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Abstract

The computational costs of inference and planning have
confined Bayesian model-based reinforcement learning
to one of two dismal fates: powerful Bayes-adaptive
planning but only for simplistic models, or powerful,
Bayesian non-parametric models but using simple, my-
opic planning strategies such as Thompson sampling.
We ask whether it is feasible and truly beneficial to com-
bine rich probabilistic models with a closer approxima-
tion to fully Bayesian planning.
First, we use a collection of counterexamples to show
formal problems with the over-optimism inherent in
Thompson sampling. Then we leverage state-of-the-
art techniques in efficient Bayes-adaptive planning and
non-parametric Bayesian methods to perform qualita-
tively better than both existing conventional algorithms
and Thompson sampling on two contextual bandit-like
problems.

As computer power increases and statistical methods im-
prove, there is an increasingly rich range and variety of
probabilistic models of the world. Models embody induc-
tive biases, allowing appropriately confident inferences to
be drawn from limited observations. One domain that should
benefit markedly from such models is planning and control
— models arbitrate the exquisite balance between safe ex-
ploration and lucrative exploitation.

A general and powerful solution to this balancing act in-
volves forward-looking Bayesian planning in the face of par-
tial observability, which treats the exploration-exploitation
trade-off as an optimization problem, squeezing the great-
est benefit from each choice. Unfortunately, this is notori-
ously computationally costly, particularly for complex mod-
els, leaving open the possibility that it might not be justi-
fied compared to heuristic approaches that may perform very
similarly at a much reduced computational cost, for instance
treating the tradeoff as a learning problem in a regret set-
ting, focusing on an asymptotic requirement to discover the
optimal solution (to avoid accumulating regret).

The motivation for this paper is to demonstrate the prac-
tical power of Bayesian planning. We show that, despite the
arduous optimization problem, sample-based planning ap-
proximations can excel with rich models in realistic settings
– here a challenging exploration-exploitation task derived
from a real dataset (the UCI ’mushroom’ task) – even when
the data have not been generated from the prior. By con-
trast, we show that the benefits of Bayesian inference can be

squandered by more myopic forms of planning — such as
the provably over-optimistic Thompson Sampling – which
fails to account for risk in this task and performs poorly.
The experimental results highlight the fact that the Bayes-
optimal behavior adapts its exploration strategy as a function
of the cost, the horizon, and the uncertainty in a non-trivial
way. We also consider an extension of the model to a case
of more general subtasks, including subtasks that are them-
selves small MDPs (in the suppl. material, Section S4).

The paper is organized as follows: first, we discuss model-
based Bayesian reinforcement learning (RL), outline some
existing planning algorithms for this case and show why
Thompson sampling’s over-optimism can be deleterious.
Next, we introduce an exploration-exploitation domain that
motivates a statistical model for a class of MDPs with shared
structure across sequences of tasks. We provide empirical
results on a version of the domain that uses real data com-
ing from a popular supervised learning problem (mushroom
classification) along with a simulated extension. Finally, we
discuss related work.

1 Model-based Bayesian RL
We consider a Bayes-Adaptive planner (Duff 2002), which
starts with a prior P (P) over models of the environmen-
tal dynamics, progressively receives data D through con-
trolled interaction with the environment, and updates its pos-
terior distribution over models using Bayes-rule P (P |D) ∝
P (D |P)P (P). Actions are intended to maximize an ex-
pected discounted return criterion E[

∑∞
t=0 γ

trt], where γ <
1 is the discount factor and rt is the random reward obtained
at time t. In an uncertain world, this requires balancing ex-
ploration and exploitation. Here, the discount factor γ plays
the crucial role of arbitrating the relative importance of fu-
ture rewards. In general, a low γ does not warrant much ex-
ploration because future exploitation will be heavily down-
weighted. The opposite is true as γ → 1. A clear illustra-
tion of these γ-dependent exploration-exploitation Bayesian
policies can be found in the Gittins indices (Gittins, Weber,
and Glazebrook 1989). 1

The (Bayes-)optimal strategy integrates over how the cur-
rent belief P (P |D) could be transformed in the light of

1Even though we refer to exploration and exploitation, actions
are never actually labeled with one or the other in this Bayesian
setting, it is only an interpretation for actions whose consequences
are more uncertain (explore) or more certainly valuable (exploit).
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(imaginary) possible future data. The resulting policy is well
known to be the solution to an augmented Markov Decision
Process (MDP), whose details we defer to the suppl. mate-
rial, Section S1. Finding the exact Bayes-optimal policy is
computationally intractable even for tiny state spaces, since
(a) the augmented state space is either continuous or dis-
crete and potentially unbounded; and (b) the transitions of
the augmented MDP require integration over the full pos-
terior. Although this operation can be trivial and closed-
form for some simple probabilistic models (e.g., indepen-
dent Dirichlet-Multinomial), it is intractable for most rich
models.

A common solution to (b) is to use approximate inference
methods, such as Markov chain Monte Carlo (MCMC). This
fits snugly with a common heuristic for (a), in which the
planning problem is side-stepped by sampling from the pos-
terior but only planning myopically. We describe one such
method called Thompson Sampling in the section below, but
show that it is no panacea.

A potentially more powerful class of approximate solu-
tions to (a) that should be capable of handling large state
spaces and complex models involves sample-based forward-
search methods. Algorithms such as Sparse Sampling (Wang
et al. 2005) or BAMCP (Guez, Silver, and Dayan 2012) do
not plan myopically; they approximate Bayes-adaptive plan-
ning directly — albeit at a computational cost. It had been
unclear how to integrate these methods with approximate,
MCMC, approaches to (b). However, recent algorithmic de-
velopments (Guez, Silver, and Dayan 2013) provide a prac-
tical way to use approximate inference schemes to perform
sample-based planning with sophisticated models.

