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Helplessness, a belief that the world is not subject to behavioral control, has long been cen-
tral to our understanding of depression, and has influenced cognitive theories, animal mod-
els and behavioral treatments. However, despite its importance, there is no fully accepted
definition of helplessness or behavioral control in psychology or psychiatry, and the formal
treatments in engineering appear to capture only limited aspects of the intuitive concepts.
Here, we formalize controllability in terms of characteristics of prior distributions over
affectively charged environments. We explore the relevance of this notion of control to
reinforcement learning methods of optimising behavior in such environments and consider
how apparently maladaptive beliefs can result from normative inference processes. These
results are discussed with reference to depression and animal models thereof.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The notions of control and controllability have long
been central to the understanding and empirical modeling
of anxiety and depression (Abramson, Seligman, & Teas-
dale, 1978; Abramson et al., 1998; Maier & Watkins,
2005; Seligman & Maier, 1967; Willner, 1985b; Williams,
1992). The main postulate is that subjects’ depressed
(and anxious) behaviors can be understood as emanating
from a belief that reinforcements are beyond their influ-
ence, implying that rewards and punishments will be less
efficiently exploitable or avoidable. Despite important crit-
icisms (see, e.g., Blaney, 1977; Buchwald, Coyne, & Cole,
1978; Costello, 1978; Frazer & Morilak, 2005; Willner,
1986; Willner & Mitchell, 2003, Chapter 2), cognitive for-
mulations of the concept of helplessness are powerful pre-
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dictors of depression in healthy individuals (Alloy et al.,
1999) and help underpin cognitive behavioral therapy, a
major non-pharmacological treatment for depression (Al-
loy & Abramson, 1982; Alloy et al., 1999; Beck, 1967; Beck,
1987; Beck, Rush, Shaw, & Emery, 1979; Williams, 1992).
Further, experimental manipulations of controllability in
animal models such as learned helplessness (LH), chronic
mild stress (CMS), tail suspension tests and forced swim-
ming tests (Anisman & Matheson, 2005; Willner, 1985b,
1995, 1997; Willner & Mitchell, 2002, 2003) are key to a
modern understanding of depression, and are an important
testbed for antidepressant drugs (e.g., for LH, Dulawa &
Hen, 2005; Frazer & Morilak, 2005; Willner, 1985a, 1986;
Willner & Mitchell, 2002).

In these animal models, healthy subjects are first exposed
to a particular set of environmental reinforcers, such as elec-
tric shocks, that they cannot control. The effect of that expe-
rience on their behavior in other environments is then
measured in a generalization task, for instance by looking
at how quickly the uncontrollably shocked animals learn
to perform an escape response. The animal models implic-
yesian formulation of behavioral control. Cognition (2009),
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itly make at least two types of fundamental claims about the
psychological processes underlying the generalizations:

1. The statistical claim that animals’ behavior in novel
environments is sensitive to prior knowledge or
expectation.

2. The aetiological claim that animals learn these (poten-
tially maladaptive) prior beliefs, and then generalize
them. That is, animals with a history of past uncontrol-
lable shock exposure come to expect shocks to be
uncontrollable in novel situations too, and because of
this belief, fail to attempt to control shocks in new envi-
ronments (Maier & Watkins, 2005).

The precise nature of the link with pathology deserves
detailed attention. Crucially, these psychological processes
are assumed to be functioning normally in healthy sub-
jects. That is, the animals are seen as being able to assess
correctly the extent to which they have control, and to gen-
eralize this knowledge appropriately to the novel environ-
ment, with normative consequences for the sloth of
subsequent learning. To the extent that these models cap-
ture important aspects of depressive behavioral pheno-
types, this leads to two routes to the psychiatric
conditions in humans, both of which are based on mal-
adaptive prior beliefs. One is that the dysfunction arises
as a (possibly extreme) facet of completely normative
inference. That is, the experience of negative events, partic-
ularly when characterised by a perception of inevitability
and uncontrollability, would have a causative role in the
genesis of depressive disorders (Blaney, 1977; Beck et al.,
1979; Kendler et al., 1995; Kendler, Gardner, & Prescott,
2002; Kendler, Hettema, Butera, Gardner, & Prescott,
2003; Miller & Seligman, 1975; Peterson, Maier, & Selig-
man, 1993). The second route is for inference to be normal,
but to be based on a prior distribution that is incorrectly
too pessimistic or negative. This may provide a way for
genetically encoded prior information acquired over longer
timescales to interact with information in particular envi-
ronments, as postulated by influential recent accounts of
genetic factors in depression (Caspi et al., 2003).

