any
such partition.

Why might such striking interactions between action
and valence exist despite being deleterious? Pavlovian
actions have plausibly been perfected in ancestral envir-
onments as hard-wired knowledge of good behavioral
responses; for instance, given mortal threats [12]. That
such a prior can sometimes delay learning and inhibit
performance in unusual environments should not detract
from its huge advantage in obviating learning.

What might underlie these behavioral results? Existing
neuroimaging studies that include only conditions where
reward is anticipated along with action are difficult to
interpret unambiguously. Thus, an important next step
is to scan human volunteers using fMRI while they perform
the orthogonalized go/no-go task.
196
Neural representations of action and valence
fMRI allows assessment of the joint contribution to neural
responses of the anticipation of action or inaction and the
valence of potential outcomes independently of motor per-
formance or outcome delivery. Ample data suggest that
blood oxygenation level-dependent (BOLD) signals in the
striatum at choice correlate with the action values of the
chosen options [31,32]; thus one might expect a valence-
dominated signal during anticipation. Furthermore, the
Pavlovian influences implied by the best-fitting model (Box
1) might naturally be expected to modulate these predic-
tion and prediction error signals. Surprisingly, neither
effect emerges; in fact, no significant neural correlate of
the strong interaction evident in behavior is apparent,
except that only those participants who learn all task
conditions well, and thus overcome the Pavlovian bias,
show increased BOLD responses in the inferior frontal
gyrus in trials requiring motor inhibition [21].

Instead, BOLD responses in the striatum and substan-
tia nigra pars compacta/ventral tegmental area (SN/VTA)
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Figure 2. Expected and observed blood oxygenation level-dependent (BOLD) responses in the striatum and the SN/VTA. This figure shows abstract representations of the

key signals in anticipatory BOLD responses that is expected within the striatum and substantia nigra pars compacta/ventral tegmental area (SN/VTA) according to prevailing

theories (A–B) and compared with the signals actually observed when action and valence were manipulated within the same experiment (C–D). Filled colors represent the

go conditions and transparent colors the no-go conditions. The winning conditions are represented in green and the avoid-losing conditions in red. (A) Predicted

observations: Reward-prediction error. If a brain region reports a reward-prediction error, one should observe a main effect of valence because cues predicting wins would

lead to positive values and cues predicting losses would lead to negative values, regardless of action requirements. (B) Predicted observations: Salience. If a brain region

reflects salience, one should observe a BOLD response of equivalent magnitude in all conditions of our task, because punishments, rewards, and prediction errors

associated with both of these should be reported with the same sign. (C) Actual observations: Main effect of action. BOLD responses during anticipation were higher when

an action needed to be performed than when an action needed to be withheld. Importantly, the BOLD response to the ‘go to win’ condition was higher than the BOLD

response to the ‘no go to win’ condition despite both conditions being associated with the same expected value. This was the most pervasive signal in the experiments,

evident across the striatum (dorsal and ventral) and the SN/VTA. (D) Actual observations: Action-dependent reward-prediction error. A main effect of valence was observed

only when an action was required in a location within the ventral striatum compatible with the nucleus accumbens. This signal was restricted to the ventral striatum and

survived correction for multiple comparisons only in an experiment with a large sample size (N = 54).
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are dominated by action requirements (Figure 2A) [19,20].
Importantly, despite ‘go to win’ and ‘no go to win’ conditions
signaling the same expected value (and thus salience),
striatal BOLD responses are reliably higher in the ‘go to
win’ condition. Similar results have been described in the
ventral striatum when comparing active and passive
avoidance of punishment [33]. Interestingly, electrophy-
siological evidence in rats also shows contrasting neuronal
responses in the nucleus accumbens to cues instructing a
go or a no-go response despite both cues signaling the
equivalent reward [34]. However, in the latter case, there
was more activity for ‘no go to win’ than for ‘go to win’.
Further, in the learning version of the task, BOLD
responses in the striatum and the SN/VTA track instru-
mental action values with a positive and negative relation-
ship between value and brain activity for go and no-go,
respectively [21]. Subsidiary modulation of BOLD
responses according to valence does not survive multiple
comparisons even when restricted to just the ventral stria-
tum [19]. Even in an expanded dataset, the influence of
valence remains significant in go conditions only, with
higher BOLD responses in the ‘go to win’ condition than
in ‘go to avoid losing’ [20].

The task design precludes a detailed study of BOLD
responses to outcomes. However, as expected (see [5] for a
review), responses in the ventral striatum and medial
prefrontal cortex are significantly greater for winning
compared with losing. Winning after go is not different
from winning after no-go. However, this has been observed
when go responses are more physically demanding, sug-
gesting that the costs associated with the performance of
an action may have a role in the processing of outcomes
[35,36].