1.1 Thompson Sampling
Thompson Sampling (TS) (Thompson 1933) is a myopic
planning method that selects actions at each step by 1) draw-
ing a single sample of the dynamics from the posterior dis-
tribution P (P |D) ; 2) greedily solving the corresponding
sampled MDP; and 3) choosing the optimal action of this
MDP at the current state. Though heuristically myopic from
the perspective of Bayes-adaptivity, TS is computationally
cheap, and has been proven both empirically (Chapelle and
Li 2011) and theoretically to perform well in various do-
mains (including reaching theoretical regret lower-bounds
for multi-armed bandits (Agrawal and Goyal 2011)). As
mentioned, it fits well with complex, e.g., Bayesian non-
parametric, models that in any case are handled via MCMC
sampling (Doshi-Velez et al. 2010).

Intuitively, TS generates optimistic values in unknown
parts of the MDP where the posterior entropy over its sam-
ples is large. This forces the agent to visit these regions.
However, to show that this way of deriving optimism for ex-
ploration is not always beneficial, we consider two simple,
and yet particularly pernicious, classes of counter-example;
other failure modes are illustrated in the results section be-
low.

Example 1 Consider an MDP that involves a linear chain
of 2x + 1 states. Each interior state admits 2 determinis-

tic actions: going left or right. The only source of reward
(r = 1) is at either one or other end. The agent starts in the
middle (state x + 1), and knows everything except the end
which delivers the reward; each of the two MDPsP has prior
probability P (P) = 1

2 . The episode terminates after the re-
ward is obtained. See Figure 1 for an illustration. Critically,
the only transition that changes this belief is at an end. At
each step, TS samples one of the chains, and so heads for the
end which that sample suggests is rewarding. Since this de-
pends on an unbiased coin flip, TS is effectively performing
a random walk with probability 1

2 of moving in either direc-
tion, and so takes O(x2) time to reach an end (Moon 1973).
This is much worse than the linear time of the Bayes-optimal
policy which commits to a given direction by tie-breaking in
the first step and then maintains this direction to the end of
the chain.

w.p 1/2
w.p 1/2

Figure 1: Illustration of Example 1. The two possible chains with
x = 3, with green dots representing the reward states and the blue
dot representing the start state.

One might ascribe this failure to the fact that TS was de-
veloped for multi-armed bandits, which lack temporally ex-
tended structure. TS has duly been adapted to the MDP set-
ting with the goal of controlling the expected regret. For in-
stance, the PSRL algorithm (Osband, Russo, and Van Roy
2013), which was inspired by Bayesian DP (Strens 2000),
samples an MDP from the current posterior and executes its
optimal policy for several steps (or an entire episode). This
way of exploring an MDP bypasses the TS’s lack of com-
mitment in Example 1, but can still be problematic for dis-
counted objectives, as illustrated in Example 2 (Supp. mate-
rial).

The BOSS (Asmuth et al. 2009) algorithm is a more com-
plicated construction that combines multiple posterior sam-
ples, Examples 3-4 (Supp. material) illustrate a similar issue
with the kind of optimism it generates for exploration.

1.2 Non-myopic planning: Forward-search
Bayesian planning avoids myopia by integrating over the
evolution of possible future beliefs. Sample-based forward-
search planning algorithms such as Sparse Sampling (Wang
et al. 2005) perform such integrations, but they are generally
not able to deal with approximate inference schemes that are
necessary to handle rich probabilistic models.

The Bayes-Adaptive Monte-Carlo Planning (BAMCP) al-
gorithm is a forward-search, sample-based Bayes-adaptive
planning algorithm based on POMCP (Silver and Veness
2010) that is guaranteed to converge to the Bayes-optimal
solution, even when combined with MCMC-based infer-
ence (Guez, Silver, and Dayan 2012; 2013). Despite its lack
of finite-time guarantees, it displays good empirical perfor-
mance on a number of tasks. BAMCP compounds the advan-
tages of sparse-sampling (Wang et al. 2005) and UCT (Koc-
sis and Szepesvári 2006) to increase search efficiency. It



shares with TS the use of samples taken from the poste-
rior; but combines many samples in a search tree to be able
to plan less myopically. Critically, like POMCP, BAMCP in-
volves root sampling, in which samples are only generated
for the current history from the distribution P (P |ht) and
are then filtered forward. Beliefs need not then be updated
at each step in the (imagined) search tree (Wang et al. 2005;
Ross and Pineau 2008; Asmuth and Littman 2011). Thus, if
T is the search horizon and K is the number of simulations,
then BAMCP (with root sampling) requires O(K) samples
from the posterior and one belief update, instead of O(TK)
samples with many belief updates. For these reasons, we
chose BAMCP for our forward-search planning algorithm in
this paper. For completeness, the BAMCP algorithm is spec-
ified in the supplementary material; refer to (Guez, Silver,
and Dayan 2012; 2013) for more details.

2 Statistical models of MDPs
There is a huge range of possible models for complex do-
mains. Understanding when and how they apply is a whole
subject in its own right. Here, we adopt a strategy that has
been very successful in other areas of statistical modeling,
namely using a Bayesian non-parametric model (Orbanz and
Teh 2010). This permits complexity to scale as observations
accumulate, while carefully parameterizing how structure is
likely to repeat.

In section 2.2, we consider a rich, non-parametric, task
that is an extension of a contextual bandit problem. How-
ever, although solving a wholly artificial task is revealing
about the differences between different methods of planning,
it says little about performance in real cases in which the
data were (likely) not generated from the model. Thus we
first motivate this rich model as a generalization of a realis-
tic exploration task.

2.1 The mushroom exploration task
The Mushroom Dataset from the UCI repository (Bache
and Lichman 2013) contains 8124 instances of gilled mush-
rooms from 23 different species in the Agaricus and Lepiota
family, each of which is described by 22 discrete attributes
(e.g., color, odor, ring type) and whether the mushroom is
poisonous or edible (51.8% of all instances are edible). We
build an MDP based on the data as follows, at each point
in time the agent is faced with the attributes of a random
mushroom from the dataset, and has to choose whether to
eat or ignore it. Ignoring a mushroom has no consequence;
eating an edible mushroom is rewarding (r = 5); but eating
a poisonous mushroom incurs a large cost (r = −15). This
is illustrated in Figure 2a. The agent may be provided with
some initial ’free’ observations of the attributes and edibility
of a set of mushrooms.

