
Journal of Artificial Intelligence Research 48 (2013) 841-883 Submitted 06/13; published 11/13

Scalable and Efficient Bayes-Adaptive Reinforcement
Learning Based on Monte-Carlo Tree Search

Arthur Guez aguez@gatsby.ucl.ac.uk
Gatsby Computational Neuroscience Unit
University College London
London, WC1N 3AR, UK

David Silver d.silver@cs.ucl.ac.uk
Dept. of Computer Science
University College London
London, WC1E 6BT, UK

Peter Dayan dayan@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit

University College London

London, WC1N 3AR, UK

Abstract

Bayesian planning is a formally elegant approach to learning optimal behaviour under
model uncertainty, trading off exploration and exploitation in an ideal way. Unfortunately,
planning optimally in the face of uncertainty is notoriously taxing, since the search space
is enormous. In this paper we introduce a tractable, sample-based method for approximate
Bayes-optimal planning which exploits Monte-Carlo tree search. Our approach avoids ex-
pensive applications of Bayes rule within the search tree by sampling models from current
beliefs, and furthermore performs this sampling in a lazy manner. This enables it to out-
perform previous Bayesian model-based reinforcement learning algorithms by a significant
margin on several well-known benchmark problems. As we show, our approach can even
work in problems with an infinite state space that lie qualitatively out of reach of almost
all previous work in Bayesian exploration.

1. Introduction

A key challenge in sequential decision-making is to understand how agents can learn to
collect rewards — and avoid costs — through interactions with the world. A natural way
to characterize these interactions is by a Markov Decision Process (mdp). mdps consist of
a set of states, a set of possible actions, and a transition model that stochastically decides
a successor state from a given state and action. In addition, a cost or reward is associated
with each state and action. The problem for learning arises when some aspects of the
transition model are unknown to the agent, implying uncertainty about the best strategy
for gathering rewards and avoiding costs. Exploration is therefore necessary to reduce this
uncertainty and ensure appropriate exploitation of the environment. Weighing the benefits
of exploring, to identify potentially better actions, against the benefits of exploiting known
sources of rewards is generally referred to as the exploration-exploitation trade-off.

. This article has been modified from the original JAIR-hosted version. It corrects Equation 14 and the
caption of Figure 1, thanks to feedback by Sanjeevan Ahilan.

©2013 AI Access Foundation. All rights reserved.

Guez, Silver, & Dayan

The trade-off can be formalized in various different ways. One possible objective is to
control the number of suboptimal actions the agent ever performs; algorithms that with high
probability can bound the number of such suboptimal steps by a polynomial in the number
of states and actions are said to be pac-mdp (Strehl, Li, & Littman, 2009). Instead of
focusing on suboptimal actions, another objective is to minimize the so-called regret, which
is the expected loss relative to the optimal policy in the mdp (Jaksch, Ortner, & Auer,
2010). Lastly, Bayesian decision theory prescribes maximizing the expected discounted
sum of rewards in the light of a prior distribution over transition models; one way to
achieve this is by solving an augmented mdp, called the Bayes-Adaptive mdp (bamdp), in
which the corresponding augmented dynamics are known (Martin, 1967; Duff, 2002). The
augmentation is the posterior belief distribution over the dynamics, given the data so far
observed. The agent starts in the belief state corresponding to its prior and, by executing
the greedy policy in the bamdp whilst updating its posterior, acts optimally (with respect
to its beliefs) in the original mdp. The Bayes-optimal policy is the optimal policy of the
bamdp; it integrates exploration and exploitation in an ideal manner.

In general, these different objectives are not compatible – see for example the work of
Kolter and Ng (2009) for the incompatibility between pac-mdp and the Bayes-optimal so-
lution. pac-mdp and regret frameworks have gained considerable traction in recent years,
while Bayesian exploration has been comparatively ignored. However, the Bayesian frame-
work is attractive because structured prior knowledge can be incorporated into the solution
in a principled manner, providing the means to tackle, at least in theory, large and complex
unknown environments. Methods tailored for objectives such as pac-mdp or regret mini-
mization cannot so far easily be adapted to exploit such priors. With no other assumption
about the environment, they are thus forced to explore every state and action at least once,
which is hopeless in large environments.

Unfortunately, exact Bayesian reinforcement learning (RL) is computationally intractable.
Various algorithms have been devised to approximate optimal learning, but often at rather
large cost. This computational barrier has restricted Bayesian RL to small domains with
simple priors. In this paper, we present a tractable approach that exploits and extends
recent advances in Monte-Carlo tree search (mcts) (Kocsis & Szepesvári, 2006), notably
to partially-observable mdps (Silver & Veness, 2010) of which the bamdp can be seen as a
special case. While mcts is capable of tackling large mdp problems when the dynamics are
known (Gelly, Kocsis, Schoenauer, Sebag, Silver, Szepesvári, & Teytaud, 2012), we show
that a naive application of mcts to the bamdp is not tractable in general and we propose
a set of principled modifications to obtain a practical algorithm, which is called bamcp for
‘Bayes-Adaptive Monte-Carlo Planner’.

At each iteration in bamcp, as in the pomcp algorithm (Silver & Veness, 2010), a single
mdp is sampled from the agent’s current beliefs. This mdp is used to simulate a single
episode whose outcome is used to update the value of each node of the search tree traversed
during the simulation. By integrating over many simulations, and therefore many sample
mdps, the optimal value of each future sequence is obtained with respect to the agent’s
beliefs. We prove that this process converges to the Bayes-optimal policy, given infinite
samples. Since many of the priors that are appropriate in the Bayesian RL setting require
some form of approximate inference, we extend the convergence proof to show that bamcp
also converges when combined with a Markov Chain Monte Carlo-based inference scheme.

842

Bayes-Adaptive Monte-Carlo Planning

Our algorithm is more efficient than previous sparse sampling methods for Bayes-adaptive
planning (Wang, Lizotte, Bowling, & Schuurmans, 2005; Castro, 2007; Asmuth & Littman,
2011), partly because it does not update the posterior belief state during the course of
each simulation. It thus avoids repeated applications of Bayes rule, which is expensive for
all but the simplest priors over the mdp. To increase computational efficiency further, we
introduce an additional innovation: a lazy sampling scheme that only samples the posterior
distribution for states traversed during the simulation.

We applied bamcp to a representative sample of benchmark problems and competi-
tive algorithms from the literature. It consistently and significantly outperformed existing
Bayesian RL methods, and also recent non-Bayesian approaches, thus achieving state-of-
the-art performance.

Further, bamcp is particularly well suited to support planning in large domains in which
richly structured prior knowledge makes lazy sampling both possible and effective. This
offers the prospect of applying Bayesian RL at a realistically complex scale. We illustrate
this possibility by showing that bamcp can tackle a domain with an infinite number of
states and a structured prior over the dynamics, a challenging, if not radically intractable,
task for existing approaches. This example exploits bamcp’s ability to use Markov chain
Monte Carlo methods for inference associated with the posterior distribution over models.

The paper is organized as follows. First, we formally define the Bayesian model-based
RL problem and review existing methods; we then present our new algorithm in the context
of previous suggestions; and finally we report empirical results on existing domains and on
the new, infinite, task. Some of these results appeared in a short conference version of this
paper (Guez, Silver, & Dayan, 2012).

2. Model-Based Reinforcement Learning

We first briefly review model-based reinforcement learning and search algorithms in the
case that the model is known. We then introduce the formalism of Bayesian model-based
RL and provide a survey of existing approximation algorithms that motivate our approach.

2.1 Model-Based Reinforcement Learning with Known Model

An mdp is described as a 5-tuple M = 〈S,A,P,R, γ〉, where S is the discrete set of states,
A is the finite set of actions, P : S × A× S → R is the state transition probability kernel,
R : S × A → R is a bounded reward function, and γ is the discount factor (Szepesvári,
2010). A deterministic stationary mdp policy π is defined as a mapping π : S → A from
states to actions. The value function of a policy π at state s ∈ S is its expected return,
defined as:

V π(s) ≡ Eπ
[∞∑
t=0

γtrt|s0 = s

]
, (1)

where rt is the random reward obtained at time t when following policy π from state s
— Eπ denotes the expectation operator that averages over all possible paths that policy
π implies. A related quantity is the action-value function of a policy π for executing a

843

Guez, Silver, & Dayan

particular action a ∈ A at state s ∈ S before executing π:

Qπ(s, a) ≡ R(s, a) + γ
∑
s′∈S
P(s, a, s′)EπM

[∞∑
t=1

γt−1rt|s1 = s′

]
(2)

= R(s, a) + γ
∑
s′∈S
P(s, a, s′)V π(s′), (3)

implying the relation V π(s) = Qπ(s, π(s)). The optimal action-value function, denoted Q∗,
provides the maximum expected return Q∗(s, a) that can be obtained after executing action
a in state s. The optimal value function, V ∗, is similarly defined and is related to Q∗ as
V ∗(s) = maxa∈AQ

∗(s, a), s ∈ S. An optimal policy π∗ achieves the maximum expected
return from all states, and can be obtained from Q∗ as: π∗(s) = argmaxa∈AQ

∗(s, a),
breaking ties arbitrarily.

When all the components of the mdp tuple are known — including the model P —
standard mdp planning algorithms can be used to estimate the optimal policy off-line,
such as Value Iteration or Policy Iteration (Bellman, 1954; Ross, 1983; Sutton & Barto,
1998; Szepesvári, 2010). However, it is not always practical to find the optimal policy for
all states in large mdps in one fell swoop. Instead, there are methods that concentrate on
searching online for the best action at just the current state st. This is particularly common
for model-based Bayesian RL algorithms. We therefore introduce relevant existing online
search methods for mdps that are used as building blocks for Bayesian RL algorithms.

2.1.1 Online Search

Online search methods evaluate a tree of possible future sequences. The tree is rooted at
the current state and is composed of state and action nodes. Each state node, including the
root, has as its children all the actions that are legal from that state. In turn, each action
node has as its children all the successor states resulting from that action. The goal of the
forward search algorithm is recursively to estimate the value of each state and action node
in the tree. Ultimately, the value of each possible action from the root is used to select the
next action, and the process repeats using the new state at the root.

Online search methods may be categorised firstly by the backup method by which the
value of each node is updated, and secondly by the order in which the nodes of the tree are
traversed and backups are applied.

2.1.2 Full-Width Search

Classical online search methods are based on full-width backups, which consider all legal
actions and all possible successor states, for example using a Bellman backup,

V (s)← max
a∈A
R(s, a) + γ

∑
s′∈S
P(s, a, s′)V (s′) (4)

Search efficiency is then largely determined by the order in which nodes are traversed.
One example is ’best-first’, for which the current best is usually determined according to an
optimistic criterion. This leads to an algorithm resembling A∗ (Hart, Nilsson, & Raphael,

844

Bayes-Adaptive Monte-Carlo Planning

1968), which applies in the deterministic case. The search tree may also be truncated,
using knowledge of the most extreme reward and the discount factor to ensure that this is
provably benign (Davies, Ng, & Moore, 1998). If one is prepared to give up guarantees on
optimality, an approximate value function (typically described in the online search literature
as a heuristic function or evaluation function) can be applied at leaf nodes to substitute for
the value of the truncated subtree.

2.1.3 Sample-Based Search

Rather than expanding every tree node completely, sample-based search methods overcome
the curse of dimensionality by just sampling successor states from the transition distribution.
These have the generic advantage over full-width search that they expend little effort on
unlikely paths in the tree.

Sparse Sampling

Sparse Sampling (Kearns, Mansour, & Ng, 1999) is a sample-based online search algorithm.
The key idea is to sample C successor nodes from each action node, and apply a Bellman
backup to these sampled transitions, so as to update the value of the parent state node
from the values of the child nodes:

Vd(s) = max
a∈A
R(s, a) +

γ

C

C∑
i=1

Vd+1(child(s, a, i)). (5)

The search tree is traversed in a depth-first manner, and an approximate value function
is employed at truncated leaf nodes, after some pre-defined depth D. Sparse Sampling
converges to a near-optimal policy given an appropriate choice of the parameters C and D.

FSSS

Although Sparse Sampling concentrates on likely transitions, it does not focus search on
nodes that have relatively high values or returns. In the work of Walsh, Goschin, and
Littman (2010), Forward Search Sparse Sampling (fsss) extends regular Sparse Sampling
by maintaining both lower and upper bounds on the value of each node:

Ld(s, a) = R(s, a) +
γ

C

∑
s′∈Child(s,a)

Ld+1(s′)Count(s, a, s′), (6)

Ud(s, a) = R(s, a) +
γ

C

∑
s′∈Child(s,a)

Ud+1(s′)Count(s, a, s′), (7)

Ld(s) = max
a∈A

Ld(s, a), (8)

Ud(s) = max
a∈A

Ud(s, a), (9)

where Child(s, a) is the set of successor states sampled from C draws of P(s, a, ·), and
Count(s, a, s′) is the number of times each set element was sampled. Whenever a node
is created, the lower and upper bounds are initialized according to Ld(s, a) = Vmin and

845

Guez, Silver, & Dayan

Ud(s, a) = Vmax, i.e., the worst and best possible returns. The tree is traversed in a best-
first manner according to these value bounds, starting from the root for each simulation
through the tree. At each state node, a promising action is selected by maximising the
upper bound on value. At each action (or chance) node, successor states are selected
from a sampled set of C candidates by maximising the uncertainty (upper minus lower
bound). This effectively prunes branches of the tree that have low upper bounds before
they are exhaustively explored, while still maintaining the theoretical guarantees of Sparse
Sampling.