In brief, these data demonstrate that, during the
anticipatory phase and before any action is performed or
outcome realized, the coding of action requirements dom-
inates the coding of valence or expected value in the
striatum and SN/VTA. What neural systems might con-
tribute to this? Obvious candidates include ascending
monoaminergic dopamine and serotonin systems [37].
The dopamine system is involved in generating active
motivated behavior [38,39] and instrumental learning
through reward-prediction errors [40]. The serotonin sys-
tem appears affiliated with behavioral inhibition in aver-
sive contexts [17,22,41]. A logical step is to manipulate
these systems pharmacologically while subjects perform
the orthogonalized go/no-go task.

Pharmacological modulations of the interactions
between action and valence
In the instructed version of the task, boosting central
dopamine levels in young, healthy participants, via sys-
temic administration of levodopa leads to faster motor
responses in both go conditions. However, neuronal
197
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effects depend on valence, with increased activity for
anticipated go versus no-go choices in the striatum and
SN/VTA only when the potential outcome is a reward
[20]. Only in the striatum does boosting dopamine
decrease the overall striatal BOLD signal for the ‘no
go to win’ condition. Remarkably, in a learning experi-
ment, boosting dopamine levels decreased the coupling
between action and valence compared with placebo [18],
with smaller differences in performance between the two
go conditions or between the two no-go conditions. In
other experiments studying the role of serotonin, the only
significant effect of decreasing central serotonin levels
with acute tryptophan depletion is to abolish the effects
of anticipatory punishment on the vigor of the go
responses [17,22].

The whole collection of results colors our picture of the
striatum and the impact of dopamine away from pure
valence – as, for instance, in reward-prediction errors that
train predictions – and toward action invigoration. We next
examine these two characteristics, along with the final
effect of dopamine on reducing the coupling between the
two.

Reward-prediction errors
The dominance of action over valence in striatal and SN/
VTA BOLD responses during anticipation (and before
execution), as observed in our imaging experiments, chal-
lenges conventional assumptions regarding the basal
ganglia. This finding may appear obvious given the pre-
dominance of motor symptoms in basal ganglia disorders
such as Huntington’s and Parkinson’s disease [42]. How-
ever, electrophysiological and voltammetry examinations
of the responses of dopamine neurons [40,43,44] and stria-
tal dopamine transients [45,46] and a wealth of fMRI
experiments on state-based [47,48] and action-based
[49,50] values, as well as effort-based cost–benefit evalua-
tion [51], all point to a main effect of valence, via the
temporal-difference reward-prediction error, and not a
main effect of action (Figure 2).

Note, however, that most experiments reporting
reward-prediction errors require a choice between actions
(rather than between action and inaction). Even popular
Pavlovian paradigms compare rewarded actions with
unrewarded foil actions or require (or engender) menial
movements (e.g., [47,48,52]). Interestingly, the weak influ-
ence of valence we observed was entirely conditional on a
requirement for action and was not modulated by levodopa
[20]. However, as a null result this must be interpreted
with caution and does not provide evidence that the repre-
sentation of valence in the striatum is independent of
dopamine.

Dopamine has been implicated in two relevant pro-
cesses beyond its phasic signaling of a reward-prediction
error [43,53]. First, it has a prime role in the generation
and invigoration of motor responses, including instrumen-
tal and Pavlovian actions directed to rewards and punish-
ments [38,39]. This involvement in action invigoration,
regardless of valence, resonates with the dominance of
action over valence observed at the neuronal level. Second,
dopamine also supports high-level cognitive functions
such as working memory [54] and long-term memory
198
[55], functions that may be critical for learning the con-
tingencies of the orthogonalized go/no-go task.

Dopamine and action invigoration
A role for dopamine in appetitive invigoration is apparent
in the decreased motor activity or motivation to work for
rewards [39,56] following dopamine depletion or the
increased vigor in appetitive PIT [25] when dopamine is
enhanced in the nucleus accumbens. It is associated with
the dopamine incentive salience hypothesis [57], which has
been observed to be in consilience with temporal-difference
prediction-error coding [58]. In our task, when dopamine is
enhanced systemically, bolstered brain representations of
rewarded action and invigorated instrumental responding
regardless of valence are observed [20], the latter possibly
mediated by the effects of an assumed elevated average
reward rate [59].