This problem is conventionally thought of in terms of su-
pervised learning. However, since the agent is allowed to
ignore a mushroom, it is actually more akin to a contex-
tual bandit task (Langford and Zhang 2007). However in our
case, unlike most past work on contextual bandits, early re-
wards are more valuable than later ones, characterized by a
discount factor γ. This is a critical difference from explo-
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shares with TS the use of samples taken from the poste-
rior; but combines many samples in a search tree to be able
to plan less myopically. Critically, like POMCP, BAMCP in-
volves root sampling, in which samples are only generated
for the current history from the distribution P (P |ht) and
are then filtered forward. Beliefs need not then be updated
at each step in the (imagined) search tree (Wang et al. 2005;
Ross and Pineau 2008; Asmuth and Littman 2011). Thus, if
T is the search horizon and K is the number of simulations,
then BAMCP (with root sampling) requires O(K) samples
from the posterior and one belief update, instead of O(TK)
samples with many belief updates. For these reasons, we
chose BAMCP for our forward-search planning algorithm in
this paper. For completeness, the BAMCP algorithm is spec-
ified in the supplementary material; refer to (Guez, Silver,
and Dayan 2012; 2013) for more details.

2 Statistical models of MDPs
There is a huge range of possible models for complex do-
mains. Understanding when and how they apply is a whole
subject in its own right. Here, we adopt a strategy that has
been very successful in other areas of statistical modeling,
namely using a Bayesian non-parametric model (Orbanz and
Teh 2010). This permits complexity to scale as observations
accumulate, while carefully parameterizing how structure is
likely to repeat.

In section 2.2, we consider a rich, non-parametric, task
that is an extension of a contextual bandit problem. How-
ever, although solving a wholly artificial task is revealing
about the differences between different methods of planning,
it says little about performance in real cases in which the
data were (likely) not generated from the model. Thus we
first motivate this rich model as a generalization of a realis-
tic exploration task.

2.1 The mushroom exploration task
The Mushroom Dataset from the UCI repository (Bache
and Lichman 2013) contains 8124 instances of gilled mush-
rooms from 23 different species in the Agaricus and Lepiota
family, each of which is described by 22 discrete attributes
(e.g., color, odor, ring type) and whether the mushroom is
poisonous or edible (51.8% of all instances are edible). We
build an MDP based on the data as follows, at each point
in time the agent is faced with the attributes of a random
mushroom from the dataset, and has to choose whether to
eat or ignore it. Ignoring a mushroom has no consequence;
eating an edible mushroom is rewarding (r = 5); but eating
a poisonous mushroom incurs a large cost (r = −15). This
is illustrated in Figure 2a. The agent may be provided with
some initial ’free’ observations of the attributes and edibility
of a set of mushrooms.

This problem is conventionally thought of in terms of su-
pervised learning. However, since the agent is allowed to
ignore a mushroom, it is actually more akin to a contex-
tual bandit task (Langford and Zhang 2007). However in our
case, unlike most past work on contextual bandits, early re-
wards are more valuable than later ones, characterized by a
discount factor γ. This is a critical difference from explo-
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Figure 2: (a) Illustration of the mushroom exploration domain,
the rows represent the sequence of mushrooms, with the value
of different attributes being displayed on each column. The agent
may eat the mushroom to obtain a reward/cost (green/red circle) or
choose to ignore it (black circle). (b) Example of a sample sequence
of tasks from Section 2.2 with C= 3, A = 3. The left columns in-
dicate the context variables (each color represent a possible value),
and the right columns indicate the rewards that have been observed
in each task (black when arm has not been pulled). On the left,
the true clustering of the tasks (shared mixture component) is dis-
played. The dictionary of context variables is composed of D = 5
different colors in this case.

ration objectives based on regret that are dominated by the
long-term behavior of the agent.

More formally, the mushroom MDP consists of a sequence
of mushroom tasks parametrized by xτ where τ = 1, 2, . . . .
Each parameter vector xτ contains C = 22 scalar pa-
rameters x1

τ , . . . , x
C
τ to generate context (the mushroom at-

tributes), and a single scalar parameter xC+1
τ to generate the

subtask dynamic (the outcome of eating the mushroom). De-
noting n = C+1, we have xτ = (x1

τ , x
2
τ , . . . , x

n
τ ). The MDP

dynamics P can be described as follows. Let S be the set
of states, each of the form s = (τ, x1

τ , . . . , x
C
τ , oτ ), where

oτ = � (meaning unobserved) if the mushroom was not
eaten in task τ and oτ = xC+1

τ otherwise. Choosing the exit
action aexit increments the first state component and updates
the context and observation components. Choosing the eat
action aeat updates oτ = xC+1

τ and delivers a reward/cost.

A simple statistical model The key aspect of the mush-
room task is the joint statistics over the characteristics and
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Figure 2: (a) Illustration of the mushroom exploration domain,
the rows represent the sequence of mushrooms, with the value
of different attributes being displayed on each column. The agent
may eat the mushroom to obtain a reward/cost (green/red circle) or
choose to ignore it (black circle). (b) Example of a sample sequence
of tasks from Section 2.2 with C=3, A=3. The left columns in-
dicate the context variables (each color represent a possible value),
and the right columns indicate the rewards that have been observed
in each task (black when arm has not been pulled). On the left,
the true clustering of the tasks (shared mixture component) is dis-
played. The dictionary of context variables is composed of D=5
different colors in this case.

ration objectives based on regret that are dominated by the
long-term behavior of the agent.