Monte-Carlo Tree Search

Despite their theoretical guarantees, in practice, sparse sampling and fsss both suffer from
the fact that they truncate the search tree at a particular depth, and so experience bias
associated with the approximate value function they use at the leaves. Monte-Carlo Tree
Search (mcts) provides a way of reducing the bias by evaluating leaves exactly using the
model, but employing a sub-optimal, rollout policy. More formally, in mcts, states are
evaluated by averaging over many simulations. Each simulation starts from the root and
traverses the current tree until a leaf is reached, using a tree policy (e.g., greedy action
selection) based on information that has so far been gathered about nodes in the tree. This
results in a (locally) best-first tree traversal, where at each step the tree policy selects the
best child (best according to some exploration criterion) given the current values in the tree.
Rather than truncating the search and relying on a potentially biased value function at leaf
nodes, a different policy, called a rollout policy (e.g., uniform random) is employed from
the leaf node until termination or a search horizon. Each node traversed by the simulation
is then updated by a Monte-Carlo backup, which simply evaluates that node by the mean
outcome of all simulations that passed through that node. Specifically, the Monte-Carlo
backups update the value of each action node as follows:

Qd(s, a)← Qd(s, a) + (R−Qd(s, a))/Nd(s, a), (10)

where R is the sampled discounted return obtained from the traversed action node s, a at
depth d andNd(s, a) is the visitation count for the action node s, a (i.e., the update computes
the mean of the sampled returns obtained from that action node over the simulations).

A particular tree policy for mcts that has received much attention, and indeed underlies
our algorithm, is the uct (Upper Confidence bounds applied to Trees) policy (Kocsis &
Szepesvári, 2006). uct employs the ucb1 (Upper Confidence Bounds) algorithm (Auer,
Cesa-Bianchi, & Fischer, 2002), designed for multi-armed bandit problems, to select adap-
tively between actions at every state node according to:

argmax
a∈A

Qd(s, a) + c
√

log(Nd(s))/Nd(s, a), (11)

where c is an exploration constant that needs to be set appropriately and Nd(s) is the
visitation count for the state node s. This tree policy treats the forward search as a meta-
exploration problem, preferring to exploit regions of the tree that currently appear better
than others, while continuing to explore unknown or less known parts of the tree. This leads
to good empirical results even for small numbers of simulations, because effort is expended

846

Bayes-Adaptive Monte-Carlo Planning

where search seems fruitful. Nevertheless all parts of the tree are eventually visited infinitely
often, and therefore the algorithm can be shown to converge to the optimal policy in the
very long run.

Despite some negative theoretical results showing that uct can be slow to find optimal
policies in carefully designed counterexample mdps (Coquelin & Munos, 2007), uct has
been successful in many large mdp domains (Gelly et al., 2012).

2.2 Model-Based Bayesian Reinforcement Learning

The methods we have so far discussed depend on the agent having a model of the world, i.e.,
the dynamics P. The key concern for Bayesian RL is acting when this model is not fully
known. We first describe the generic Bayesian formulation of optimal decision-making in an
unknown mdp, following Martin (1967) and Duff (2002), and then consider approximations
inspired by the intractability of the full problem.

2.2.1 The Formalism

Given that the dynamics P ∈ P (coming from the set of all possible models) are only
incompletely known, Bayesian RL treats them as a latent random variable which follows a
prior distribution P (P). Observations about the dynamics contained in the history ht (at
time t) of actions and states: ht ≡ s1a1s2a2 . . . at−1st, duly lead to a posterior distribution
over P via a likelihood.

The history ht influences the posterior distribution. Thus policies π̃ that integrate
exploration and exploitation (called EE policies) for a Bayesian RL problem will generically
have to take this history into account, along with the current state, in order to specify what
action to take. That is, whereas when P is known, a policy π can be defined as a mapping
π : S×A→ [0, 1] from just the current state and actions to a probability (of execution), for
Bayesian RL, EE policies are defined as mappings from history, current state, and action
to a probability π̃ : S×H×A→ [0, 1], where H is the set of possible histories.1 We denote
by Π̃ the set of all EE policies.

The objective for an EE policy under the Bayesian formulation is to maximize the
expected return (sum of discounted rewards), where the expectation is taken over the dis-
tribution of environments P (P) = P (P |∅), in addition to taking the usual expectation over
the stochasticity of the return induced by the dynamics. Formally, we define this expected
discounted return v starting from a state s after seeing history h when following an EE

1. The redundancy in the state-history notation throughout this paper, namely that the current state could
be extracted from the history, is only present to ensure clarity of exposition.

847

Guez, Silver, & Dayan

policy π̃ as:

v(s, h, π̃) = Eπ̃
[∞∑
t=0

γtrt|s0 = s, h0 = h

]
(12)

=

∫
P

dP P (P |h)Eπ̃M(P)

[∞∑
t=0

γtrt|s0 = s, h0 = h

]
(13)

=
∑
a0∈A

π̃(s, h, a0)

[
R(s, a0) + γ

∑
s′∈S

v(s′, ha0s
′, π̃)P̄(s, a0, s

′, h)

]
, (14)

where P̄(s, a, s′, h) ≡
∫
P dP P (P |h)P(s, a, s′) denotes the probability of transitioning from

state s to s′ after executing a under a distribution of dynamics P (P |h), and M(P) denotes
the mdp associated with dynamics P.

Definition 1 Given S, A, R, γ, and a prior distribution P (P) over the dynamics of the
mdp M , let

v∗(s, ∅) = sup
π̃∈Π̃

v(s, ∅, π̃). (15)

Martin (1967, Thm. 3.2.1) shows that there exists a strategy π̃∗ ∈ Π̃ that achieves that
expected return (i.e., v(s, ∅, π̃∗) = v∗(s, ∅)). Any such EE strategy π̃∗ is called a Bayes-
optimal policy.2

This formulation prescribes a natural recipe for computing the Bayes-optimal policy.
After observing history ht from the mdp, the posterior belief over P is updated using Bayes’
rule P (P|ht) ∝ P (ht|P)P (P) (or in recursive form P (P|ht) ∝ P(st−1, at−1, st)P (P|ht−1)).
Thus, the uncertainty about the dynamics of the model can be transformed into certainty
about the current state inside an augmented state space S+ = S ×H, where S is the state
space in the original problem and H is the set of possible histories. The dynamics associated
with this augmented state space are described by

P+(〈s, h〉, a, 〈s′, h′〉) = 1[h′ = has′]

∫
P
P(s, a, s′)P (P|h) dP, (16)

and the reward function is simply the projected reward function in the original mdp:

R+(〈s, h〉, a) = R(s, a). (17)

Together, the 5-tuple M+ = 〈S+, A,P+,R+, γ〉 forms the Bayes-Adaptive mdp (bamdp)
for the mdp problem M . Since the dynamics of the bamdp are known, it can in principle
be solved to obtain the optimal value function associated with each action:

Q∗(〈st, ht〉, a) = max
π̃

Eπ̃M+

[∞∑
t′=t

γt
′−trt′ |at = a

]
(18)

2. The proof by Martin (1967) only covers finite state spaces, but it can be extended to specific kinds of
infinite state spaces such as the one we consider in Section 4.2, see Appendix D for details.

848

Bayes-Adaptive Monte-Carlo Planning

from which the optimal action for each state can be readily derived. Optimal actions in the
bamdp are executed greedily in the real mdp M and constitute the best course of action
for a Bayesian agent with respect to its prior belief over P:

Proposition 1 (Silver, 1963; Martin, 1967) The optimal policy of the bamdp is the
Bayes-optimal policy, as defined in Definition 1.

It is obvious that the expected performance of the bamdp policy in the mdp M is
bounded above by that of the optimal policy obtained with a fully-observable model, with
equality occurring, for example, in the degenerate case in which the prior only has support
on the true model.

The Bayes-optimal policy is stationary as a function of the augmented state, but evolves
over time when observed in the context of the original mdp — as a function of the state in
S only. Since the uncertainty about the dynamics is taken into account in the optimization
of the return, the Bayes-optimal policy integrates exploration and exploitation optimally.

It can be useful to observe that the bamdp is a particular form of Partially Observable
mdp (pomdp). The state space of this pomdp is S × P, where P is the set of all possible
models P. The second component of the state space is static and hidden, and partially
observed through experienced transitions. Planning can be conducted in the belief space,
or equivalently in the space of sufficient statistics of the belief distribution, allowing decisions
to be taken in the light of their likely outcomes in gathering exploitable information about
the hidden state. In the case of bamdp, such actions gather information about the hidden
model P. However, the pomdp is not a discrete pomdp since its state space is continuous
(with discrete observations). Therefore, as pointed out by Duff (2002), many classical
solutions to pomdps cannot be directly applied to the bamdp.

From a practical perspective, solving the bamdp exactly is computationally intractable,
even for small state spaces. First, the augmented state space contains all possible histories
and is therefore infinite. Second, the transitions of the bamdp, described in Equation 16,
require an integration of transition models over the posterior. Although this operation can
be trivial for some simple probabilistic models (e.g., independent Dirichlet-Multinomial), it
is intractable for most priors of interest (see Section 4.2 for an example). However, certain
special cases of the bamdp are known to be somewhat more tractable. For example, the
celebrated Gittins indices provide a shortcut solution for bandit problems (Gittins, Weber,
& Glazebrook, 1989), although calculating these indices remains a challenge in general.
Further, the optimal solution to at least some finite-horizon linear-Gaussian control prob-
lems can be computed exactly (Tonk & Kappen, 2010). Nevertheless, it appears unlikely
that there exists a tractable exact algorithm to solve general bamdps, justifying a search
for sound and efficient approximations.

2.2.2 Approximate Bayes-Adaptive Algorithms

Three coarse classes of approximation methods have been developed, which we now review.
Note that all of them have analogues in solution methods for pomdps.

First are offline methods that toil mightily to provide execution policies that can be used
for any observed augmented state. Second and third are two sets of online methods that
concentrate on just the current augmented state. One set of methods uses sparse sampling

849

Guez, Silver, & Dayan

in the full tree of future states and actions associated with the bamdp, starting from the
current augmented state. The other samples and solves one or more mdps from the current
posterior over P, possibly correcting for the bias towards exploitation to which this typically
leads.

After describing these classes, we highlight what they currently lack, and so establish
the basis for our new algorithm, bamcp.

Offline Methods

One idea is to solve the entire bamdp offline, for every state and belief (or history). This
obviates the need for anything other than a simple value/policy lookup during execution.
However, this avenue for approximation has not led to much practical success — presumably
because of the difficulties associated with the size of the bamdp, including the fact that
gargantuan amounts of computation may be performed to find good policies in parts of the
space of histories that are actually not sampled in practice.

Existing approaches in this class include an actor-critic algorithm (Duff, 2003), which
does learning, and a point-based value iteration algorithm, called beetle (Bayesian Ex-
ploration Exploitation Tradeoff in LEarning) (Poupart, Vlassis, Hoey, & Regan, 2006).
beetle builds an approximate policy off-line by exploiting facets of the structure of the
value functions for bamdps, which they inherit from their broader, parent, class of pomdps.
More recently, Wang, Won, Hsu, and Lee (2012) propose to solve an offline pomdp by rep-
resenting the latent dynamics as a discrete partially-observed state component, where the
value of this state component corresponds to one of K possible models sampled from the
prior. Their approach can fail if the true model is not well-represented in these K sampled
models.

Offline methods are particularly poorly suited to problems such as the infinite state task
we consider in section 4.2.

Online Methods: Sparse Sampling

Online methods reduce the dependency on the size of the bamdp by approximating the
bamdp solution around the current (augmented) state of the agent and running a planning
algorithm at each step.

One idea is to perform forms of forward search from the current state. Although these
methods concentrate on the current state, the search tree is still large and it can be expensive
to evaluate a given path in the tree. In partial alleviation of this problem, most approaches
rely on some form of sparse, non-uniform, tree exploration to minimize the search effort
(but see also Fonteneau, Busoniu, & Munos, 2013). While Section 2.1.3 described search
algorithms for mdps, here we present existing extensions to the bamdp setting. Analogous
methods for pomdps are reviewed by Ross, Pineau, Paquet, and Chaib-Draa (2008).

Wang et al. applied Sparse Sampling to search online in bamdps (Wang et al., 2005),
expanding the tree non-uniformly according to sampled trajectories. At each state node, a
promising action is selected via Thompson sampling (Thompson, 1933; Agrawal & Goyal,
2011) — i.e., sampling an mdp from the belief-state, solving the mdp and taking the optimal
action. As in Sparse Sampling, this fails to exploit information about the values of nodes

850

Bayes-Adaptive Monte-Carlo Planning

in prioritizing the sampling process. At each chance (action) node, a successor belief-state
is sampled from the transition dynamics of the bamdp.

Castro et al. applied Sparse Sampling to define a relevant region of the bamdp for the
current decision step. This leads to an optimization problem that is solved using Linear
Programming (Castro & Precup, 2007).

Asmuth and Littman’s bfs3 algorithm (Asmuth & Littman, 2011) adapts Forward
Search Sparse Sampling (Walsh et al., 2010) to the bamdp (treated as a particular mdp).
Although bfs3 is described as Monte-Carlo tree search, it in fact uses a Bellman backup
rather than Monte-Carlo evaluation. As in fsss, each Bellman backup updates both lower
and upper bounds on the value of each node.

Online Methods: Dual Optimism

Instead of applying sparse sampling methods in the tree of future states and actions, an
alternative collection of methods derives one or more simpler mdps from the posterior at a
current augmented state, whose solution is often computationally straightforward. By itself,
this leads to over-exploitation: corrections are thus necessary to generate sufficient explo-
ration. Exploration can be seen as coming from optimism in the face of uncertainty – actions
that have yet to be tried sufficiently must look more attractive than their current mean.
Indeed, there are various heuristic forms of exploration bonus (Sutton, 1990; Schmidhuber,
1991; Dayan & Sejnowski, 1996; Kearns et al., 1999; Meuleau & Bourgine, 1999; Brafman
& Tennenholtz, 2003) that generalize the optimism inherent in optimal solutions such as
Gittins indices.

One such approximation was first derived in the work of Cozzolino, Gonzalez-Zubieta,
and Miller (1965), where the mean estimate of the transition probabilities (i.e., the mean of
the posterior) was employed as a certainty equivalence approximation. Solving the corre-
sponding mean mdp induces some form of optimism, but it is not always sufficient to drive
exploration. This idea was revisited and linked to reinforcement learning formulations by
Dayan and Sejnowski (1996).