However, perhaps the best test bed for this role of
dopamine is active avoidance, as when performing a go
action to avoid losing. According to two-factor theories of
active avoidance [60,61], actions that change the state of
the environment and so abolish the possibility of a loss are
reinforced by a consequential attainment of safety. These
actions are duly associated with a positive prediction error
(going from a negative value to zero). If this prediction
error is represented by dopaminergic activity ‘go to avoid
losing’ actions would ultimately have similar instrumental
status to ‘go to win’ actions (consistent with their similar
representation in striatal BOLD responses).

Dopamine’s involvement in aversion and action inhibi-
tion is complex. There is evidence that dopamine is
released in punishing conditions [39] and is involved in
performing active avoidance responses [62,63]. Phasic
responses in dopamine neurons to aversive stimuli are
widely reported [64–68]. Moreover, fMRI experiments
have shown evoked striatal BOLD signals of equal magni-
tude to reward and punishment anticipation [15,16,69]
when an action is required [19,20,33], as well as a correla-
tion with aversive prediction errors in the striatum [6,70–
72]. Furthermore, dopamine depletion impairs acquisition
of active avoidance [62], as has long been described in the
animal pharmacology literature [39]. In the two-factor
account, avoidance of a potential punishment is coded as
a reward and thus may contribute to the average reward
rate and invigoration of instrumental action. Note, how-
ever, that the relation between average reward rate and
invigoration of action is not identical in rewarding and
punishing contexts because the two contexts differ in terms
of the Pavlovian responses [73].

Altogether the findings fit with a suggested role for
dopamine in modulating vigor or motivation for actions
independent of valence. The striatum would signal the
propensity to perform an action largely independent of
state values, as in original accounts of the actor in an
actor–critic architecture [74]. Note that salience accounts
of dopamine gains no succor from these findings because, to
the extent that striatal BOLD signal is seen as an indirect
report of dopamine release, they are inconsistent with the
finding that responses to reward- and punishment-predic-
tive cues are markedly different dependent on whether an
active response is required (Figure 2).



Box 2. Outstanding questions

� Which are the neural substrates for the detrimental Pavlovian

influence we observed in the learning study (Box 1)?

� Why do so many healthy participants fail to learn in the ‘no go to

win’ condition in such a simple task? It is important to entertain

and test different computational hypotheses regarding their

behavioral inadequacies. It is also worth testing whether the

Pavlovian influence observed in this task correlates with putative

Pavlovian effects in other tasks measured in the same group of

participants.

� Do Pavlovian influences impact model-based and model-free

instrumental behavior differently? Richer tasks in which the two

forms of instrumental control are more clearly separated are

necessary to examine this in detail.

� Is the clear action dependency of the BOLD signal in the striatum

evident in some of the many other paradigms that have reported

valence during anticipation?

� Can a clear action dependency be translated to electrophysio-

logical or voltammetry measures in animal studies? The bulk of

the evidence supporting our views is based on BOLD signal

data in humans. Consequently it will be important to develop

variations of the complete orthogonalized go/no-go task in

animal experiments. The prediction is that neuronal responses

of dopaminergic and striatal spiny neurons, as well as

dopaminergic transients in the striatum, to instructive reward-

predictive cues will be more closely related to the subsequent

behavioral response (in terms of activation/inhibition) than to

the expected value.

� What is the substrate of aversive prediction and action inhibition?

These deserve substantial study because they are much less well

understood than appetitive prediction and action invigoration.

� Which are the neural substrates of the observed behavioral effects

of systemic dopaminergic manipulations? The dominance of the

prefrontal over the expected subcortical effects of dopamine

highlights the need for a wider range of methods to manipulate

dopaminergic function in humans with higher pharmacological

and regional specificity. This should allow the study of tonic and

phasic dopamine signaling and the different effects of D1 and D2

receptors in dorsal and ventral striatum.
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Of course, two-factor theories pose an extra require-
ment. ‘Go to avoid losing’ actions differ from ‘go to win’
actions in that the negative valence of the unsafe state
must be learned (for instance by an opponent system [75]),
such that the Pavlovian effect of that negative valence
might interfere with the instrumental action (as it did in
our behavioral results). The effects of acute tryptophan
depletion in the instructed version of the task suggest that
serotonin may support some aspects of this opponent
signal [17,22]. However, much less is known about the
neural mechanisms of aversion and action inhibition than
about reward and action invigoration. Recent research
suggests that serotonin is indeed involved in circum-
stances where action inhibition is implemented in response
to punishment or its anticipation [17,22,37,75,76]. Action
inhibition in the face of reward, as in the stop-signal
reaction-time task, has also implicated various regions,
including the inferior frontal gyrus [77].