More formally, the mushroom MDP consists of a sequence
of mushroom tasks parametrized by xτ where τ = 1, 2, . . . .
Each parameter vector xτ contains C = 22 scalar pa-
rameters x1τ , . . . , x

C
τ to generate context (the mushroom at-

tributes), and a single scalar parameter xC+1
τ to generate the

subtask dynamic (the outcome of eating the mushroom). De-
noting n = C+1, we havexτ = (x1τ , x

2
τ , . . . , x

n
τ ). The MDP

dynamics P can be described as follows. Let S be the set
of states, each of the form s = (τ, x1τ , . . . , x

C
τ , oτ ), where

oτ = � (meaning unobserved) if the mushroom was not
eaten in task τ and oτ = xC+1

τ otherwise. Choosing the exit
action aexit increments the first state component and updates
the context and observation components. Choosing the eat
action aeat updates oτ = xC+1

τ and delivers a reward/cost.

A simple statistical model The key aspect of the mush-
room task is the joint statistics over the characteristics and
danger of the mushrooms. The truth of the matter for the
UCI data is actually unclear; it is therefore a stringent test
of a planning algorithm whether it is possible to perform at
all well based on what can only be a vague, and likely in-



accurate model. To do its best, the agent assumes a general
non-parametric model that allows for substantial underlying
complexity in the true model, but adapts its ongoing char-
acterization as a function of the evidence in the data that
has so far been observed (Orbanz and Teh 2010). We em-
ploy one particularly popular non-parametric model called
the Chinese Restaurant Process (Teh 2010) or Dirichlet Pro-
cess mixture, which postulates that the mushrooms come in
a possibly infinite number of mixture components.

The generative model of the mushroom statistics is
formally described as follows:

α ∼ Gamma(a, b), zτ ∼ CRP(α), ∀τ ∈ Z+,

θik ∼ Dirichlet(
β

Di
), ∀i ∈ {1, . . . , n},∀k ∈ Z+,

xiτ ∼ Categorical(θizτ ) ∀i ∈ {1, . . . , n},∀τ ∈ Z+,

where α is the concentration parameter of the CRP, the z
random variables are the cluster assignments. The base mea-
sure of this Dirichlet process is assumed to be a symmetric
Dirichlet prior with hyperparameter β = 1 (Di is the di-
mension of θi, the number of possible observations for xi),
which together with the conjugate observation model, allows
for relatively straightforward inference schemes (see Sec-
tion S3 for details). The collection {θik|i ∈ {1, . . . , n}} of
vectors contains the parameters corresponding to each mix-
ture component k, the task parameters xτ for a particular
τ are drawn by first choosing a mixture component zτ ac-
cording to the CRP and then using the corresponding θzτ
parameters to sample each component of xτ . The infinite-
state, infinite-horizon MDP is derived from this generative
process by sampling an infinite sequence of tasks (τ → ∞)
and patching them together.

The data at timeDt consist of all mushroom attributes and
labels observed (the sufficient statistics of the history of tran-
sitions), including the current mushroom subtask (and any
initial ’free’ examples). The posterior distribution over the
dynamics P (P |Dt) is then obtained straightforwardly from
the posterior over all past and future xτ (denoted x1:∞),
P (x1:∞| Dt), since P is uniquely characterized by x1:∞.

For the mushroom data, we set Di = 12 for each con-
text dimension i — the maximum number of values for
any of the 22 attribute dimensions in the data. This implies
2 · 1222 ≥ 1024 possible configurations of mushrooms as-
sumed by the model. Since α is not known, we set a generic
hyperprior on α ∼ Gamma(.5, .5).

Results in the mushroom task We stress that the mush-
room data were not really generated by the process assumed
in the previous section – this is what makes the task some-
what more realistic. Indeed, when the agent lacks prior data,
maximizing the return is highly challenging. Randomly eat-
ing mushrooms to sample the dataset is a particularly bad
strategy because of the cost asymmetry between edible and
poisonous mushrooms. A natural point of comparison is the
policy of ignoring all mushrooms, which leads to a neutral
return of 0.

We ran the Bayes-adaptive agent (BAMCP) and TS using
this statistical model on the mushroom task. Since the con-

centration parameter is unknown, it is inferred from data,
both influencing, and being influenced by, the exploration.
Results are reported in Figure 3a for three different numbers
of ’free’ examples. A surprising result is that the Bayes-
adaptive agent manages to obtain a positive return when
starting with no data, despite the mismatch between true data
and generative model. This demonstrates that abstract prior
information about structure can guide exploration success-
fully. Given exactly the same statistical model, TS fails to
match this performance; we speculate that this is due to over-
optimism, and investigate this further in Section 2.2 and the
Supp. material (Fig. S3). When initial data (incl. labels) is
provided for free to reduce the prior uncertainty, TS can im-
prove its performance by a large margin but its return re-
mains inferior to a Bayes-adaptive agent in the same condi-
tions.2

For the purposes of comparison, we also considered a
simpler discriminative statistical model, namely Bayesian
Logistic Regression, which (Li et al. 2012) suggested for use
on contextual bandits. Figure 3 shows the results of apply-
ing TS and α−UCB (Li et al. 2012) in this context. TS does
worse with the logistic regression model than with the CRP-
based model; this demonstrates the added benefits of a prior
that captures many aspects of the data with only a few dat-
apoints. The α−UCB algorithm, despite good performance
in the long-run on large datasets, is too optimistic to perform
well with discounted objectives.

2.2 Non-Parametric Contextual Bandit Sequence
model

The mushroom task can be seen as a sequence of subtasks
that share structure, but whose order the agent cannot con-
trol. Other such domains are adaptive medical treatments
where each patient can be understood as the subtask, han-
dling customer interactions, or making decisions to drill for
oil at different geological locations. In this section, we con-
sider a generalized version of domains with this characteris-
tic form of shared structure. Further, by addressing environ-
ments that were actually drawn from the model, we study
planning in the absence of model mis-match.