Another way to induce optimism is to exploit the variance in the posterior when sampling
mdps at an augmented state. One of these approaches is the Bayesian DP algorithm (Strens,
2000). At each step (or after every couple of steps), a single model is sampled from the
posterior distribution over transition models, and the action that is optimal in that model is
executed. Although a popular approach in practice, this algorithm does not have a known
theoretical guarantee relating it to the Bayes-optimal solution. In the Bandit case, this
reduces to Thompson Sampling. Optimism is generated because solving posterior samples
is likely to yield optimistic values in some unknown parts of the mdp (where posterior
entropy is large) and that will force the agent to visit these regions. The Best Of Sampled
Set (boss) algorithm generalizes this idea (Asmuth, Li, Littman, Nouri, & Wingate, 2009).
boss samples a number of models from the posterior and combines them optimistically. This
drives sufficient exploration to guarantee some finite-sample performance guarantees, but
these theoretical guarantees cannot be easily related to the Bayes-optimal solution. boss is
quite sensitive to its parameter that governs the sampling criterion, which is unfortunately
difficult to select. Castro and Precup proposed a variant, referred to as sboss, which
provides a more effective adaptive sampling criterion (Castro & Precup, 2010).

851

Guez, Silver, & Dayan

One can also see certain non-Bayesian methods in this light. For instance, Bayesian
Exploration Bonus (beb) solves the posterior mean mdp, but with an additional reward
bonus that depends on visitation counts (Kolter & Ng, 2009). This bonus is tailored such
that the method satisfies the so-called pac-bamdp property, which generalizes the pac-mdp
mentioned in the introduction, and implies limiting to a polynomial factor the number of
steps in which the EE policy is different than the Bayes-optimal policy. A more recent
approach is the bolt algorithm, which merges ideas from beb and boss, enforces optimism
in the transitions by (temporarily) adding fictitious evidence that currently poorly-known
actions lead to currently poorly-known states (Araya-López, Buffet, & Thomas, 2012). bolt
also has the pac-bamdp property.

Discussion of Existing Methods

Despite the recent progress in approximation algorithms, tackling large domains with com-
plex structured priors remains out of computational reach for existing Bayesian RL methods.
Unfortunately, it is exactly in these structured domains that Bayesian methods should shine,
since they have the statistical capacity to take advantage of the priors.

Methods that tackle the bamdp directly such as forward-search methods, suffer from
the repeated computation of the bamdp dynamics inside the search tree for most priors.
That is, to compute a single bamdp transition in Equation 16, one needs to apply Bayes’
rule and perform an integration over all possible models. This can be done cheaply for
simple priors, but can be rather expensive for arbitrary priors.

On the other hand, optimism-based methods are attractive because they appear more
tractable — since they are dealing with smaller mdps. However, it turns out to be hard
to translate sophisticated prior knowledge into the form of a bonus — existing methods
are only compatible with simple Dirichlet-Multinomial models. Moreover, the behavior in
the early steps of exploration can be very sensitive to the precise parameter inducing the
optimism.

We therefore developed an approximation algorithm for Bayesian RL that is compatible
with complex priors, while maintaining efficiency and (Bayesian) soundness, so that large
EE tasks can be approached in a principled way. Our approach adapts the pomcp Monte-
Carlo tree search algorithm (Silver & Veness, 2010), which avoids expensive applications
of Bayes rule by only sampling at the root of the tree. It also extends the approach by
introducing a novel scheme for lazy sampling. This makes it possible to search locally in
finite portions of large or even infinite domains.

3. The BAMCP Algorithm

To reiterate, the goal of a bamdp planning method is to find, for each decision point 〈s, h〉
encountered, the action a that at least approximately maximizes the future expected return
(i.e., find an optimal EE policy π̃∗(s, h)). Our algorithm, Bayes-Adaptive Monte-Carlo
Planning (BAMCP), does this by performing a forward-search in the space of possible
future histories of the bamdp using a tailored Monte-Carlo tree search.

We employ the uct algorithm, as presented in Section 2.1.3, to allocate search effort to
promising branches of the state-action tree, and use sample-based rollouts to provide value

852

Bayes-Adaptive Monte-Carlo Planning

estimates at each node. For clarity, let us denote by Bayes-Adaptive uct (ba-uct) the
algorithm that applies vanilla uct to the bamdp (i.e., the particular mdp with dynamics
described in Equation 16).3 Sample-based search in the bamdp using ba-uct requires the
generation of samples from P+ for every step of each simulation — an expensive procedure
for all but the simplest generative models P (P). We avoid this cost by only sampling a
single transition model P i from the posterior at the root of the search tree at the start of
each simulation i, and using P i to generate all the necessary samples during this simulation.
Sample-based tree search then acts as a filter, ensuring that the correct distribution of state
successors is obtained at each of the tree nodes, as if it was sampled from P+. This root
sampling method was originally introduced in the pomcp algorithm (Silver & Veness, 2010),
developed to solve discrete-state pomdps.

Combining ba-uct with a version of root sampling forms the basis of the proposed
bamcp algorithm; this is detailed in Section 3.1. In addition, bamcp also takes advantage
of lazy sampling to reduce sampling complexity at the root, this is detailed in Section 3.2.
Finally, bamcp integrates rollout learning to improve the rollouts online, this is detailed in
Section 3.3. In Section 3.4, we show that bamcp converges to the Bayes-optimal solution.
Subsequent sections provide empirical results.

3.1 BA-UCT with Root Sampling

The root node of the search tree at a decision point represents the current state of the
bamdp. The tree is composed of state nodes representing belief states 〈s, h〉 and action
nodes representing the effect of particular actions from their parent state node. The visit
counts: N(〈s, h〉) for state nodes, and N(〈s, h〉, a) for action nodes, are initialized to 0 and
updated throughout search. A value, Q(〈s, h〉, a), which is initialized to 0, is also maintained
for each action node.

Each simulation traverses the tree without backtracking by following the uct policy
at state nodes defined by argmaxaQ(〈s, h〉, a) + c

√
log(N(〈s, h〉))/N(〈s, h〉, a), where c is an

exploration constant that needs to be set appropriately. Given an action, the transition
distribution P i corresponding to the current simulation i is used to sample the next state.
That is, at action node (〈s, h〉, a), s′ is sampled from P i(s, a, ·), and the new state node is
set to 〈s′, has′〉.

When a simulation reaches a leaf, the tree is expanded by attaching a new state node
with its connected action nodes, and a rollout policy πro is used to control the mdp defined
by the current P i. This policy is followed to some fixed total depth (determined using the
discount factor). The rollout provides an estimate of the value Q(〈s, h〉, a) from the leaf
action node. This estimate is then used to update the value of all action nodes traversed
during the simulation: if R is the sampled discounted return obtained from a traversed
action node (〈s, h〉, a) in a given simulation, then we update the value of each action node
to Q(〈s, h〉, a)+(R−Q(〈s, h〉, a))/N(〈s, h〉, a) (i.e., the mean of the sampled returns obtained from
that action node over the simulations).

3. While using uct to solve bamdps is mentioned by Asmuth and Littman (2011), we are not aware of any
published work that evaluated the performance of ba-uct.

853

Guez, Silver, & Dayan

A detailed description of the bamcp algorithm is provided in Algorithm 1. A diagram
example of bamcp simulations is presented in Figure 1. In Section 3.4, we show bamcp
eventually converges to the Bayes-optimal policy.

Finally, note that the history of transitions h is generally not the most compact suffi-
cient statistic of the belief in fully observable mdps. It can, for instance, be replaced with
unordered transition counts ψ, considerably reducing the number of states of the bamdp
and, potentially the complexity of planning. bamcp can search in this reduced search space,
which takes the form of an expanding lattice rather than a tree. We found this version of
bamcp to offer only a marginal improvement. This is a common finding for mcts, stem-
ming from its tendency to concentrate search effort on one of several equivalent paths (up
to transposition), implying a limited effect on performance of reducing the number of those
paths.

Note that an algorithm very similar to ba-uct with root sampling also appeared in the
work of Vien and Ertel (2012), shortly after bamcp was originally published by Guez et al.
(2012).

3.1.1 Root Sampling at Work in a Simple Example

We illustrate the workings of bamcp, in particular root sampling, in a simulated example
that showcases a crucial component of Bayes-adaptivity.

Consider a simple prior distribution on two mdps (P0 and P1), illustrated in Figure 2,
where P (P = P0) = P (P = P1) = 1

2 . The mdps are episodic and stop at the leaves,
and an episode starts in s0. From state s1 or s2, any action has an expected reward of
0 under the prior distribution over mdps. Nevertheless, the outcome of a transition from
action a0 in state s0 carries information about the identity of the mdp, and allows a Bayes-
adaptive agent to take an informed decision in state s1 or s2. Using Bayes-rule, we have
that P (P = P0 |s0a0s1) ∝ P (s0a0s1| P = P0)P (P = P0) = 0.8.

We can therefore compute the optimal values:

V ∗(h = s0a0s1) = max

{
2P (P = P0 |h)− 2P (P = P1 |h)

2P (P = P1 |h)− 2P (P = P0 |h)
(19)

= 2 · 0.8− 2 · 0.2 = 1.2 (= V ∗(h = s0a0s2))

V ∗(h = s0) = max{0, 1.2γ} = 1.2γ.

We now simulate bamcp on this simple example for the first decision in state s0. With
root sampling, bamcp only samples either P0 or P1 with equal probability at the root of the
tree, and does not perform any explicit posterior update inside the tree. Yet, as suggested
by Lemma 1, we expect to find the correct distribution P (P = P0 |s0a0s1) of samples of
P at the tree node 〈s0a0s1〉. Moreover, bamcp should converge to the optimal values V ∗

according to Theorem 1. This is what is observed empirically in Figure 3.

In the second row of Figure 3, we observe that Q̂(s0a0s1, a1) is slower to converge
compared to other values. This is because time is ticking more slowly for this non-optimal
node (i.e., a small fraction of simulations reach this node) so the value stays put for many
simulations.

854

Bayes-Adaptive Monte-Carlo Planning

Tree policy

Rollout
 policy

0

Past

Planning

1.

Tree policy

Rollout
 policy

0 0

Past

Planning

2.

Tree policy

Rollout
 policy

Past

Planning

0 0

3.

2

Tree policy

Rollout
 policy

Past

Planning

0 0

4.

2

Figure 1: This diagram presents the first 4 simulations of bamcp in an mdp with 2 actions from state
〈st, ht〉. The rollout trajectories are represented with dotted lines (green for the current rollouts,
and greyed out for past rollouts). 1. The root node is expanded with two action nodes. Action
a1 is chosen at the root (random tie-breaking) and a rollout is executed in P1 with a resulting
value estimate of 0. Counts N(〈st, ht〉) and N(〈st, ht〉, a1), and value Q(〈st, ht〉, a1) get updated.
2. Action a2 is chosen at the root and a rollout is executed with value estimate 0. Counts and
value get updated. 3. Action a1 is chosen (tie-breaking), then s′ is sampled from P3(st, a1, ·).
State node 〈s′, hta1s′〉 gets expanded and action a1 is selected, incurring a reward of 2, followed
by a rollout. 4. The UCB rule selects action a1 at the top, the successor state s′ is sampled from
P4(st, a1, ·). Action a2 is chosen from the internal node 〈s′, hta1s′〉, followed by a rollout using
P4 and πro. A reward of 2 is obtained after 2 steps from that tree node. Counts for the traversed
nodes are updated and the MC backup updatesQ(〈s′, hta1s′〉, a2) to R = 0+γ0+γ22+γ30+· · · =
2γ2 and Q(〈st, ht〉, a1) to γ + 2γ3 − γ/3 = 2

3
(γ + γ3).

855

Guez, Silver, & Dayan

Algorithm 1: BAMCP

procedure Search(〈s, h〉)
repeat
P ∼ P (P|h)
Simulate(〈s, h〉,P, 0)

until Timeout()
return argmax

a
Q(〈s, h〉, a)

end procedure

procedure Rollout(〈s, h〉,P, d)

if γdRmax < ε then
return 0

end
a ∼ πro(〈s, h〉, ·)
s′ ∼ P(s, a, ·)
r ← R(s, a)
return
r+γRollout(〈s′, has′〉,P, d+1)

end procedure

procedure Simulate(〈s, h〉,P, d)
if γdRmax < ε then return 0
if N(〈s, h〉) = 0 then

for all a ∈ A do
N(〈s, h〉, a)← 0,
Q(〈s, h〉, a))← 0

end
a ∼ πro(〈s, h〉, ·)
s′ ∼ P(s, a, ·)
r ← R(s, a)
R← r + γ Rollout(〈s′, has′〉,P, d)
N(〈s, h〉)← 1, N(〈s, h〉, a)← 1
Q(〈s, h〉, a)← R
return R

end

a← argmax
b

Q(〈s, h〉, b) + c
√

log(N(〈s,h〉))
N(〈s,h〉,b)

s′ ∼ P(s, a, ·)
r ← R(s, a)
R← r+γ Simulate(〈s′, has′〉,P, d+1)
N(〈s, h〉)← N(〈s, h〉) + 1
N(〈s, h〉, a)← N(〈s, h〉, a) + 1

Q(〈s, h〉, a)← Q(〈s, h〉, a) + R−Q(〈s,h〉,a)
N(〈s,h〉,a)

return R
end procedure

3.2 Lazy Sampling

In previous work on sample-based tree search, indeed including pomcp (Silver & Veness,
2010), a complete sample state is drawn from the posterior at the root of the search tree.
However, this can be computationally very costly. Instead, we sample P lazily, generating
only the particular transition probabilities that are required as the simulation traverses the
tree, and also during the rollout.

Consider P(s, a, ·) to be parametrized by a latent variable θs,a for each state and action
pair. These may depend on each other, as well as on an additional set of latent variables φ.
The posterior over P can be written as P (Θ|h) =

∫
φ P (Θ|φ, h)P (φ|h), where Θ = {θs,a|s ∈

S, a ∈ A}. Define Θt = {θs1,a1 , · · · , θst,at} as the (random) set of θ parameters required
during the course of a bamcp simulation that starts at time 1 and ends at time t. Using

856

Bayes-Adaptive Monte-Carlo Planning

s0

+2
s3 p = 1

a0

−2
s4 p = 1

a1

s1 p = 0.8

−2
s4 p = 1

a0

+2
s3 p = 1

a1

s2 p = 0.2

a0

0
s5 p = 1

a1

(a) P = P0

s0

−2
s4 p = 1

a0

+2
s3 p = 1

a1

s1 p = 0.2

+2
s3 p = 1

a0

−2
s4 p = 1

a1

s2 p = 0.8

a0

0
s5 p = 1

a1

(b) P = P1

Figure 2: The two mdps of Section 3.1.1, with prior probability P (P = P0) = P (P = P1) =
1
2 . Differences between the two mdps are highlighted in blue.

the chain rule, we can rewrite

P (Θ|φ, h) =P (θs1,a1 |φ, h)

P (θs2,a2 |Θ1, φ, h)

...