In this paper, we provide a computational characteriza-
tion of the psychological processes, in terms of a formal,
normative, Bayesian reinforcement learning (RL) treatment
of control and controllability. We interpret controllability
in terms of particular characteristics of the prior distribu-
tions over decision problems. We consider a setting in
which subjects face a short sequence of decisions, but
where they are uncertain about the exact structure of the
world, and hence about the consequences of their actions.
In such situations, subjects should apply informative pri-
ors, which capture the statistics about controllability, to
help decision-making. We draw out the specific implica-
tions these priors have for subjects’ expectations as to
what their actions will achieve in terms of transitions be-
tween states of the environment and the attainment of re-
wards and punishments.

In the language of engineering, a system is controllable if
(roughly speaking) a sequence of commands exists to bring
it from any state to any other state. However, this notion
has only a loose connection to the psychological concepts
Please cite this article in press as: Huys, Q. J. M., & Dayan, P. A Ba
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inherent in paradigms such as LH, and our first task (in Sec-
tion 2) is therefore to develop a more suitable formaliza-
tion. We begin with a view close to that entertained in
the original literature (Maier & Seligman, 1976), namely
the contingency, reliability or entropy of the mapping be-
tween actions and outcomes. We describe the strengths
of this concept, and use it to motivate two further, more
global, notions of control, which consider how many, and
how desirable, are the outcomes that can be dependably
achieved by any action. Our emphasis is on developing
these notions and their consequences in a RL setting, rather
than detailed comparisons with experimental animal or
human depression data. Section 3 illustrates the conse-
quences of prior beliefs about control in a RL setting, and
Section 4 applies it to LH. In Section 5, we discuss these con-
cepts in terms of a number of related issues, including the
distinction between goal-directed and habitual choice, the
role of dopamine, which is closely associated with the
neural realization of habitual and Pavlovian behavior, and
no space between (a) and symmetries: (a) symmetries be-
tween reward and punishment.

2. Notions of control

We first present an overview of three major notions of
control, which offer increasingly specific possibilities to ac-
count for the behavioral data. The notions build on each
other, incrementally capturing additional specific aspects
of what could, in different circumstances, be meant by
‘control’. The first notion captures the reliability of out-
comes; the second captures the extent to which any out-
come can be achieved reliably; and the third relates to
the reliable attainability of specifically desirable outcomes.
All the mathematical details are available as online Supple-
mentary material.

For simplicity, we consider an austere class of environ-
ments or domains, a good example of which is an imper-
fectly operating vending machine. There is just one state,
a number jAj of different, discrete actions a (pressing one
of the buttons on the vending machine), each of which
has jOj possible outcomes (the different candy bars one
might get). The (possibly probabilistic) mapping of actions
to outcomes is initially unknown to the subjects (the but-
tons are unlabelled), although they may have a few trials’
worth of experience. However, the subjects are assumed
to know the utilities of the outcomes (i.e., the worths of
the bars). We consider that subjects may make a sequence
of D further actions, and pay specific attention to the fact
that it might be optimal for subjects to use their early
choices to explore incompletely known actions in order
to make their later choices potentially more effective.