The key generalization is to allow multiple arms in each
subtask (rather than a single eat/exit decision). Using the
same notation as Section 2.1, each parameter vector xτ now
contains C scalar parameters x1τ , . . . , x

C
τ to generate con-

text, and Y scalar parameters xC+1
τ , . . . , xC+Y

τ to gener-
ate the actual task dynamics (i.e., denoting n = C + Y ,
we have xτ = (x1τ , x

2
τ , . . . , x

n
τ )). The generative model

is identical otherwise, but now the choices of the agent in
any particular task τ are to either: 1) leave the subtask for
the next; or 2) pull any of the Y arms that has not been
previously pulled. The MDP states are now of the form
s = (τ, x1τ , . . . , x

C
τ , o

1
τ , . . . , o

Y
τ ), where oaτ = � if arm a

has not been pulled in task τ and oaτ =x
C+a
τ otherwise. Fig-

ure 2b shows the first part of a draw of the generative process

2We also tested the PSRL version of TS (Osband et al., 2013),
which commits to a policy for 1

1−γ
steps. Performance was worse

than for regular TS, an expected outcome, since PSRL takes more
time to integrate and react to new observations.
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Figure 3: Exploration-Exploitation results on the mushroom
dataset, after 150 steps with γ = 0.97. (a) Discounted return for
BAMCP and TS with the CRP model of Section 2.1, including hy-
perparameter inference. Either starting from scratch from the prior
(0 ’free’ data points), or from the prior plus an initial random (la-
beled) data set of size 5 or 15. At most 75+{0, 5, 15} datapoints
can be observed during these 150 steps. (b) Discounted return for
TS and α−UCB (with α=1 and upper confidence approximation
U0 as defined in (Li et al. 2012)) when using the Bayesian Logistic
Regression model, same task setting as (a). Averaged over 50 runs.

including an hypothetical agent trajectory.
The exact setting for the experiments is as portrayed in

Figure 2b: with C = 3 context cues, A = 3 arms in each
task, and D = 5 possible values of x (i.e., the dimension
Di = 5 for each θ). The function f (that maps values of xa
to rewards) is 1-1 with the domain: {5, 2, 0,−1,−10}. We
drew MDPs with different values of the concentration pa-
rameter α ∈ {0.1, 0.5, 1, 2, 5, 10}. The agent was assumed
to know the generative structure of the MDP; but we consid-
ered both cases when it knew the true value of α or just had a
generic hyperprior on α ∼ Gamma(.5, .5), and had to learn.

This can be seen as a contextual bandit task (Langford
and Zhang 2007) with shared structure modeled by a CRP.
The difference from the usual definition of contextual bandit
is that here, one of the arms has a known reward of 0 (the
exit action) and that we give the option of playing multiple
arms for the same context (subtask). In addition, unlike our
algorithm, existing work on contextual bandit rarely exploits
the unsupervised learning that the context affords even when
no label is obtained. Many extensions are possible, including
more complex intra-task dynamics (we explore this avenue
in the supplementary, Section S4) and more general forms of
shared structure; however we focus here on planning rather
than modeling.

Results on synthetic data We investigate the behaviour
and performance of Bayesian agents acting in tasks sampled
from the non-parametric model above. The reward mapping
implies that E[f(xa)] =−0.8< 0 for all arms a and for all
τ , since all values of xa are equally likely a priori. Thus,
again, the strategy πexit of always exiting subtasks (without
pulling any arms) is a fair comparison, with value 0 – a my-
opic planner based on the posterior mean only should never
explore an arm, gaining this value of 0. Any useful adaptive
strategy should be able to obtain a mean return of at least 0.

We concentrate on two metrics computed during the first
120 steps of the agent in the environment: the discounted
sum of rewards (the formal target for optimization; Fig-
ure 4a), and the number of times the agent decides to skip
a subtask before trying any of its arms (Figure 4b). The
second metric relates to the safe exploration aspect of this
task; sometimes optimism is unwarranted because it is more
likely to lead to negative outcomes, even when taking into
account the long-term consequences of the potential infor-
mation gain.
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Figure 4: The performance of BAMCP and Thompson sampling on
the non-parametric bandit task (γ = 0.96) in terms of discounted
return (a). The concentration parameterα is known to the algorithm
and varies on the x-axis. In (b), the average number of subtasks ig-
nored by each algorithm in the different environmental conditions.
Each plotted value is averaged over 200 runs of 120 steps (with
60K forward simulations per step).

We ran BAMCP and TS on the task. Figure 4 shows the per-
formance as a function of α, when this concentration param-
eter is known. When the concentration parameter α is small,
there will only be a few different mixture components, mak-
ing for an easy case with little uncertainty about the iden-
tity of the mixture components after a few observations, and
therefore little uncertainty about the outcome of an arm pull.
In the limit of α→ 0, only one cluster will exist and the do-
main essentially degenerates to a form of multinomial multi-
armed bandit problem. As α grows, the identity of a given
task’s cluster becomes more uncertain and aliasing grows,



so safe exploration becomes more challenging. Learning is
slower in that regime too, simply because there are more pa-
rameter values to acquire. As α → ∞, every cluster will
be different; this would prevent any kind of generalization
and the Bayes-optimal policy will be to skip every subtask τ
(since the a priori expected values of the arms in any given
subtask is negative).

Figure 4 shows that BAMCP adapts its exploration-
exploitation strategy according to the structure in the envi-
ronment; small values of α justify the risk of exploring and
incurring costs but this optimism progressively disappears
as α gets larger. This translates into positive return when
generalization is feasible, despite the marginal negative ex-
pected cost for each arm, and a return close to 0 when costs
cannot be avoided. On the other hand, TS suffers from over-
optimism across the board, leading to poor discounted re-
turns, especially when the number of mixture components is
large. Intuition for TS’s poor performance comes from con-
sidering an extreme case in which all or most subtasks are
sampled from a different cluster. Here, past experience pro-
vides little information about the value of the arms for the
current cluster; thus, discovering these values (which, on av-
erage, is expensive) is not likely to help in the future. How-
ever, TS samples a single configuration of the arm, mostly
informed by the prior in this situation, which likely results
in at least one of the arms as having a positive outcome
(for the prior, we repeat 3 times a draw having 2

5 probabil-
ity of success, so p = 0.784). TS then, incorrectly, picks
this putatively positive arm rather than exiting. Other my-
opic sample-based exploration strategies, such as Bayesian
DP (Strens 2000) or BOSS (Asmuth et al. 2009), would suf-
fer from similar forms of unwarranted optimism — since
they also rely on sampling one or more posterior samples
according to which they act greedily (see Examples 3-4).