P (θsT ,aT |ΘT−1, φ, h)

P (Θ \ΘT |ΘT , φ, h)

where T is the length of the simulation and Θ \ΘT denotes the (random) set of parameters
that are not required for a simulation. For each simulation i, we sample P (φ|ht) at the
root and then lazily sample the θst,at parameters as required, conditioned on φ and all
Θt−1 parameters sampled for the current simulation. This process is stopped at the end of
the simulation, typically long before all θ parameters have been sampled. For example, if
the transition parameters for different states and actions are independent, we can simply
draw any necessary parameters individually for each state-action pair encountered during a
simulation. In general, transition parameters are not independent for different states, but
dependencies are likely to be structured. For example, the mdp dynamics could arise from a
mixture model where φ denotes the mixture component and P (φ|h) specifies the posterior
mixture proportion. Then, if the transition parameters θ are conditionally independent
given the mixture component, sampling φi at the root for simulation i allows us to sample
the required parameters θs,a independently from P (θs,a|φi, h) just when they are required
during the i-th simulation. This leads to substantial performance improvement, especially

857

Guez, Silver, & Dayan

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

−0.5

0

0.5

1

1.5

2

V
a

lu
e

V (s 0a0s 1)

V ∗(s 0a0s 1)

V (s 0)

V ∗(s 0)

0 5 10

x 10
4

−1

−0.5

0

0.5

1

1.5

2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

−1.5

−1

−0.5

V
a

lu
e

Q̂(s 0a0s 1, a1)

Q ∗(s 0a0s 1, a1)

0 5 10

x 10
4

−2

−1.5

−1

−0.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Number of simulations

P
ro

b
a

b
ili

ty

P̃ s 0a 0s 1
(P = P 1)

P (P = P 1|s 0a0s 1)

P̃ s 0a 0s 1
(P = P 0)

P (P = P 0|s 0a0s 1)

0 5 10

x 10
4

0

0.2

0.4

0.6

0.8

1

Figure 3: Tracking of different internal variables of bamcp for the example of Section 3.1.1 with γ = 0.9.
bamcp is run at the starting state for a number of simulations (x-axis) and with c = 20. The
first two rows show the evolution of values at tree nodes corresponding to different histories,
along with target values as computed in Equation 20. The bottom row shows the evolution of
P̃s0a1s1(P = P0) = 1− P̃s0a1s1(P = P1), the empirical distribution of mdps seen going through

tree node 〈s0a1s1〉 (i.e., 1
N(〈s0a1s1〉)

∑N(〈s0a1s1〉)
i=0 1[Pi = P0]). (Left) The first 2000 simulations

(Right) Zoomed out view of 100,000 simulations, displaying empirical convergence to target
values.

858

Bayes-Adaptive Monte-Carlo Planning

in large mdps where a single simulation only requires a small subset of parameters (see for
example the domain in Section 4.2 for a concrete illustration). This lazy sampling scheme
is not limited to shallow latent variable models; in deeper models, we can also benefit from
conditional independencies to save on sampling operations for each simulation by sampling
only the necessary latent variables — as opposed to sampling all of φ.

3.3 Rollout Policy Learning

The choice of rollout policy πro is important if simulations are few, especially if the domain
does not display substantial locality or if rewards require a carefully selected sequence of
actions to be obtained. Otherwise, a simple uniform random policy can be chosen to provide
noisy estimates. In this work, we learn Qro, the optimal Q-value in the real mdp, in a model-
free manner, using Q-learning, from samples (st, at, rt, st+1) obtained off-policy as a result
of the interaction of the bamcp agent with the mdp at time t. For each real transition
(st, at, rt, st+1) observed, we update

Qro(st, at)← Qro(st, at) + α(rt + γmax
a

Qro(st+1, a)−Qro(st, at)), (20)

where α is some learning rate parameter; this is the standard Q-learning rule (Watkins,
1989). Acting greedily according to Qro translates to pure exploitation of gathered knowl-
edge. A rollout policy in bamcp following Qro could therefore over-exploit. Instead, similar
to the work of Gelly and Silver (2007), we select an ε-greedy policy with respect to Qro as
our rollout policy πro. In other words, after t steps in the mdp, we have updated Qro t
times and we use the following stochastic rollout policy for all mcts simulations at the t+1
decision step:

πro(s, a) =

{
1− ε+ ε

|A| if a = argmaxa′ Qro(s, a
′)

ε
|A| otherwise,

(21)

where πro(s, a) is the probability of selecting action a when in the mdp state s (i.e., history
is ignored) during a rollout. This biases rollouts towards observed regions of high rewards.
This method provides valuable direction for the rollout policy at negligible computational
cost. More complex rollout policies can be considered, for example rollout policies that
depend on the sampled model P i or on the history ht. However, these usually incur com-
putational overhead, which may be less desired than running more simulations with worse
estimates.

3.4 Theoretical Properties

In this section, we show that bamcp converges to the Bayes-optimal policy. We first present
theoretical results in the case that exact posterior inference can be conducted to obtain
posterior samples of the dynamics (Section 3.4.1), we then extend the convergence guarantee
to the case where approximate inference (MCMC-based) is necessary to produce posterior
samples (Section 3.4.2).

The proof of Theorem 1 was present in the supplementary material by Guez et al. (2012).
Theorem 2 is a novel contribution of this paper.

859

Guez, Silver, & Dayan

3.4.1 Exact Inference Case

The main step is proving that root sampling does not alter the behavior of ba-uct. Our
proof is an adaptation of the pomcp proof by Silver and Veness (2010). We then provide
some intuition and some empirical evidence of convergence on simple Bandit problems —
where the Bayes-optimal solution is known.

Consider the ba-uct algorithm: uct applied to the Bayes-Adaptive mdp (its dynamics
are described in Equation 16). Let Dπ(hT) be the rollout distribution of ba-uct: the
probability that history hT is generated when running the ba-uct search from 〈st, ht〉, with
ht a prefix of hT , T − t the effective horizon in the search tree, and π is an arbitrary EE
policy. Similarly define the quantities D̃π(hT): the probability that history hT is generated
when running the bamcp algorithm, and P̃h(P): the distribution of P at node h when
running bamcp. The following lemma shows that these rollout statistics are the same
under bamcp as ba-uct.4

Lemma 1 Dπ(hT) = D̃π(hT) for all EE policies π : H → A.

Proof Let π be arbitrary. We show by induction that for all suffix histories h of ht, (a)
Dπ(h) = D̃π(h); and (b) P (P |h) = P̃h(P), where P (P |h) denotes (as before) the posterior
distribution over the dynamics given h.

Base case: At the root (h = ht, suffix history of size 0), it is clear that P̃ht(P) = P (P |ht)
since we are sampling from the posterior at the root node and Dπ(ht) = D̃π(ht) = 1 since
all simulations go through the root node.

Step case:
Assume proposition true for all suffices of size j. Consider any suffix has′ of size j + 1,

where a ∈ A and s′ ∈ S are arbitrary and h is an arbitrary suffix of size j ending in s. The
following relation holds:

Dπ(has′) = Dπ(h)π(h, a)

∫
P

dP P (P |h)P(s, a, s′) (22)

= D̃π(h)π(h, a)

∫
P

dP P̃h(P)P(s, a, s′) (23)

= D̃π(has′), (24)

where the second line is obtained using the induction hypothesis, and the rest from the
definitions. In addition, we can match the distribution of the samples P at node has′:

P (P |has′) = P (has′| P)P (P)/P (has′) (25)

= P (h| P)P (P)P(s, a, s′)/P (has′) (26)

= P (P |h)P (h)P(s, a, s′)/P (has′) (27)

= ZP (P |h)P(s, a, s′) (28)

= ZP̃h(P)P(s, a, s′) (29)

= ZP̃ha(P)P(s, a, s′) (30)

= P̃has′(P), (31)

4. For ease of notation, we refer to a node with its history only, as opposed to its state and history as in
the rest of the paper.

860

Bayes-Adaptive Monte-Carlo Planning

where Equation 29 is obtained from the induction hypothesis, Equation 30 is obtained from
the fact that the choice of action at each node is made independently of the samples P.
Finally, to obtain Equation 31 from Equation 30, consider the probability that a sample
P arrives at node has′, it first needs to traverse node ha (this occurs with probability
P̃ha(P)) and then, from node ha, the state s′ needs to be sampled (this occurs with proba-
bility P(s, a, s′)); therefore, P̃has′(P) ∝ P̃ha(P)P(s, a, s′). Z is the normalization constant:
Z = 1/(

∫
P dP P(s, a, s′)P (P |h)) = 1/(

∫
P dP P(s, a, s′)P̃h(P)). This completes the induction. �

The proof of Lemma 1 does not make explicit the use of lazy sampling, since this method
for realizing the values of relevant random variables does not affect the rollout distribution
and so does not affect what is being computed, only how.

Define V (〈s, h〉) = max
a∈A

Q(〈s, h〉, a) ∀〈s, h〉 ∈ S × H. We now show that bamcp con-

verges to the Bayes-optimal solution.

Theorem 1 For all ε > 0 (the numerical precision, see Algorithm 1) and a suitably chosen
c (e.g. c > Rmax

1−γ), from state 〈st, ht〉, bamcp constructs a value function at the root node

that converges in probability to an ε′-optimal value function, V (〈st, ht〉)
p→ V ∗ε′ (〈st, ht〉),

where ε′ = ε
1−γ . Moreover, for large enough N(〈st, ht〉), the bias of V (〈st, ht〉) decreases as

O(log(N(〈st, ht〉))/N(〈st, ht〉)).

Proof The uct analysis by Kocsis and Szepesvári (2006) applies to the ba-uct algorithm,
since it is vanilla uct applied to the bamdp (a particular mdp). It also applies for arbi-
trary rollout policies, including the one developed in Section 3.3. By Lemma 1, bamcp
simulations are equivalent in distribution to ba-uct simulations. The nodes in bamcp are
therefore evaluated exactly as in ba-uct, providing the result. �

Lemma 1 provides some intuition for why belief updates are unnecessary in the search
tree: the search tree filters the samples from the root node so that the distribution of
samples at each node is equivalent to the distribution obtained when explicitly updating
the belief. In particular, the root sampling in pomcp (Silver & Veness, 2010) and bamcp is
different from evaluating the tree using the posterior mean. This is illustrated empirically
in Figures 4 and 5 in the case of simple Bandit problems.

3.4.2 Approximate Inference Case

In Theorem 1, we made the implicit assumption that bamcp is provided with true samples
drawn iid from the posterior. However, most sophisticated priors will require some form of
approximate sampling scheme (see, for example, the task in Section 4.2), such as Markov
Chain Monte Carlo (MCMC), which generally deliver correlated posterior samples after the
chain converges to the stationary distribution (Neal, 1993). Thus, it is necessary to extend
the proof of convergence of bamcp to deal with samples of this nature.

Theorem 2 When using an approximate sampling procedure based on a MCMC chain with
stationary distribution P (P |ht) (e.g., Metropolis-Hastings or Gibbs sampling) to produce a
sample sequence P1,P2, . . . at the root node of bamcp, the value V (〈st, ht〉) found by
bamcp converges in probability to a (near-)optimal value function.

861

Guez, Silver, & Dayan

Bayes−optimal BAMCP Posterior Mean

160

180

200

220

240

260

U
nd

is
co

un
te

d
su

m
of

re
w

ar
ds

(a)

Bayes−optimal BAMCP Posterior Mean
55

60

65

70

75

80

D
is

co
un

te
d

su
m

of
re

w
ar

ds

(b)

Figure 4: Performance comparison of bamcp (50000 simulations, 100 runs) against the posterior mean
decision on an 8-armed Bernoulli bandit with γ = 0.99 after 300 steps. The arms’ success
probabilities are all 0.6 except for one arm which has success probability 0.9. The Bayes-optimal
result is obtained from 1000 runs with the Gittins indices (Gittins et al., 1989). a. Mean sum
of rewards after 300 steps. b. Mean sum of discounted rewards after 300 steps.

Proof Let ε > 0 be the chosen numerical accuracy of the algorithm. We can choose a
finite depth T for the search tree as a function of ε, rmax, and γ that guarantees the sum
total return after depth T amounts to less than ε. Now consider any leaf Q-node i of
that tree, with mean value µin = 1

n

∑n
m=1 rm after n simulations, where rm is the reward

obtained from this node at the m-th simulation going through that node. Since ucb1 is
used throughout the tree, exploration never ceases and this guarantees that n→∞ (see for
example Kocsis & Szepesvári, 2006, Thm. 3).

Root sampling filtering (Lemma 1) still holds despite the approximate sampling at the
root node; since it is a statement about the distribution of samples, not about the order in
which these samples arrive. Therefore, the distribution of dynamics at node i converges to
the right stationary distribution P (P |hi), where hi is the history corresponding to node i.
Asymptotic results on Markov Chains (Law of large numbers for Markov Chains) guarantee
us that µin → µi a.s., where µi is the true expected reward at leaf node i.