Entropy: The first, most basic, notion of control (which
was formulated by Maier & Seligman, 1976 and underlies
the work on ‘‘depressive realism”; Abramson, Metalsky, &
Alloy, 1979; Alloy & Abramson, 1982; Alloy & Tabachnik,
1984; Msetfi, Murphy, Simpson, & Kornbrot, 2005), is re-
lated to the breadth or spread of different outcomes for
each action (Fig. 1A). We formalize this in terms of the
outcome entropy. If po are the probabilities of the various
outcomes for an action, the entropy of the outcome distri-
bution is
yesian formulation of behavioral control. Cognition (2009),
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Fig. 1. Notions of control. These plots show probability distributions over outcomes given choices of action. (A): Entropy. There is less control if an action
randomly produces many outcomes with similar probability (left) than if only few outcomes are likely (right). (B): Fraction of controllably achievable
outcomes. If there is more than one action, the relationship between the outcomes of the different actions is important. In these bar charts, each column
represents the outcome distribution of one action. There are four actions, each with four outcomes. Consider the leftmost bar chart. All actions preferentially
lead to one and the same outcome, like a vending machine which produces the same chocolate bar most of the time, whichever button is pressed. For the
middle bar chart, each action tends to lead to a different outcome. The rightmost bar chart shows a case in between, where the vending machine reliably
yields only three out of the four outcomes advertised. Outcome 3 does occur, but no action action preferentially produces it over other outcomes. Control is
commensurate with the dependability with which all outcomes in an environment can be achieved. (C): Fraction of controllably achievable
reinforcement. There is most control if specifically affectively salient outcomes are under behavioral control. The red bar represents the reinforcement
associated with each outcome. In the left case, all reinforcement is associated with the most likely outcome for all actions. All vending machine buttons tend
to yield the one chocolate bar we desire. In the middle bar chart, there is one button which preferentially yields the desired bar, the others tend to yield
outcomes associated with no reward. There is extensive control over rewards in both these cases. However, if the reinforcement is as indicated by the red
bar in the right bar chart, then all but the reward-carrying outcome can be reliably evoked; the one chocolate bar that is desired is most likely produced by
an action that yields all possible outcomes randomly. In this case there is little controllably achievable reward. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article).
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H ¼ �
X

o

po logðpoÞ:

We will consider there to be more control when an action
leads more deterministically to one outcome (having low
entropy) than if it leads to many different outcomes with
similar probabilities (and thus has high entropy). In terms
of the vending machine, there is more control if we always
receive the same chocolate bar when we press the same
button, than if we receive many different ones. For conve-
nience, we use the number of possible outcomes (the out-
come set size) as a suitable proxy for the entropy (see
Supplementary material Section 1).

Achievable outcomes: The entropy measure considers ac-
tions in isolation. This leads to anomalies when multiple
actions are possible, for instance assigning a high level of
control when all available actions deterministically lead
Please cite this article in press as: Huys, Q. J. M., & Dayan, P. A Ba
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to the same outcome (Fig. 1B, left). For the vending ma-
chine, this corresponds to all buttons yielding the same
chocolate bar (even for chocophobic subjects). We thus ex-
tend the notion of control to take into account whether any
possible outcome can be reliably achieved. Combining this
with the previous measure, an agent is said to have more
control if all its actions (i) have low outcome entropy and
(ii) lead to different outcomes. Fig. 1B illustrates this no-
tion. This notion of control is close to the standard engi-
neering notion (Moore, 1981, see, for instance).

Achievable rewards: The two previous notions are agnos-
tic between different possible outcomes. However, con-
sider the case that subjects have one predominant need
and there are actions available leading deterministically
to all outcomes other than those satisfying that need. For
example, we might want a particular chocolate bar from
yesian formulation of behavioral control. Cognition (2009),
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the vending machine, but the buttons yield all kinds of bars
and sweets other than the one we desire. More pertinently,
a standard LH paradigm involves two key groups of sub-
jects (master and yoked), which receive exactly the same
shocks, but with the master in sole control of their dura-
tion. The yoked rats can typically perform a variety of ac-
tions, but none of them determines when the shock is
terminated. We thus define the controllable reinforcement
v as the fraction of reward that can be earned from out-
comes that are controlled by any action (see Fig. 1C). This
third notion re-frames the first two notions. Rather than
weighing all outcomes equally, outcomes offering large
relative rewards are weighted more than those offering lit-
tle. For convenience, our formal treatment only considers
rewards. It can cope with punishments by the mathemati-
cal trick of comparing actions to the worst possible out-
come, thus making them all appear either neutral or
beneficial (Mowrer, 1947, & creating a form of safety sig-
nal). There are important asymmetries in the behavioral
consequences of rewards and punishments (Bolles, 1970;
Dickinson & Pearce, 1977; Dayan & Huys, in press);
however learned helplessness does appear to generalize
between rewards and punishment (Goodkin, 1976), as we
discuss at the end.

2.1. Generalization

As in the standard experiments into LH, we assume that
subjects explore an environment by taking actions and
observing outcomes, and that they use this information
to infer the extent to which they are in control (i.e., to infer
posterior distributions over these controllability mea-
sures). A critical question is how this knowledge general-
izes or transfers to new decision problems in new
environments in the future.