A yet more challenging scenario arises when α is not
known to the agent. A Bayesian agent starts with a unin-
formative (hyper-)prior on α in order to infer the value from
data, it also takes into account during planning how its belief
about this hyperparameter changes over time. In Figure 5,
we observe that the Bayes-adaptive agent is more conserva-
tive and explores more safely when α is unknown. As ex-
pected, this results in lower returns (compared to when α
is known). However, robustness to increased uncertainty is
shown by the modest difference.

In the suppl. material (Fig. S4), we also show that BAMCP
is sensitive to the discount factor, highlighting the depen-
dence of the exploration-exploitation strategy to the horizon.

3 Related Work
Many researchers have considered powerful statistical mod-
els in the context of sequential decision-making (Wingate
et al. 2011; Lazaric and Ghavamzadeh 2010), including in
exploration-exploitation settings (Doshi-Velez et al. 2010;
Asmuth et al. 2009). Non-parametric models have been con-
sidered in the context of control before (Doshi-Velez 2009;
Asmuth et al. 2009) but with an emphasis on modeling the
data rather than planning. In (Ross and Pineau 2008), the
authors consider factored MDPs whose transitions are mod-
eled using Bayesian Networks. They demonstrate the advan-
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Figure 5: Performance of BAMCP for various values of the concen-
tration parameter α, with and without hyperparameter inference.
The learned Bayes-adaptive policy avoids more subtasks (b) but
manages to maintain a similar level of performance (a) despite the
uncertainty over α. Averaged over 200 runs with 60K simulations
for each time-step. The discount parameter is γ = 0.96.

tages of having an appropriate prior to capture the existing
structure in the true dynamics, at least in a case in which
the problems of safe exploration do not arise. For planning,
they propose an online Monte-Carlo algorithm with an ap-
proximate sampling scheme, however the forward-search is
conducted with a depth of 2 and a small branching factor,
presumably limiting the benefits of Bayes-adaptivity.

(Moldovan and Abbeel 2012) consider a particular form
of safe exploration to deal with non-ergodic MDPs, but they
do not address discounted objectives or structured models.

(Guez, Silver, and Dayan 2012) consider an infinite MDP,
combining Bayes-adaptive planning with approximate in-
ference over possible MDPs. However the class of mod-
els is quite specific to the particular domain they consider.
In (Doshi-Velez 2009), an hierarchical Dirichlet Process is
used to allow for an unbounded number of states in a POMDP
and infer the size of the state space from data, this is re-
ferred as the iPOMDP model. This model is used in a on-
line forward-search planning scheme, albeit of rather limited
depth and tested on modestly-sized problems.

In (Deisenroth and Rasmussen 2011), Gaussian Processes
(GPs) are employed to infer models of the dynamics from
limited data, with excellent empirical performance. How-
ever, the uncertainty that the GP captures was not explicitly
used for exploration-exploitation-sensitive planning. This is
addressed in (Jung and Stone 2010), but with heuristic plan-
ning based on uncertainty reduction.

More generally, our task is reminiscent of the case of
active classification (Balcan, Beygelzimer, and Langford
2009). But while active learning ultimately aims to find an
accurate classifier on a labeling budget, we are concerned
with a completely different metric, namely discounted re-



turn. In particular, a perfectly fine solution in our setting
might be to avoid labeling a large part of the input space.

4 Discussion
Model-based Bayesian RL has often been viewed as attrac-
tive yet hopeless, particularly in high-dimensional and noisy
domains. It had previously been shown that BAMCP, an effi-
cient combination of extensions to Monte-Carlo tree search
for Bayes-adaptive planning, was computationally viable,
and yet very powerful. We showed that alternative, over-
optimistic, myopic planning methods such as Thompson
Sampling can run into severe problems that BAMCP avoids
through explicit lookahead computations.

In an attempt to scale Bayes-adaptive planning to real do-
mains, we proposed a contextual-bandit benchmark domain
derived from the UCI mushroom dataset and an associated
Bayesian non-parametric model for it. In this challenging
exploration-exploitation domain, we demonstrated the fea-
sibility and advantages of using a Bayes-Adaptive, or fully
Bayesian, agent.

There are various ways to improve planning. Along with
generic ideas such as adaptive adjustments of the roll-out
policy which exerts a strong influence over the performance
of BAMCP, it would be interesting to think about more rad-
ical departures, such as function approximation within the
search tree based on histories and possible future histories.

A remaining open problem is to understand which classes
of domains will truly benefit from the computations of
Bayes-Adaptive planning (such as the ones explored in this
paper), and which will be served just right with a simpler
exploration-exploitation approach. Indeed, one can come up
with examples where additional computation barely matters,
in that the gains are vanishingly small (e.g., the Gittins in-
dices for a multi-armed bandit problem with γ ≈ 1 are hard
to obtain, but many myopic policies would do well in that
scenario).

We have focused on planning; this means that the chal-
lenge now opened up by the success of BAMCP is model-
ing. The non-parametric model of shared structure amongst
sub-tasks is readily generalizable to many domains, includ-
ing ones in which the equivalent of the arms are themselves
MDPs (see Section S4). A more radical extension would be
to something closer to an Indian buffet process (Griffiths and
Ghahramani 2011), in which the whole collection of sub-
tasks also share a measure of structure; this should lead to
solutions with collaboration among a set of expert solvers.
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Supplementary Material