Given convergence at the leaves, we can work our way up the tree by backward induction
to show that the values at each node converge to their (near-)optimal values. In particular
the value at the root converges to an ε−optimal value. �

862

Bayes-Adaptive Monte-Carlo Planning

5 10 15 20

5

10

15

20
BAMCP − Number of simulations: 5000

α

β

5 10 15 20

5

10

15

20
BAMCP − Number of simulations: 250000

α

β

5 10 15 20

5

10

15

20
BAMCP − Number of simulations: 2500000

α

β

5 10 15 20

5

10

15

20
BAMCP − Number of simulations: 5000000

α

β

5 10 15 20

5

10

15

20
Posterior mean decision

α

β

Probability of correct decision

0 0.2 0.4 0.6 0.8 1

Figure 5: Evaluation of bamcp against the Bayes-optimal policy, for the case γ = 0.95, when choosing
between a deterministic arm with reward 0.5 and a stochastic arm with reward 1 with posterior
probability p ∼ Beta(α, β). The result is tabulated for a range of values of α, β, each cell value
corresponds to the probability of making the correct decision (computed over 50 runs) when
compared to the Gittins indices (Gittins et al., 1989) for the corresponding posterior. The first
four tables corresponds to different number of simulations for bamcp and the last table shows
the performance when acting according to the posterior mean. In this range of α, β values, the
Gittins indices for the stochastic arm are larger than 0.5 (i.e., selecting the stochastic arm is
optimal) for β ≤ α+ 1 but also β = α+ 2 for α ≥ 6. Acting according to the posterior mean is
different from the Bayes-optimal decision when β >= α and the Gittins index is larger than 0.5.
bamcp is guaranteed to converge to the Bayes-optimal decision in all cases, but convergence is
slow for the edge cases where the Gittins index is close to 0.5 (e.g., For α = 17, β = 19, the
Gittins index is 0.5044 which implies a value of at most 0.5044/(1−γ) = 10.088 for the stochastic
arm versus a value between 10 and 0.5 + γ × 10.088 = 10.0836 for the deterministic arm).

863

Guez, Silver, & Dayan

3.5 Possible Misuse of Latent Variable Information: a Counter-Example

When planning in a bamdp using a sample-based forward-search algorithm such as bamcp,
it could be tempting to use the knowledge available in the sampler when producing samples
(such as the value of latent variables in the model) to take better planning decisions. For
example, when generating a sample P i of the dynamics according to a posterior distribu-
tion P (P |h) which can be written as

∫
θ P (P |θ)P (θ|h), P i might have been generated by

sampling θi from P (θ|h) before sampling P i from P (P |θi). Since the value of θ is available
and contain high-level information, one natural question is to ask whether the search can
be informed by the value of θ.

Here, we outline one incorrect way of using the latent variable value during search.
Suppose we would want to split our search tree on the value of θ (this would occur implicitly
if we were constructing history features based on the value of θ), we provide below a simple
counter-example that shows that this is not a valid search approach.

Consider a simple prior distribution on two 5-state mdps, illustrated in Figure 6, where
P (θ = 0|h0) = P (θ = 1|h0) = 1

2 , and P (P |θ) is a delta function on the illustrated mdp.

s0

+2
s3 p = 1

a0

−2
s4 p = 1

a1

s1 p = 1

a0

+1
s2 p = 1

a1

(a) θ = 0

s0

−2
s4 p = 1

a0

+2
s3 p = 1

a1

s1 p = 1

a0

+1
s2 p = 1

a1

(b) θ = 1

Figure 6: The two possible mdps corresponding to the two settings of θ.

h0 = s0

+2s3

1
2

1
2

a0

−2s4

1
2

1
2

a1

s1

a0

+1
s2

a1

Figure 7: bamdp, nodes correspond to belief(or history)-states.

There are 2 deterministic actions (a0, a1) in each mdp, the episode length is 1 or 2 steps.
The only difference between the two mdps is the outcome of taking action a0 and a1 in state
s1, as illustrated in Figure 6, so that a0 is rewarding when θ = 0 and costly when θ = 1,

864

Bayes-Adaptive Monte-Carlo Planning

and vice-versa for a1. All the rewards are obtained from executing any action at any of the
terminal states (s2, s3, s4).

Observing the first transition is not informative, which implies that the posterior dis-
tribution is unchanged after the first transition: P (P |h0) = P (P |h0a0s1) = P (P |h0a1s2).
The bamdp corresponding to this problem is illustrated in Figure 7.

At history-state h0 = s0, the Bayes-optimal Q values can easily be computed:

Q∗(h0, a1) = γ, (32)

Q∗(h0a0s1, a0) = 0 + γ (2 · P (s3|h0a0s1a0)− 2 · P (s4|h0a0s1a0)) (33)

= γ(1− 1) = 0, (34)

Q∗(h0a0s1, a1) = 0 + γ (2 · P (s3|h0a0s1a0)− 2 · P (s4|h0a0s1a0)) (35)

= γ(1− 1) = 0, (36)

Q∗(h0, a0) = 0 + γmax
a

Q∗(h0a0s1, a) = 0, (37)

which implies that a1 = π∗(h0) for any γ. [We used the fact that P (s3|h0a0s1a0) = P (θ =
0|h0a0s1a0) · P (s3|θ = 0, s1a0) + P (θ = 1|h0a0s1a0) · P (s3|θ = 1, s1a0) = 1

2 · 1 + 1
2 · 0 = 1

2 ,
and similarly for P (s4|h0a0s1a0)].

Note that, since belief updates only occur at the terminal states, forward-search with
or without root sampling will be equivalent. They both would construct a search tree as in
Figure 7 and compute the right value and right decision.

The problem comes in if we decide to split our search tree at chance nodes based on
the value of θ in the generated samples going down the tree. For example, after taking
action a0 in state s0, we would be using either an mdp for which θ = 0 w.p 0.5 or an mdp
for which θ = 1 w.p 0.5. Since multiple values of θ go through the node h0a0, we would
branch the tree as illustrated in Figure 8. This search tree is problematic because the value
computed for Q∗(h0, a0) becomes 2 ·γ2, which is larger than Q∗(h0, a1) = γ for any γ > 0.5.
Therefore, the policy that is computed at the root is no longer Bayes-optimal.

h0 = s0

+2
s3

a0

−2
s4

a1

θ = 0, s1

+2
s3

a0

−2
s4

a1

θ = 1, s1

a0

+1
s2

a1

Figure 8: A problematic search tree.

By branching on the latent variable value, we are creating spurious observations: we are
implying that the latent variable from the past will be observed in the future, which is not
the case.

To summarize, the Bayes-adaptive policy to be optimized must be a function of future
histories (i.e., things we’ll actually observe in the future), and cannot be a function of future

865

Guez, Silver, & Dayan

unobserved latent variables. Ignoring this causes problems in simple domains such as the
one illustrated above, but similar scenarios would occur in more complex latent variable
models for the same reasons.

4. Experiments

We first present empirical results of bamcp on a set of standard problems with comparisons
to other popular algorithms. We then showcase bamcp’s advantages in a large scale task:
an infinite 2D grid with complex correlations between reward locations.

4.1 Standard Domains

The following algorithms were run on the standard domains: bamcp, sboss, beb, bfs3.
Details about their implementation and parametrization can be found in Appendix B. In
addition, we report results from the work of Strens (2000) for several other algorithms.

For all the following domains, we fix γ = 0.95.

� The Double-loop domain is a 9-state deterministic mdp with 2 actions (Dearden,
Friedman, & Russell, 1998), 1000 steps are executed in this domain. It is illustrated
in Figure 9(a).

� Grid5 is a 5 × 5 grid with a reset state in one corner, and a single reward state
diametrically opposite to the reset state. Actions with cardinal directions are executed
with small probability of failure (pfailure = 0.2) for 1000 steps.

� Grid10 is a 10 × 10 grid designed in the same way as Grid5. We collect 2000 steps
in this domain.

� Dearden’s Maze is a 264-states maze with 3 flags to collect (Dearden et al., 1998).
A special state provides reward equivalent to the number of flags collected since the
last visit. 20000 steps are executed in this domain5. It is illustrated in Figure 9(b).

To quantify the performance of each algorithm, we measured the total undiscounted
reward over many steps. We chose this measure of performance to enable fair comparisons
to be drawn with prior work. In fact, we are optimising a different criterion – the discounted
reward from the start state – and so we might expect this evaluation to be unfavourable to
our algorithm.

Although one major advantage of Bayesian RL is that one can specify priors about the
dynamics, for these domains, we used rather generic priors to enable comparisons with previ-
ous work. For the Double-loop domain, the Bayesian RL algorithms were run with a simple
Dirichlet-Multinomial model with symmetric Dirichlet parameter α = 1

|S| . For the grids
and the maze domain, the algorithms were run with a sparse Dirichlet-Multinomial model,
as described by Friedman and Singer (1999). For both these models, efficient collapsed
sampling schemes are available; they are employed for the ba-uct and bfs3 algorithms in
our experiments to compress the posterior parameter sampling and the transition sampling

5. The result reported for Dearden’s maze with the Bayesian DP alg. by Strens (2000) is for a different
version of the task in which the maze layout is given to the agent.

866

Bayes-Adaptive Monte-Carlo Planning

log with respect to mix . These expecta-
tions do not have closed-form solutions, but can be approxi-
mated by numerical integration, using formulas derived fairly
straightforwardly from Theorem 3.5.
To summarize, in this section we discussed two possible

ways of updating the estimate of the values. The first, mo-
ment update leads to an easy closed form update, but might
become overly confident. The second, mixture update, is
more cautious, but requires numerical integration.

4 Convergence
We are interested in knowing whether our algorithms con-
verge to optimal policies in the limit. It suffices to show that
the means converge to the true Q-values, and that the
variance of the means converges to 0. If this is the case, then
both the Q-value sampling and the myopic-VPI strategies
will, eventually, execute an optimal policy.
Without going into details, the standard convergence proof

[15] for Q-learning requires that each action is tried infinitely
often in each state in an infinite run, and that 0
and 0

2 where is the learning rate. If
these conditions are met, then the theorem shows that the
approximate Q-values converge to the real Q-values.
Using this theorem,we can show that whenwe usemoment

updating, our algorithm converges to the correct mean.
Theorem 4.1: If each action is tried infinitely often in
every state, and the algorithm uses moment updating, then
the mean converges to the true Q-value for every state
and action .
Moreover, for moment updating we can also prove that the

variance will eventually vanish:
Theorem 4.2: If each action is tried infinitely often in
every state, and the algorithm uses the moment method to
update the posterior estimates, then the variance Var
converges to 0 for every state and action .
Combining these two results, we see that with moment

updating, the procedure will converge on an optimal policy
if all actions are tried eventually often. This is the case when
we select actions by Q-value sampling.
If we select actions using myopic-VPI, then we can no

longer guarantee that each action is tried infinitely often.
More precisely, myopic VPI might starve certain actions and
hence we cannot apply the results from [15]. Of course, we
can define a “noisy” version of this action selection strategy
(e.g., use a Boltzmann distributionover the adjusted expected
values), and this will guarantee convergence.
At this stage, we do not yet have counterparts to Theo-

rems 4.1 and 4.2 for mixture updating. Our conjecture is
that the estimated mean does converge to the true mean, and
therefore similar theorems holds.

5 Experimental Results
We have examined the performance of our approach on sev-
eral different domains and compared it with a number of
different exploration techniques. The parameters of each al-
gorithm were tuned as well as possible for each domain. The
algorithms we have used are as follows:
Semi-Uniform Q-learning with semi-uniform random ex-
ploration.

1 2 3 4 5a,0 a,0 a,0
a,10

a,0
b,2

b,2
b,2 b,2

b,2

(a) Task 1 [11].

a,0
b,0

b,0 1
2

3
4

0

5
6

7
8

a,b,0

a,b,0

a,b,0

a,0

a,0 a,0

b,0

b,0

a,b,2 a,b,1

(b) Task 2 [14].

F

S F G

F
(c) Task 3. A navigation problem. is the start state. The
agent receives a reward upon reaching based on the number
of flags collected.

Figure 3: The three domains used in our experiments.

Boltzmann Q-learning with Boltzmann exploration.
Interval Q-learning using Kaelbling’s interval-estimation
algorithm [10].

IEQL+ Meuleau’s IEQL+ algorithm [11].
Bayes BayesianQ-learning as presented above, using either
Q-value sampling or myopic-VPI to select actions, and
either Moment updating or Mixture updating for value
updates. These variants are denotedQS, VPI,Mom,Mix,
respectively. Thus, there are four possible variants of the
Bayesian Q-Learning algorithm, denoted, for example, as
VPI Mix.

We tested these learning algorithms on three domains:
Chain This domain consists of the chain of states shown in
Figure 3(a). It consists of six states and two actions
and . With probability 0.2, the agent “slips”and actually
performs the opposite action. The optimal policy for this
domain (assuming a discount factor of 0.99) is to do ac-
tion everywhere. However, learning algorithms can get
trapped at the initial state, preferring to follow the –loop
to obtain a series of smaller rewards.

Loop This domain consists of two loops, as shown in Figure
3(b). Actions are deterministic. The problem here is that a
learning algorithm may have already converged on action
for state 0 before the larger reward available in state 8 has
been backed up. Here the optimal policy is to do action
everywhere.

(a)

1 2 3 4 5a,0 a,0 a,0 a,0

b,2
b,2
b,2
b,2

b,2 a,10

Figure 1. The “Chain” problem

6.1 Problem Descriptions

Figure 1 shows the 5-state “Chain” problem. The arcs are
labeled with the actions that cause that state transition,
and the associated rewards. However the agent has only
abstract actions { }2,1 available. Usually abstract action 1
causes real-world action a to take place, and abstract
action 2 causes real-world action b. With probability 0.2,
the agent “slips” and its action has the opposite effect.
The optimal behavior is to always choose action 1 (even
though this sometimes results in the transitions labeled
with b). Once state 5 is reached, a reward of 10 is usually
received several times before the agent slips, and starts
again at state 1. This problem requires effective
exploration and accurate estimation of discounted reward.

Figure 2 shows the “Loop” problem which involves two
loops of length 5 joined at a single start state. Two actions
are available and transitions are deterministic. Taking
action a repeatedly causes traversal of the right loop,
yielding a reward of 1 for every 5 actions taken.
Conversely, taking action b repeatedly causes traversal of
the left loop, yielding a reward of 2 for every 5 actions
taken. This problem requires a difficult compromise
between exploration and exploitation.

Figure 3 shows the “Maze” problem. The agent can move
left, right, up or down by one square in the maze. If it
attempts to move into a wall, its action has no effect. The
problem is to move from the start (top-left) to the goal
(top-right) collecting the flags on the way. When it
reaches the goal, the agent receives a reward equal to the
number of flags collected, and is returned to the start
immediately. The problem is made more difficult by
assuming that the agent occasionally “slips” and moves in

a direction perpendicular to that intended (with
probability 0.1). There are 33 reachable locations in the
maze (including the goal) and there are up to 8
combinations for status of the flags at any time. This
yields 264 discrete states. The agent was given limited
layout information (identifying the immediate successors
of each state) in order to reduce the complexity of the
posterior distribution for the Bayesian DP approach.