A role for the prefrontal cortex in overcoming
Pavlovian–instrumental conflict
As we have seen, learning the appropriate behavioral
response is suboptimal in conditions where Pavlovian
and instrumental controllers conflict [18,21,23,24]. This
poses the question of whether these two systems are
segregated in the brain and compete for behavioral control.
This notion is supported by evidence that, at a neuronal
level, instrumental and Pavlovian responses are supported
by different corticostriatal loops [5]. The dorsal striatum is
involved in learning and performance of goal-directed and
habitual instrumental responding [78]. Sectors of the ven-
tral striatum are more closely affiliated with Pavlovian
responding, with the accumbens shell supporting the
expression of unconditioned behaviors to rewards and
punishments and the accumbens core involved in the
expression of appetitive- directed Pavlovian responses
[79–81]. The amygdala is also associated with the expres-
sion of conditioned responses to punishment [82,83] and
appetitive processing [84]. Indeed, connectivity between
the amygdala and the accumbens is implicated in appeti-
tive PIT in animals [85] and humans [28]. However, in our
experiments we did not observe any evidence of neural
segregation of Pavlovian and instrumental controllers.

Alternatively, or perhaps additionally, Pavlovian and
instrumental influences could be more directly inter-
twined. Consider, for instance, ‘direct’ and ‘indirect’ stria-
tal pathways. These are suggested as promoting,
respectively, go choices in light of reward versus no-go
choices in light of foregone reward [53,86,87]. This func-
tional architecture provides a plausible mechanism for
instrumental learning of active responses through positive
reinforcement (‘go to win’) and passive (avoidance)
responses through punishment (‘no go to avoid losing’).
However, this architecture cannot account for learning of
go choices in the context of punishment (‘go to avoid losing’)
or no-go choices in the context of reward (‘no go to win’).
Therefore, learning in conditions where Pavlovian and
instrumental system conflict requires a supplementary
mechanism. As discussed, two-factor theories provide such
a supplementary mechanism for the go-to-avoid-losing
condition.
For the case of ‘no go to win’, the experiments suggest
that prefrontal cortex mechanisms modulated by dopa-
mine are involved in overcoming the Pavlovian bias.
Indirect evidence for this comes from the decreased Pav-
lovian influence during learning after an experimental
boost of dopamine levels [18]. Various human experiments
have shown an increase or a decrease in (putatively pre-
frontal) model-based over (striatal) model-free control
when dopamine is boosted or depleted, respectively
[88,89]. In rats, dopamine achieves these effects by
facilitating the operation of prefrontal processes [90],
perhaps including components of working memory (on
which model-based choice depends [91]) or rule learning
[54,92,93]. This suggests a predominant effect at the level
of prefrontal function when the dopaminergic system is
systemically manipulated in humans. Whether enhanced
dopamine decreases model-free control by improving pre-
frontal function [54,90,92] or by increasing the influence of
the prefrontal cortex over subcortical representations
[20,94,95] needs further study.

Of direct relevance to prefrontal involvement in ‘no go
to win’ are increased BOLD responses in the inferior
frontal gyrus in trials requiring motor inhibition [21]
and theta oscillations in medial frontal areas that are
inversely correlated with the influence of the Pavlovian
199
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bias on a trial-by-trial basis [23]. The prefrontal cortex
may decrease Pavlovian influences through recruitment of
the subthalamic nucleus [96,97], raising a decision thresh-
old within the basal ganglia that prevents execution of a
biased decision computed in the striatum [97–99]. Alter-
natively, the striatum could act to generate a categorical
signal that distinguishes activation or inhibition of a given
action. After successful learning, this signal shows a clear
separation between go and no-go choices (that is enhanced
by dopamine); this clarity could depend on the weighting
or processing of afferent information from the prefrontal
cortex. In either case, via prefrontal prevention of incor-
rect go choices, participants may experience the richer
reward schedule associated with the no-go choice and, over
the course of learning, the striatum could eventually
represent the appropriate choices, as in the instructed
version of the task.

Concluding remarks
Action and inaction result from interacting instrumental
and Pavlovian mechanisms realized at behavioral and
neural levels. As a result, action and valence are coupled,
so examining the functional complexity of the basal gang-
lia and their dopaminergic innervation requires them to
be manipulated simultaneously. Variants of a task that
orthogonalizes action and valence have shown that action
dominates valence in the striatum and dopaminergic
midbrain. These findings suggest limits to dominant
views of dopaminergic and striatal function and invite
extensions to include action tendencies (Box 2). A dopa-
minergic contribution to the control of motivation in
instrumental responding is also highlighted, along with
its strong effect, putatively at the level of the prefrontal
cortex, in regulating the extent to which an obligatory
coupling between Pavlovian and instrumental control
systems is expressed.
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