S1 Bayes-Adaptive Planning
We describe the generic Bayesian formulation of optimal
decision-making in an unknown Markov Decision Process
(MDP), we refer the reader to (Martin 1967) and (Duff 2002)
for additional details. An MDP is described as a 5-tuple
M = 〈S,A,P,R, γ〉, where S is the set of states, A is the
set of actions,P : S×A×S → R is the state transition prob-
ability kernel, R : S × A → R is a bounded reward func-
tion, and γ is the discount factor (Szepesvári 2010). When
all the components of the MDP tuple are known, standard
MDP planning algorithms can be used to estimate the optimal
value function and policy off-line. In general, the dynamics
are unknown, and we assume that P is a latent variable dis-
tributed according to a distribution P (P). After observing
a history of actions and states Dt = s1a1s2a2 . . . at−1st
from the MDP, the posterior belief on P is updated using
Bayes’ rule P (P|Dt) ∝ P (Dt |P)P (P). The uncertainty
about the dynamics of the model can be transformed into
uncertainty about the current state inside an augmented state
space S+ = D, where D is the set of possible histories. The
dynamics associated with this augmented state space are de-
scribed by

P+(D, a,D as′) =
∫
P
P(s, a, s′)P (P|D) dP, (1)

R+(D, a) = R(s, a), (2)

where s is the suffix state of D. Together, the 5-tuple
M+ = 〈S+, A,P+,R+, γ〉 forms the Bayes-Adaptive MDP
(BAMDP) for the MDP problemM . Since the dynamics of the
BAMDP are known, it can in principle be solved to obtain the
optimal value function associated with each action:

Q∗(Dt, a) = max
π

Eπ

[ ∞∑
t′=t

γt
′−trt′ |at = a

]
, (3)

where π is a policy over the augmented state space, from
which the optimal action for each belief-state can be readily
derived. Optimal actions in the BAMDP are executed greedily
in the real MDP M and constitute the best course of action
for a Bayesian agent with respect to its prior belief over P .
It is obvious that the expected performance of the BAMDP
policy in the MDP M is bounded above by that of the optimal
policy obtained with a fully-observable model, with equality
occurring, for example, in the degenerate case in which the
prior only has support on the true model.

S2 Examples - Cont.
Example 2 Consider a slight modification of Example 1
where the start state is the second state on the chain, so that
with probability 1

2 the agent is only 1 step away from the
reward source (See Figure S1). Clearly, the Bayes-optimal
solution is to go left towards the nearest end first. The value
of the policy at the start state is V ∗ = 1

2 (γ+γ
2x+1). On the

other hand, an algorithm that commits to a particular policy
based on a posterior sample will aim for the left or right end
of the chain equally often (since they are equally likely). The

resulting value of such a strategy is V = 1
4 (γ + γ2x−2(1 +

γ3) + γ4x−1), which gives V = 1
2V
∗ as x→∞.

w.p 1/2
w.p 1/2

Figure S1: Illustration of Example 2.

Example 3 Consider a single-step decision between two
actions, a1 and a2, with uncertainty in the payoff as follows.
With probability p (case 1), action a1 leads to reward c1 < 0
and a2 leads to reward 0. With probability 1 − p (case 2),
action a1 leads to reward 1 and a2 leads to negative reward
0. This is illustrated in Figure S2.

Case 1 w.p p

a1 a2

r = c1 r = 0

Case 2 w.p (1− p)

a1 a2

r = 1 r = 0

Figure S2: The two possible payoff structures of Example 3.

Conventional TS in this example involves sampling one
of the transitions according to the prior and taking the cor-
responding optimal action. This results in the following ex-
pected reward: VTS = E[r] = p(p · 0 + (1− p) · 0) + (1−
p)(p · c1 + (1− p) · 1) = (1− p)(p · c1 + (1− p)). If c1 is
arbitrarily large and negative, VTS can be made arbitrarily
bad. The Bayes-optimal policy integrates over the possible
outcomes, therefore it performs at least as well as always
choosing action a2 with an expected reward of 0. This im-
plies V ∗ ≥ 0. The BOSS algorithm (Asmuth et al. 2009)
constructs an optimistic MDP based on K posterior sam-
ples, so that the best action across all K samples is taken.
In this example, it is enough for a single sample of case 2
to be present in these K samples to decide to take action a1
(since r2 > r1), resulting in the following value for BOSS
(denoting X to be the number of samples in the set of K
samples of case 2): V ex3BOSS = P (X ≥ 1)(p ·c1+(1−p)) =
(1− pK)(p · c1 + (1− p)) := z(K), which is a decreasing
function of K (since c1 < 0), showing the cost of this added
optimism.

Of course, we usually think of BOSS as being applied to
MDPs with sequential decisions, but one can readily trans-
form Example 3 in an MDP by putting these 1-step decisions
one after the other. We provide details of the construction in
Example 4.

Example 4 Consider linking together different instances
of Example 3. The agent starts in s0, and chooses between a1
and a2 with payoff described in Example 3. After executing
either action, the agent makes a transition to state s1, where
the process repeats until state sn, which itself transits back
to s0. The outcome of a1 and a2 (determined by whether si
is of case 1 or 2) is independent across states.

BOSS has a parameter B that decides the number of
steps between posterior resampling operations. However,
B has no effect in this example for the first n steps. To



compute the value of BOSS’s policy from the initial belief
state, leveraging the independence assumption, we can em-
ploy the value analysis of Example 3 for the first visit of
every state. After every state gets visited once, the transi-
tion in some states (where action a1 was chosen) will be
uniquely known and BOSS can perfectly exploit the MDP in
these states. For simplicity, we bound the value of the pol-
icy by assuming perfect knowledge of the MDP after the first
n states: V ex4BOSS <

∑n
t=0 γ

tz(K) +
∑∞
t=n+1 γ

t(1 − p) =
z(K) 1−γ

n

1−γ + γn+1(1−p)
1−γ , where z(K) = (1−pK)(p·c1+(1−

p)) (from Example 3). We can choose n large to make the
second term arbitrarily small, whereas the first term again
depends on c1 < 0, which we can make arbitrarily bad.
Again, the value of the Bayes-optimal policy in this example
can easily be lower-bounded as V ∗ ≥ 0 since the Bayes-
optimal policy can at least choose action a2 at all times (no
exploration).