6.2 Results

The experimental results show accumulated totals of
reward received over learning phases which consist of
1000 steps for Chain and Loop, and 20000 steps for
Maze. Averages were taken over 256 runs for Chain and
Loop, and 16 runs for Maze. Table 1 summarizes
comparative performance after 1, 2, and 8 phases of
learning. (Note that these results are pessimistic in that
they show the rewards actually received during learning
rather than the rewards which could be received with the
instantaneous greedy policy.) In the Bayesian DP method,
a new hypothesis (for the MDP) was drawn each time the
system entered the starting state. In Maze, a new
hypothesis was also obtained every 24 steps because there
is no guarantee that the agent will return to the start in
finite time.

An optimal deterministic policy would yield average
rewards of 3677 in Chain and 400.0 in Loop. The optimal
policy for Maze is not obvious due to the effect of
slipping. Without slipping, the optimal policy would yield
2143. I estimate that the true optimal policy with slipping
would yield between 1860 and 1900.

The results show that the dynamic programming
approaches are significantly better than the primitive
learning approaches for these problems, except for Loop
where Q-learning also eventually achieves near-optimal
performance. The Bayesian approach is significantly
better than the Heuristic DP after 8 phases of Loop and
Maze, and performs similarly for Chain. Heuristic DP is
significantly better than Bayesian DP in phases 1 and 2 of
Maze, but this is at a cost of worse performance in later

0

1

4

2

3

a,0 a,b,0

a,b,2

a,b,0

a,b,0

5

8

6

7

b,0b,0

a,b,1

b,0

b,0

a,0

a,0
a,0

Figure 2. The “Loop” problem.

Figure 3. The “Maze” problem.(b)

Figure 9: Two of the standard domains described in Section 4.1: a) The Double-loop domain, b) Dearden’s
maze. Figures from the work of Strens (2000).

into a single transition sampling step. This considerably reduces the cost of belief updates
inside the search tree when using these simple probabilistic models. Unfortunately, effi-
cient collapsed sampling schemes are not available in general (see for example the model in
Section 4.2).

A summary of the results is presented in Table 1. Figures 10 and 11 report the planning
time/performance trade-off for the different algorithms on the Grid5 and Maze domain.

Double-loop Grid5 Grid10 Dearden’s Maze
BAMCP 387.6 ± 1.5 72.9 ± 3 32.7 ± 3 965.2 ± 73
BFS3 (Asmuth & Littman, 2011) 382.2 ± 1.5 66 ± 5 10.4 ± 2 240.9 ± 46
SBOSS (Castro & Precup, 2010) 371.5 ± 3 59.3 ± 4 21.8 ± 2 671.3 ± 126
BEB (Kolter & Ng, 2009) 386 ± 0 67.5 ± 3 10 ± 1 184.6 ± 35
Bayesian DP* (Strens, 2000) 377 ± 1 - - -
Bayes VPI+MIX* (Dearden et al., 1998) 326 ± 31 - - 817.6 ± 29
IEQL+* (Meuleau & Bourgine, 1999) 264 ± 1 - - 269.4 ± 1
QL Boltzmann* 186 ± 1 - - 195.2 ± 20

Table 1: Experiment results summary. For each algorithm, we report the mean sum of rewards and
confidence interval for the best performing parameter within a reasonable planning time limit
(0.25 s/step for Double-loop, 1 s/step for Grid5 and Grid10, 1.5 s/step for the Maze). For
bamcp, this simply corresponds to the number of simulations that achieve a planning time just
under the imposed limit. * Results by Strens (2000) reported without timing information.

On all the domains tested, bamcp performed best. Other algorithms came close on
some tasks, but only when their parameters were tuned to that specific domain. This is
particularly evident for beb, which required a different value of exploration bonus to achieve
maximum performance in each domain. bamcp’s performance is stable with respect to the
choice of its exploration constant (c = 3) and it did not require fine tuning to obtain the
results.

bamcp’s performance scaled well as a function of planning time, as is evident in Fig-
ures 10 and 11. In contrast, sboss follows the opposite trend. If more samples are employed

867

Guez, Silver, & Dayan

10−3 10−2 10−1 100
10

20

30

40

50

60

70

80

90

10−3 10−2 10−1 100
10

20

30

40

50

60

70

80

90

10−3 10−2 10−1 100
10

20

30

40

50

60

70

80

90

Average Time per Step (s)

10−3 10−2 10−1 100
10

20

30

40

50

60

70

80

90
S
um

of
R
ew

ar
ds

af
te
r1

00
0
st
ep
s BAMCP

BEB

BFS3

SBOSS

Figure 10: Performance of each algorithm on the Grid5 domain as a function of planning time. Each
point corresponds to a single run of an algorithm with an associated setting of the parameters.
Increasing brightness inside the points codes for an increasing value of a parameter (bamcp
and bfs3: number of simulations, beb: bonus parameter β, sboss: number of samples K).
A second dimension of variation is coded as the size of the points (bfs3: branching factor C,
sboss: resampling parameter δ). The range of parameters is specified in Appendix B.

to build the merged model, sboss actually becomes too optimistic and over-explores, de-
grading its performance. beb cannot take advantage of prolonged planning time at all. The
performance of bfs3 generally improves with more planning time, given an appropriate
choice of parameters, but it is not obvious how to trade-off the branching factor, depth, and
number of simulations in each domain. bamcp greatly benefited from our lazy sampling
scheme in the experiments, providing a 35× speed improvement over the naive approach in
the maze domain for example; this is illustrated in Figure 12.

Dearden’s maze aptly illustrates a major drawback of forward search sparse sampling
algorithms such as bfs3. Like many maze problems, all rewards are zero for at least k steps,
where k is the solution length. Without prior knowledge of the optimal solution length,
all upper bounds will be higher than the true optimal value until the tree has been fully
expanded up to depth k – even if a simulation happens to solve the maze. In contrast, once
bamcp discovers a successful simulation, its Monte-Carlo evaluation will immediately bias
the search tree towards the successful trajectory.

Figure 12 confirms that, even on a moderate-sized domain with a simple prior (In-
dependent Sparse Dirichlet-Multinomial), bamcp amply benefits from root sampling, lazy
sampling, and rollout learning. For more complex priors, as in the following section, ba-uct

868

Bayes-Adaptive Monte-Carlo Planning

10−1 100
0

100

200

300

400

500

600

700

800

900

1000

1100

Average Time per Step (s)

U
nd

is
co

un
te

d
su

m
of

re
w

ar
ds

af
te

r2
00

00
st

ep
s

BAMCP (BA−UCT+RS+LS+RL)
BEB
BFS3
SBOSS

Figure 11: Performance of each algorithm, as in Figure 10 but on Dearden’s Maze domain.

becomes computationally intractable. Root sampling and lazy sampling are then mandatory
components.

4.2 Infinite 2D Grid Task

It is perhaps not unfair to characterize all the domains in the previous section as being
of very limited scale. Indeed, this can be seen as a correct reflection of the state of the
art of Bayesian RL. However, bamcp, because of its root-based lazy sampling, can be
applied to considerably larger and more challenging domains. We therefore designed a new
problem that is well beyond the capabilities of prior algorithms since it has an infinite and
combinatorially structured state space, and an even more challenging belief space. Although
still abstract, this new task illustrates something of bamcp’s power.

4.2.1 Problem Description

The new problem is a class of complex mdps over an infinite grid. In a draw of a particular
mdp, each column i has an associated latent parameter pi ∼ Beta(α1, β1) and each row j
has an associated latent parameter qj ∼ Beta(α2, β2). The probability of grid cell ij having
a reward of 1 is piqj , otherwise the reward is 0. The agent knows it is on a grid and is
always free to move in any of the four cardinal directions. Rewards are consumed when
visited; returning to the same location subsequently results in a reward of 0. As opposed to
the independent Dirichlet priors employed in standard domains, here, dynamics are tightly
correlated across states (i.e., observing a state transition provides information about other
state transitions).

The domain is illustrated in Figure 13. Although the uncertainty appears to concern
the reward function of the mdp rather than the dynamics, it can be viewed formally as un-

869

Guez, Silver, & Dayan

(a)

10−1 100
0

100

200

300

400

500

600

700

800

900

1000

1100
BA−UCT + RL
BA−UCT

U
nd

is
co
un

te
d
su
m
of

re
w
ar
ds

af
te
r2

00
00

st
ep

s

Average Time per Step (s)

(b)

10
−1

10
0

0

100

200

300

400

500

600

700

800

900

1000

1100

BA−UCT + RS + RL

BA−UCT + RS

(c)

10−1 100
0

100

200

300

400

500

600

700

800

900

1000

1100
BA−UCT + RS + LS + RL (BAMCP)
BA−UCT + RS + LS

Figure 12: Evolution of performance from ba-uct to bamcp on Dearden’s Maze domain. bamcp is present
on all plots for comparison, as also displayed in Figure 11. a. Performance of vanilla ba-uct
with and without rollout policy learning (RL) presented in Section 3.3. b. Performance of
ba-uct with Root Sampling (RS), as presented in Section 3.1, and with and without rollout
learning. c. Performance of ba-uct with Root Sampling and Lazy Sampling (LS), as presented
in Section 3.2. In addition with rollout policy learning, this is the bamcp algorithm.

870

Bayes-Adaptive Monte-Carlo Planning

...

· · · · · ·

...

Figure 13: A portion of an infinite 2D grid task generated with Beta distribution parameters α1 = 1, β1 = 2
(columns) and α2 = 2, β2 = 1 (rows). Black squares at location (i,j) indicates a reward of 1,
the circles represent the corresponding parameters pi (blue) and qj (orange) for each row and
column (area of the circle is proportional to the parameter value). One way to interpret these
parameters is that following column i implies a collection of 2pi/3 reward on average (2/3 is
the mean of a Beta(2, 1) distribution) whereas following any row j implies a collection of qj/3
reward on average; but high values of parameters pi are less likely than high values parameters
qj . These parameters are employed for the results presented in Figure 14-c).

certainty in the dynamics when the state is augmented with a binary variable that indicates
whether a reward is present.6

Formally, since rewards disappear after one visit, the description of the state in the
mdp needs to include information about the state of all the rewards (for example in the
form of a set of grid locations previously visited) in addition to the position of the agent
on the infinite grid. A state s is therefore the combination of the current agent’s location
(i, j), the unordered set of previously visited locations V , and the binary variable R = rij .
The dynamics P then deterministically updates the position of the agent and the visited
locations based on the agent’s action, and updates R according to the reward map. The
known reward function is then simply R(s, a) = s(R) for all a (i.e., as described before, the
agent gets a reward in position ij if rij = 1).

4.2.2 Inference

Posterior inference (of the dynamics P) in this model requires approximation because of
the non-conjugate coupling of the variables. To see this, consider the posterior probability
of a particular grid cell kl having a reward of 1 (denote this event rkl = 1), then

P (rkl = 1|O) =

∫
pk,ql

pkql P (pk, ql|O) dpkdql, (38)

6. In fact, the bamdp framework can be straightforwardly extended to deal with more general, partially-
observed, reward functions (Duff, 2002).

871

Guez, Silver, & Dayan

where O = {(i, j)} is the set of observed reward locations, each associated with an observed
reward rij ∈ {0, 1}. Sampling rkl is straightforward given access to posterior samples of
pk and ql. However, the posterior distribution on pk and ql, P (pk, ql|O), cannot be easily
sampled from, it is given by:

P (pk, ql|O) ∝ P (O|pk, ql)P (pk)P (ql) (39)

=

∫
PO\pk,QO\ql

P (O|PO, QO)
∏
p∈PO

P (p)
∏
q∈QO

P (q) (40)

=

∫
PO\pk,QO\ql

∏
(i,j)∈O

(piqj)
rij (1− piqj)1−rij

∏
p∈PO

Beta(p;α1, β1)
∏
q∈QO

Beta(q;α2, β2),

(41)

where PO denotes the set of parameters pi for all observed columns i (columns where at least
one observation exists) and similarly for QO with rows. This posterior suffers from non-
conjugacy (because of the multiplicative interaction between the two Beta distribution) but
also from a complicated dependence structure (pk and ql depend on observations outside of
column k and row l). For these reasons, the inference is done approximately via Metropolis-
Hastings (details in Appendix C).

4.2.3 Results

Planning algorithms that attempt to solve an mdp based on sample(s) (or the mean) of the
posterior (e.g., boss, beb, Bayesian DP) cannot directly handle this large combinatorial
state space. Previous forward-search methods (e.g., ba-uct, bfs3) can deal with the state
space, but not the complex belief space: at every node of the search tree they must solve
an approximate inference problem to estimate the posterior beliefs. By contrast, bamcp
limits the posterior inference to the root of the search tree and is not directly affected by
the size of the state space or belief space, which allows the algorithm to perform well even
with a limited planning time. Note that lazy sampling is required in this setup since a full
sample of the dynamics involves infinitely many parameters.

Figure 14 demonstrates the planning performance of bamcp in this complex domain.
Performance improves with additional planning time. The quality of the prior clearly affects
the agent’s performance, bamcp can take advantage of correct prior information to gain
more rewards. In addition, the behavior of the agent is qualitatively different depending on
the prior parameters employed.

For example, for the case of Figure 14-a, rewards are often found in relatively dense
blocks on the map and the agent exploits this fact when exploring; this explains the high
frequency of short dwell times. For Figure 14-b, good rewards rates can be obtained by
following the rare rows that have high qj parameters, but finding good rows can be expensive
for at least two reasons: 1) good rows can be far from the agent’s current position and 2) it
takes longer to decide the value of a row if most observations lack rewards; this is because the
entropy of the posterior is larger given observations of no rewards (which can be explained
by either rows or columns being poor, or both at the same time) than given observations
of rewards (which can be explained with high probability by both rows and columns being
good, since rij ∼ Bernoulli(piqj)). Hence, the agent might settle on sub-optimal rows for

872

Bayes-Adaptive Monte-Carlo Planning

0 50 100 150 200
0.05

0

0.05

Dwell Time (Horizontal)

Fr
eq
ue
nc
y

0 50 100 150 200
0.05

0

0.05

Dwell Time (Horizontal)

Fr
eq

ue
nc
y

0 50 100 150 200
0.05

0

0.05

Dwell Time (Horizontal)

Fr
eq

ue
nc
y

10−2 10−1 100 101
20

30

40

50

60

70

80

90

100

Planning time (s)

U
nd
is
co
un
te
d
su
m
of
re
w
ar
ds

af
te
r2

00
st
ep
s

10−2 10−1 100 101
4

5

6

7

8

9

10

11

12

13

14

Planning time (s)

D
is
co
un
te
d
su
m
of

re
w
ar
ds

af
te
r2

00
st
ep
s

10−2 10−1 100 101
10

15

20

25

30

35

40

45

50

Planning time (s)

U
nd
is
co
un
te
d
su
m
of
re
w
ar
ds

af
te
r2

00
st
ep
s

10−2 10−1 100 101
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Planning time (s)

D
is
co
un
te
d
su
m
of

re
w
ar
ds

af
te
r2

00
st
ep
s

10−2 10−1 100 101
10

20

30

40

50

60

70

80

90

Planning time (s)

U
nd
is
co
un
te
d
su
m
of
re
w
ar
ds

af
te
r2

00
st
ep
s

10−2 10−1 100 101
3

4

5

6

7

8

9

10

11

12

13

Planning time (s)

D
is
co
un
te
d
su
m
of

re
w
ar
ds

af
te
r2

00
st
ep
s

BAMCP
BAMCP Wrong prior
Random

BAMCP
BAMCP Wrong prior

Figure 14: Performance of bamcp as a function of planning time on the Infinite 2D grid task, for γ = 0.97,
where each row corresponds to a different set of parameters generating the grid. The perfor-
mance during the first 200 steps in the environment is averaged over 50 sampled environments
(5 runs for each sample) and is reported both in terms of undiscounted (left) and discounted
(center) sum of rewards. bamcp is run either with the correct generative model as prior (solid
green) or with an incorrect prior (dotted green). The performance of a uniform random policy
is also reported (blue). A small sample portion of a grid generated with these parameters is
displayed on each row, presented as in Figure 13. The frequency histogram of dwell times — the
number of consecutive steps the agent stays on a row before switching — is reported for each
scenario. The grids are generated with Beta parameters a) α1=0.5, β1=0.5, α2=0.5, β2=0.5,
b) α1=0.5, β1=0.5, α2=1, β2=3, and c) α1=2, β1=1, α2=1, β2=2. For the case of wrong pri-
ors (dot-dashed lines), bamcp is given the parameters a) α1=4, β1=1, α2=0.5, β2=0.5, b)
α1=1, β1=3, α2=0.5, β2=0.5, and c) α1=1, β1=2, α2=2, β2=1.

873

Guez, Silver, & Dayan

large periods of time, for example until it gains enough confidence that a better row is likely
to be found nearby (as in Bandit problems where the Bayes-optimal agent might settle on
a sub-optimal arm if it believes it likely is the best arm given past data). The heavier-tail
distribution of dwell times for this scenario, in Figure 14-b, reflects this behavior.

The case of Figure 14-c consists of a mixture of rich and poor rows. The agent can
determine moderately quickly if a row is not good enough, given what it expects to find,
and then switches to a nearby row. Once a good enough row is found, the agent can stick
to it for large periods of time. This is reflected in the bimodal nature of the distribution of
dwell times in Figure 14-c. In many cases, the agent is satisfied with one of the first rows
he visits, since it is likely that the agent starts on a good row. He then decides to stay on
it for the entire duration of the episode, which explains the peak towards 200.

When bamcp’s prior belief about the dynamics is not the same as the generative model’s
distribution (Wrong prior dot-dashed lines in Figure 14), then maladaptive behavior can be
observed. For instance, in Figure 14-a, the deluded agent expects most columns to be rich,
and some rows to be rich and others to be poor. Hence, a good strategy given this prior
belief is to find one of the good rows and exploit it by travelling horizontally. However,
since a lot of columns are actually poor in this generative model, the agent never encounters
the continuous sequence of rewards it expects to find on good rows. Given its wrong prior,
even if on what is actually a good row, it explains the observation by the row being poor
— rather than the column — and switches to a different row. This behavior is reflected in
the shorter horizontal dwell times plotted in Figure 14-a. Similar effects can be observed in
the Wrong prior cases of Figure 14-b,c.

It should be pointed out that the actual Bayes-optimal strategy in this domain is not
known — the behavior of bamcp for finite planning time might not qualitatively match the
Bayes-optimal strategy. Nevertheless, we speculate that some of the behavior we observe
with bamcp, including the apparently maladaptive behaviors, would also be found in the
Bayes-optimal solution.

5. Discussion

Bayesian model-based reinforcement learning addresses the problem of optimizing the dis-
counted return of an agent when the dynamics are uncertain. By solving an augmented
mdp called the bamdp, the agent can optimally trade-off exploration and exploitation and
maximize its expected discounted return according to its prior beliefs. While formally at-
tractive, this framework suffers from a major drawback: it is computationally intractable
to solve the bamdp exactly. While we are not aware of any formal complexity analysis
for solving bamdps, bamdps can be mapped to continuous-state pomdps with discrete ob-
servations (Duff, 2002). In general, solving discrete pomdps is known to be challenging
(Mundhenk, Goldsmith, Lusena, & Allender, 2000; Madani, Hanks, & Condon, 2003).

To approximate the Bayes-optimal solution efficiently, we suggested a sample-based
algorithm for Bayesian RL called bamcp that significantly surpassed the performance of
existing algorithms on several standard tasks. We showed that bamcp can tackle larger
and more complex tasks generated from a structured prior, where existing approaches scale
poorly. In addition, bamcp provably converges to the Bayes-optimal solution, even when
MCMC-based posterior sampling is employed.

874

Bayes-Adaptive Monte-Carlo Planning

The main idea is to employ Monte-Carlo tree search to explore the augmented Bayes-
adaptive search space efficiently. The naive implementation of that idea is an algorithm
that we called ba-uct. However, ba-uct cannot cope with most priors because it employs
expensive belief updates inside the search tree. We therefore introduced three modifications
to obtain a computationally tractable sampled-based algorithm: root sampling, which only
requires beliefs to be sampled at the start of each simulation (as in Silver & Veness, 2010);
a model-free RL algorithm that learns a rollout policy; and a lazy sampling scheme which
enables the posterior beliefs to be sampled cheaply.

5.1 Future Work: Algorithms

Despite its excellent empirical performance in many domains (Gelly et al., 2012), the uct
algorithm is known to suffer several drawbacks. First, there is no finite-time regret bound.
It is possible to construct malicious environments, for example in which the optimal policy
is hidden in a generally low reward region of the tree, where uct can be misled for long
periods (Coquelin & Munos, 2007). Of course, in our setting, appropriate prior distributions
might help structure search more effectively. But, the issue of convergence of the MCMC
chain in approximate inference settings may hinder any effort to get finite-time guarantees.
Second, the uct algorithm treats every action node as a multi-armed bandit problem.
However, there is no actual benefit to accruing reward during planning, and so it is in
theory more appropriate to use pure exploration bandits (Bubeck, Munos, & Stoltz, 2009).

We focused on learning the dynamics (and implicitly the rewards in the infinite grid
task) of a fully observable mdp. If the states are not observed directly, then bamcp could be
extended to maintain beliefs over both the dynamics and the state. Both state and dynamics
would then be sampled from the posterior distribution, at the start of each simulation. This
setting is known as a Bayes-Adaptive Partially Observable mdp (bapomdp) (Ross, Pineau,
Chaib-draa, & Kreitmann, 2011).

In this work, we limited ourselves to the case of discrete-state mdps, since they already
present significant challenges for Bayesian exploration. bamcp cannot be straightforwardly
converted to deal with continuous-state mdps, but it remains to see whether the ingre-
dients that make bamcp successful in the discrete setting could be reassembled into a
continuous-state solution, for example using some form of value function approximation
during simulation-based search (Silver, Sutton, & Müller, 2008).

5.2 Future Work: Priors

bamcp is able to exploit prior knowledge about the dynamics in a principled manner. It is
possible to encode many aspects of domain knowledge into the prior distribution, and so an
important avenue for future work is to explore rich, structured priors about the dynamics
of the mdp. As we showed, if this prior knowledge matches the class of environments that
the agent will encounter, then exploration can be significantly accelerated. It is therefore
important to understand how to select or learn appropriate priors so that large real-world
tasks can be tackled with Bayesian RL. One promising category of rich priors in this context
are non-parametric priors. For example, Doshi-Velez, Wingate, Roy, and Tenenbaum (2010)
and Wingate, Goodman, Roy, Kaelbling, and Tenenbaum (2011) have investigated this

875

Guez, Silver, & Dayan

direction, but as yet only in combination with myopic planning algorithms, rather than
Bayes-Adaptive planning.

5.3 Evaluation of Bayesian RL Algorithms

Bayesian RL algorithms have traditionally been tested on small, hand-crafted, domains.
Even though these domains can contain substantial structure, the priors given to the agent
are usually independent Dirichlet distributions that only generate unstructured random
worlds. This mismatch between the prior distribution and the domains is problematic to
evaluate, since a perfect Bayesian RL algorithm is not guaranteed to perform well given
incorrect priors. Since it is not tractable to compute the Bayes-optimal solution exactly, it
becomes impossible to decide whether an algorithm that obtains a low return compared to
other algorithms in some hand-crafted domain is a better or a worse approximation to the
Bayes-optimal solution.

For the purpose of algorithmic evaluation, the obvious solution is to design priors that
actually generate the tasks that we solve. When a Bayesian RL algorithm is given this
generative model as prior and is also tested on many of these generated tasks, then the
Bayes-optimal solution is guaranteed to obtain the best discounted return on average. In
this case, a higher mean return becomes synonymous with a better approximation — given
the goal of matching the Bayes-optimal solution’s performance. We employed this method
of averaging across generated domains in Section 4.2 to evaluate the bamcp algorithm on
the Infinite Grid task. To understand the exploration performance of proposed algorith-
mic solutions truly, future comparisons between algorithms would likely benefit from such
evaluation schemes.

5.4 Conclusion

Bayes-adaptive planning is conceptually appealing but computationally very challenging.
The enormous computation required by prior approaches is largely due to the fact that
root values are computed from expectations and/or maximisations over the complete tree
of possible actions and states that follows on from the current history. In addition, these
values must integrate over the distribution of transition and potentially reward models at
each state in the search tree. As a result, computation typically grows exponentially with
search depth, at a rate determined by the action space, successor state space, and model
space.

Our new algorithm, bamcp, builds on previous work (Kearns et al., 1999; Kocsis &
Szepesvári, 2006; Silver & Veness, 2010) that solves these problems systematically by sam-
pling these expectations, and notably on the pomcp algorithm of Silver and Veness (2010).
Only a tiny fraction of the future tree is actually explored, chosen by sampled actions ac-
cording to their likely worth; and by sampling transitions from the dynamics. Additionally,
bamcp also solves the requirement of integrating over models: by sampling models from
the belief distribution; but only only at the root node, so as to avoid the need to compute
posteriors throughout the tree; and by lazily avoiding realizing random choices until the
last possible moment.

The result is an efficient algorithm that outperforms previous Bayesian model-based
reinforcement learning algorithms by a significant margin on several well-known benchmark

876

Bayes-Adaptive Monte-Carlo Planning

problems, and that can scale to problems with an infinite state space and a complex prior
structure.

Acknowledgments

We acknowledge support for this project from the Gatsby Charitable Foundation (AG, PD),
the Natural Sciences and Engineering Research Council of Canada (AG), the Royal Society
(DS), and from the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement n◦ 270327 (DS).

Appendix A: List of Acronyms

BAMCP Bayes-Adaptive Monte-Carlo Planner (Algorithm name)
BAMDP Bayes-Adaptive Markov Decision Process
BA-UCT Bayes-Adaptive UCT (Algorithm name)
BEB Bayesian Exploration Bonus (Algorithm name)
BEETLE Bayesian Exploration Exploitation Tradeoff in LEarning (Algorithm name)
BFS3 Bayesian Forward Search Sparse Sampling (Algorithm name)
BOLT Bayesian Optimistic Local Transitions (Algorithm name)
BOSS Best Of Sampled Set (Algorithm name)
FSSS Forward Search Sparse Sampling (Algorithm name)
IEQL Interval Estimation Q-learning (Algorithm name)
MCMC Monte-Carlo Markov Chain
MCTS Monte-Carlo Tree Search (Algorithm name)
MDP Markov Decision Process
PAC Probably Approximately Correct
POMCP Partially-Observable Monte-Carlo Planner (Algorithm name)
POMDP Partially Observable Markov Decision Process
RL Reinforcement Learning
SBOSS Smarter Best Of Sampled Set (Algorithm name)
UCB1 Upper Confidence Bound 1 (Algorithm name)
UCT Upper Confidence bounds applied to Trees (Algorithm name)

Appendix B: Algorithms’ Implementation

All algorithms below were implemented in C++ (code components were shared across al-
gorithms as much as possible):

� BAMCP - The algorithm presented in Section 3, implemented with root sampling,
lazy sampling, and rollout learning. The algorithm was run for different number of
simulations (10 to 10000) to span different planning times. In all experiments, we
set πro to be an ε-greedy policy with ε = 0.5. The uct exploration constant was
left unchanged for all experiments (c = 3), we experimented with other values of
c ∈ {0.5, 1, 5} with similar results.

877

Guez, Silver, & Dayan

� SBOSS (Castro & Precup, 2010): for each domain, we varied the number of samples
K ∈ {2, 4, 8, 16, 32} and the resampling threshold parameter δ ∈ {3, 5, 7}.

� BEB (Kolter & Ng, 2009): for each domain, we varied the bonus parameter β ∈
{0.5, 1, 1.5, 2, 2.5, 3, 5, 10, 15, 20}.

� BFS3 (Asmuth & Littman, 2011) for each domain, we varied the branching factor
C ∈ {2, 5, 10, 15} and the number of simulations (10 to 2000). The depth of search
was set to 15 in all domains except for the larger grid and maze domain where it was
set to 50. We also tuned the Vmax parameter for each domain — Vmin was always set
to 0.