We stress that PSRL and BOSS do enjoy strong theoreti-
cal guarantees for a different objective, namely expected re-
gret; our goal of Bayes adaptivity is a more severe objective
because discounting exerts pressure to perform well within
a relatively shorter time horizon.
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Figure S3: Average rate of exploitation of mushrooms over time
for BAMCP and TS for the domain described in Section 2.1, when
starting with no labelled observations (0 free data condition). For a
given step, the reported value is the fraction of time the agent chose
to eat the current mushroom (when it had the option to), rather than
to skip it.

S3 Inference details for the CRP-based
contextual-bandit sequence model

• We use a Rao-Blackwellized Gibbs sampler, as described
for example in (Sudderth 2006). We use the auxiliary vari-
able trick from (Escobar and West 1995) for tractable in-
ference of the concentration parameter α.

• A couple of Gibbs sweeps are performed between every
BAMCP simulation but this thinning is not necessary for
convergence. For Thompson Sampling, we burn in the
chain with 500 Gibbs sweep before selecting the sample
used for a particular step.
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BAMCP − γ = 0.95

BAMCP − γ = 0.96

Figure S4: In the domain described in Section 2.2, the average
number of ignored subtasks over 120 steps when using BAMCP
with either γ = 0.95 or γ = 0.96 (Known α scenario). We see that
a larger γ induces more exploration and risk-taking (fewer subtasks
are ignored), showing the sensitivity of Bayes-Adaptive planning to
the horizon.

• Given a setting of the cluster assignments and cluster pa-
rameters for the observed subtasks (obtained from the
Gibbs sampler), the future subtasks xt:∞ are sampled by
running the generative model forward conditioned on the
inferred variables.

• In order to improve the planning speed, posterior samples
can be memoized at the root of the search tree; the simu-
lations pick from a pool of previously generated samples.
The pool gets slowly regenerated.

S4 CRP mixture of MDPs
To illustrate that our methodology is not restricted to tasks
resembling contextual bandits, we consider an extension of
the problem in Section 2.2 in which each subtask τ is a ran-
dom MDP of a particular class, with contextual information
being informative about the class.

This extension is loosely motivated by the following oil
exploration problem. Possible drilling sites are considered
in a sequence; each site comes with some particular known
contextual information (e.g., geological features). One can
ignore a drilling site (action aexit), or (buy acreage and) run
one of two types of terrain preparation strategies (actions a0
and a1 in state s0). The outcomes of these two strategies
is the potential for either natural gas (state s1) or crude oil
(state s2). Finally, one has to make a final choice about how
to exploit (e.g., the type of extraction process, either a2 or
a3), which results in a stochastic payoff for this drilling site:
either dry hole with many expenses (r = −1.5) or a prof-
itable exploitation (r = 1).

We model this task as in Section 2.2 (each drilling site
corresponds to a cluster/subtask τ ), except that additional
xτ variables are necessary to establish the transitions be-
tween states, in addition to the variables already model-
ing context and rewards (for states s1 and s2). The pay-
off r1,3 from executing action a3 in s1 in subtask τ is de-
termined by the binary variable x1,3τ as r1,3 = f(x1,3τ )
(f(0) = −1.5, f(1) = 1). In the generative model, x1,3τ
(and other xi,jτ ) is determined like the other xτ variables
in Section 2.2. The model is illustrated in Figure S5. The
performance of BAMCP and TS on simulated data resemble



Algorithm 1: BAMCP

1: procedure Search( D )
2: repeat
3: P ∼ P (P|D)
4: Simulate(D,P, 0)
5: until Timeout()
6: return argmax

a
Q(D, a)

7: end procedure
8:

9: procedure Rollout(D,P, d )
10: if γdRmax < ε then
11: return 0
12: end
13: s← last state in D
14: a ∼ πro(D, ·)
15: s′ ∼ P(s, a, ·)
16: r ← R(s, a)
17: return r+γRollout( Das′,P, d+1)
18: end procedure
19:

20: procedure Simulate( D,P, d)
21: if γdRmax < ε then return 0
22: s← last state in D
23: if N(D) = 0 then
24: for all a ∈ A do
25: N(D, a)← 0, Q(D, a)← 0
26: end
27: a ∼ πro(D, ·)
28: s′ ∼ P(s, a, ·)
29: r ← R(s, a)
30: R← r + γ Rollout( Das′,P, d)
31: N(D)← 1, N(D, a)← 1
32: Q(D, a)← R
33: return R
34: end

35: a← argmax
b

Q(D, b) + c
√

log(N(D))
N(D,b)

36: s′ ∼ P(s, a, ·)
37: r ← R(s, a)
38: R← r + γ Simulate(Das′,P, d+1)
39: N(D)← N(D) + 1
40: N(D, a)← N(D, a) + 1

41: Q(D, a)← Q(D, a) + R−Q(D,a)
N(D,a)

42: return R
43: end procedure

Algorithm 2: Thompson Sampling
1: procedure GetAction( D )
2: P ∼ P (P|D)
3: π∗ ← SolveMDP(P,R, γ)
4: s← last state in D (current state)
5: return π∗(s)
6: end procedure

Figure S5: The extension of the CRP mixture model to
MDPs, modelling an intermediate decision within each sub-
task before getting a payoff.

that in the contextual bandits of Section 2.2. BAMCP adap-
tively ignores, explores, or exploits drilling sites depending
on the environmental statistics. As in the other examples,
with the same statistical model, TS acts too optimistically to
do well in terms of discounted return and is less inclined to
ignore subtasks. Figure S6-a shows that BAMCP is also more
conservative when acting within each MDP when α is large,
compared to TS. The dynamics of the cumulative return as a
function of the steps is presented in Figure S6-b.
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Figure S6: (a) Intratask exploration-exploitation statistics for
BAMCP and TS in the drilling problem. The distribution of action
pairs (sorted in each run) executed inside the MDP subtasks that
were explored by the agent. Mean over 100 runs. (b) Comparison
of the cumulative return at a fonction of the time step for BAMCP
(red) and TS (blue). Solid lines: α = 0.1, dotted line: α = 5.