Code for this paper can be found online on the first author’s website, or directly by
following this GitHub link https://github.com/acguez/bamcp.

Appendix C: Inference Details for the Infinite 2D Grid Task

We construct a Markov Chain using the Metropolis-Hastings algorithm to sample from the
posterior distribution of row and column parameters given observed transitions, following
the notation introduced in Section 4.2. Let O = {(i, j)} be the set of observed reward
locations, each associated with an observed reward rij ∈ {0, 1}. The proposal distribution
chooses a row-column pair (ip, jp) fromO uniformly at random, and samples p̃ip ∼ Beta(α1+
m1, β1 + n1) and q̃jp ∼ Beta(α2 +m2, β2 + n2), where m1 =

∑
(i,j)∈O 1i=iprij (i.e., the sum

of rewards observed on that column) and n1 = (1− β2/2(α2 + β2))
∑

(i,j)∈O 1i=ip(1− rij), and
similarly for m2, n2 (mutatis mutandis). The n1 term for the proposed column parameter
p̃i has this rough correction term, based on the prior mean failure of the row parameters,
to account for observed 0 rewards on the column due to potentially low row parameters.
Since the proposal is biased with respect to the true conditional distribution (from which we
cannot sample), we also prevent the proposal distribution from getting too peaked. Better
proposals (e.g., taking into account the sampled row parameters) could be devised, but
they would likely introduce additional computational cost and the proposal above generated
large enough acceptance probabilities (generally above 0.5 for our experiments). All other
parameters pi, qj such that i or j is present in O are kept from the last accepted samples
(i.e., p̃i = pi and q̃j = pj for these is and js), and all parameters pi, qj that are not linked to
observations are (lazily) resampled from the prior — they do not influence the acceptance
probability. We denote by Q(p,q→ p̃, q̃) the probability of proposing the set of parameters
p̃ and q̃ from the last accepted sample of column/row parameters p and q. The acceptance
probability A can then be computed as A = min(1, A′) where:

A′ =
P (p̃, q̃ |h)Q(p̃, q̃→ p,q)

P (p,q |h)Q(p,q→ p̃, q̃)

=
P (p̃, q̃)Q(p̃, q̃→ p,q)P (h| p̃, q̃)

P (p,q)Q(p,q→ p̃, q̃)P (h|p,q)

=
pm1
ip

(1− pip)n1qm2
jp

(1− qjp)n2
∏

(i,j)∈O 1[i = ip or j = jp](p̃i q̃j)
rij (1− p̃i q̃j)

1−rij

p̃m1
ip

(1− p̃ip)
n1 q̃m2

jp
(1− q̃jp)

n2
∏

(i,j)∈O 1[i = ip or j = jp](piqj)rij (1− piqj)1−rij .

878

Bayes-Adaptive Monte-Carlo Planning

The last accepted sampled is employed whenever a sample is rejected. Finally, reward values
Rij are resampled lazily based on the last accepted sample of the parameters pi, qj , when
they have not been observed already. We omit the implicit deterministic mapping to obtain
the dynamics P from these parameters.

Appendix D: On the Existence of the Bayes-Optimal Policy

As described in Definition 1, Martin (1967) proves the following statement for mdps with
finite state spaces.

Theorem 3 (Martin, 1967, Thm. 3.2.1) Let v(s, h, π̃) be the expected discounted return
in an mdp (with |S| and |A| finite) when the process starts from the augmented state 〈s, h〉
and the EE policy π̃ is used. Let

v∗(s, h) = sup
π̃∈Π̃

v(s, h, π̃). (42)

Then there is a policy π̃∗ ∈ Π̃ such that v∗(s, h) = v(s, h, π̃∗).

The proof of Theorem 3 consists in proving that the set of EE policies Π̃ can be mapped
into the a compact subset of the real line, and that the mapping of the function v(s, h, ·)
is continuous on this set. The proof requires an ordering of histories that relies on the
finiteness of the state space. Let N = |S|, then the history ordering employed by Martin
(1967) is:

z(ht′) ≡
t′∑
t=1

stN
−t+1, (43)

where z(h) is the number corresponding to history h in the order. In general |S| is not
finite, but in some scenarios we may bound by Nt the number of states the agent can be
in at time t (for example in the Infinite Grid scenario). For these scenarios we consider the
following ordering of histories:

w(ht′) ≡
t′∑
t=1

st

t∏
k=0

N−1
k , (44)

which reduces to w(h) = z(h) if Nt = N ∀t. With this ordering, the proof of Theorem 3
can then be carried out as by Martin (1967) (with minimal modifications) to prove the
statement for these more general mdps - their state space is infinite but the possible states
of the agent grows in a controlled manner over time.

Although it is reassuring to know that the Bayes-optimal policy exists for these addi-
tional cases, in practice we are satisfied with ε approximation to the Bayes-optimal policy
and the existence of ε-Bayes-optimal policies is likely to be guaranteed in even more general
scenarios.

879

Guez, Silver, & Dayan

References

Agrawal, S., & Goyal, N. (2011). Analysis of Thompson sampling for the multi-armed
bandit problem. Arxiv preprint.

Araya-López, M., Buffet, O., & Thomas, V. (2012). Near-optimal BRL using optimistic
local transitions. In Proceedings of the 29th International Conference on Machine
Learning.

Asmuth, J., Li, L., Littman, M., Nouri, A., & Wingate, D. (2009). A Bayesian sampling
approach to exploration in reinforcement learning. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, pp. 19–26.

Asmuth, J., & Littman, M. (2011). Approaching Bayes-optimality using Monte-Carlo tree
search. In Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence,
pp. 19–26.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47 (2), 235–256.

Bellman, R. (1954). The theory of dynamic programming. Bull. Amer. Math. Soc, 60 (6),
503–515.

Brafman, R., & Tennenholtz, M. (2003). R-max-a general polynomial time algorithm for
near-optimal reinforcement learning. The Journal of Machine Learning Research, 3,
213–231.

Bubeck, S., Munos, R., & Stoltz, G. (2009). Pure exploration in multi-armed bandits
problems. In Proceedings of the 20th international conference on Algorithmic learning
theory, pp. 23–37. Springer-Verlag.

Castro, P., & Precup, D. (2010). Smarter sampling in model-based Bayesian reinforcement
learning. In Machine Learning and Knowledge Discovery in Databases, pp. 200–214.
Springer.

Castro, P. (2007). Bayesian exploration in Markov decision processes. Ph.D. thesis, McGill
University.

Castro, P., & Precup, D. (2007). Using linear programming for Bayesian exploration in
Markov decision processes. In Proceedings of the 20th International Joint Conference
on Artificial Intelligence, pp. 2437–2442.

Coquelin, P., & Munos, R. (2007). Bandit algorithms for tree search. In Proceedings of the
23rd Conference on Uncertainty in Artificial Intelligence, pp. 67–74.

Cozzolino, J., Gonzalez-Zubieta, R., & Miller, R. (1965). Markov decision processes with
uncertain transition probabilities. Tech. rep., 11, Operations Research Center, MIT.

Davies, S., Ng, A., & Moore, A. (1998). Applying online search techniques to reinforcement
learning. In Proceedings of the National Conference on Artificial Intelligence, pp.
753–760.

Dayan, P., & Sejnowski, T. (1996). Exploration bonuses and dual control. Machine Learning,
25 (1), 5–22.

880

Bayes-Adaptive Monte-Carlo Planning

Dearden, R., Friedman, N., & Russell, S. (1998). Bayesian Q-learning. In Proceedings of
the National Conference on Artificial Intelligence, pp. 761–768.

Doshi-Velez, F., Wingate, D., Roy, N., & Tenenbaum, J. (2010). Nonparametric bayesian
policy priors for reinforcement learning. In Advances in Neural Information Processing
Systems (NIPS).

Duff, M. (2003). Design for an optimal probe. In Proceedings of the 20th International
Conference on Machine Learning, pp. 131–138.

Duff, M. (2002). Optimal Learning: Computational Procedures For Bayes-Adaptive Markov
Decision Processes. Ph.D. thesis, University of Massachusetts Amherst.

Fonteneau, R., Busoniu, L., & Munos, R. (2013). Optimistic planning for belief-augmented
Markov decision processes. In IEEE International Symposium on Adaptive Dynamic
Programming and reinforcement Learning (ADPRL 2013).

Friedman, N., & Singer, Y. (1999). Efficient Bayesian parameter estimation in large discrete
domains. Advances in Neural Information Processing Systems (NIPS), 1 (1), 417–423.

Gelly, S., Kocsis, L., Schoenauer, M., Sebag, M., Silver, D., Szepesvári, C., & Teytaud, O.
(2012). The grand challenge of computer Go: Monte Carlo tree search and extensions.
Communications of the ACM, 55 (3), 106–113.

Gelly, S., & Silver, D. (2007). Combining online and offline knowledge in UCT. In Proceed-
ings of the 24th International Conference on Machine learning, pp. 273–280.

Gittins, J., Weber, R., & Glazebrook, K. (1989). Multi-armed bandit allocation indices.
Wiley Online Library.

Guez, A., Silver, D., & Dayan, P. (2012). Efficient Bayes-adaptive reinforcement learning
using sample-based search. In Advances in Neural Information Processing Systems
(NIPS), pp. 1034–1042.

Hart, P., Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic determination
of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on,
4 (2), 100–107.

Jaksch, T., Ortner, R., & Auer, P. (2010). Near-optimal regret bounds for reinforcement
learning. The Journal of Machine Learning Research, 99, 1563–1600.

Kearns, M., Mansour, Y., & Ng, A. (1999). A sparse sampling algorithm for near-optimal
planning in large Markov decision processes. In Proceedings of the 16th international
joint conference on Artificial intelligence-Volume 2, pp. 1324–1331.

Kocsis, L., & Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In Machine
Learning: ECML, pp. 282–293. Springer.

Kolter, J., & Ng, A. (2009). Near-Bayesian exploration in polynomial time. In Proceedings
of the 26th Annual International Conference on Machine Learning, pp. 513–520.

Madani, O., Hanks, S., & Condon, A. (2003). On the undecidability of probabilistic planning
and related stochastic optimization problems. Artificial Intelligence, 147 (1), 5–34.

Martin, J. (1967). Bayesian decision problems and Markov chains. Wiley.

881

Guez, Silver, & Dayan

Meuleau, N., & Bourgine, P. (1999). Exploration of multi-state environments: Local mea-
sures and back-propagation of uncertainty. Machine Learning, 35 (2), 117–154.

Mundhenk, M., Goldsmith, J., Lusena, C., & Allender, E. (2000). Complexity of finite-
horizon markov decision process problems. Journal of the ACM (JACM), 47 (4),
681–720.

Neal, R. M. (1993). Probabilistic inference using markov chain monte carlo methods. Tech.
rep., University of Toronto.

Poupart, P., Vlassis, N., Hoey, J., & Regan, K. (2006). An analytic solution to discrete
Bayesian reinforcement learning. In Proceedings of the 23rd international conference
on Machine learning, pp. 697–704. ACM.

Ross, S., Pineau, J., Chaib-draa, B., & Kreitmann, P. (2011). A Bayesian approach for
learning and planning in Partially Observable Markov Decision Processes. Journal of
Machine Learning Research, 12, 1729–1770.

Ross, S., Pineau, J., Paquet, S., & Chaib-Draa, B. (2008). Online planning algorithms for
POMDPs. Journal of Artificial Intelligence Research, 32 (1), 663–704.

Ross, S. (1983). Introduction to stochastic dynamic programming: Probability and mathe-
matical. Academic Press, Inc.

Schmidhuber, J. (1991). Curious model-building control systems. In IEEE International
Joint Conference on Neural Networks, pp. 1458–1463.

Silver, D., & Veness, J. (2010). Monte-Carlo planning in large POMDPs. In Advances in
Neural Information Processing Systems (NIPS), pp. 2164–2172.

Silver, D., Sutton, R. S., & Müller, M. (2008). Sample-based learning and search with
permanent and transient memories. In Proceedings of the 25th international conference
on Machine learning, pp. 968–975. ACM.

Silver, E. (1963). Markovian decision processes with uncertain transition probabilities or
rewards. Tech. rep., DTIC Document.

Strehl, A., Li, L., & Littman, M. (2009). Reinforcement learning in finite MDPs: PAC
analysis. The Journal of Machine Learning Research, 10, 2413–2444.

Strens, M. (2000). A Bayesian framework for reinforcement learning. In Proceedings of the
17th International Conference on Machine Learning, pp. 943–950.

Sutton, R. (1990). Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Proceedings of the Seventh International
Conference on Machine Learning, Vol. 216, p. 224. Citeseer.

Sutton, R., & Barto, A. (1998). Reinforcement learning. MIT Press.

Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning. Morgan & Claypool Publishers.

Thompson, W. (1933). On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples. Biometrika, 25 (3/4), 285–294.

Tonk, S., & Kappen, H. (2010). Optimal exploration as a symmetry breaking phenomenon.
Tech. rep., Radboud University Nijmegen.

882

Bayes-Adaptive Monte-Carlo Planning

Vien, N. A., & Ertel, W. (2012). Monte carlo tree search for bayesian reinforcement learning.
In Machine Learning and Applications (ICMLA), 2012 11th International Conference
on, Vol. 1, pp. 138–143. IEEE.

Walsh, T., Goschin, S., & Littman, M. (2010). Integrating sample-based planning and
model-based reinforcement learning. In Proceedings of the 24th Conference on Artifi-
cial Intelligence (AAAI).

Wang, T., Lizotte, D., Bowling, M., & Schuurmans, D. (2005). Bayesian sparse sampling
for on-line reward optimization. In Proceedings of the 22nd International Conference
on Machine learning, pp. 956–963.

Wang, Y., Won, K., Hsu, D., & Lee, W. (2012). Monte Carlo Bayesian reinforcement
learning. In Proceedings of the 29th International Conference on Machine Learning.

Watkins, C. (1989). Learning from delayed rewards. Ph.D. thesis, Cambridge.

Wingate, D., Goodman, N., Roy, D., Kaelbling, L., & Tenenbaum, J. (2011). Bayesian policy
search with policy priors. In Proceedings of the International Joint Conferences on
Artificial Intelligence.

883