There are therefore two independent issues: First is the
question about the shape of the prior, for which we just
introduced three options. Second is the question about
how different environments relate, and more specifically
to what extent they share the extent to which they are con-
trollable (in terms of these options). Fig. 2 points out the
two extremes. In panel A, environments do not share the
extent to which they are controllable. Knowledge about
one environment does not generalize at all to any other
environment. Panel B is the diametric opposite: all envi-
ronments are exactly equal. Information gathered in one
environment applies without fail to others.

These two extremes are in fact motivated by a distinc-
tion which exists both in research on human depression
and animal models thereof. The only factor that is really
E E E E E E E E

c cc c c BA

Fig. 2. Two extremes of generalization. (A): No generalization: every
environment E has its own, independent, setting of control c. (B): Full
generalization: all environments share one and the same setting of
control c.

Please cite this article in press as: Huys, Q. J. M., & Dayan, P. A Ba
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constant across a wide variety of environments is the actor
itself. Thus, the assumption that environments share char-
acteristics of control might correspond to the belief that it
is the actor himself who determines how much control is
really achievable. In the human literature, this has been
called ‘locus of control’ (Lefcourt, 1982), and has been seen
as an aspect of a person’s attributional style (Abramson
et al., 1978). A similar distinction can be made between
the classical LH experiments and CMS. In the latter the ani-
mal is exposed to many environments, each of which is
stressful (albeit to a lesser degree). This may well encour-
age animals to assign the absence of control more to an
internal, generalizable, variable, rather than to external
variability amongst environments (Huys, 2007).

It should be emphasized that the behaviors observed in
animals, and their putative equivalents in humans, all rely
on relatively strong generalization. We will thus here con-
centrate on cases where prior beliefs about the controlla-
bility are shared between different environments.
3. Consequences of prior beliefs about control

Prior expectations about a decision problem have a ma-
jor impact over three key aspects of normative action
selection, namely exploration, the propensity to try out dif-
ferent possible actions repeatedly; the expected reward, the
utilities to which subjects can look forward; and the appe-
titive contrast between actions, the degree of preference
subjects can expect to develop between different choices.
In this section, we describe how the different forms and
degrees of control influence these aspects; quantitative de-
tails can be found in the Supplementary material.

For concreteness, we continue in the setting of the
vending machine. Consider the choice between two (unla-
belled) buttons on the vending machine, k and u, each of
which has L = 5 possible outcomes, with outcome
o 2 f1; . . . ;5g yielding reward Ro ¼ o. Assume we have
pressed button k(nown) three times already, with the out-
comes displayed in the inset of Fig. 3A, but that nothing
else about it is known. The u(nknown) button has never
been pressed. Nothing but the prior distribution is known
about its outcome distribution, which is therefore flat. If
the subject only has a single choice to make, the optimal
policy is to press the button affording the highest expected
reward. The expected reward for action ak (pressing button
k) is simply

P
ocak

o Ro, where cak
o is the probability of observ-

ing outcome o upon action ak. The true expected reward
cannot be calculated because the true outcome probabili-
ties cak

o are unknown. However, given the observations
(the so-called sufficient statistics here are just counts of
outcome frequencies nak ), a posterior distribution over
the outcome probabilities can be derived by combining
the observations with a prior according to Bayes’ rule:

p cak jnakð Þ / p nak jcakð Þp cakð Þ ð1Þ

Here, the first factor pðnak jcak Þ is the likelihood of the
observations nak associated with the action given some
true underlying (unknown) discrete outcome distribution
cak . The second factor pðcak Þ is the prior belief about what
kinds of outcome distributions are likely. It is through this
yesian formulation of behavioral control. Cognition (2009),
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control priors. This is a different view of the data in panel C.
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factor that we consider these types of control to be imple-
mented. Control here only affects which outcomes are pre-
dicted, not what their associated reward might be. Exactly
the same quantities apply to au and thus cau , except that
nau ¼ 0.

From the posterior distributions, we derive all the quan-
tities required by averaging over all possible probability
distributions. This includes the expected reward

QðakÞ ¼
X

o

Ro

Z
cak

dcak p cak jnakð Þcak

� �
o

and the predictive distributions pðnDþ1jnÞ over the out-
comes on the next choice of an action. Both of these will
depend on a set of parameters h determining the prior be-
lief about the extent to which the environment is
controllable.
3.1. Outcome entropy of individual actions

The outcome entropy determines how many different
chocolate bars will be dispensed when repeatedly pressing
any one of the vending machine’s buttons. For this case,
example predictive distributions are shown for high and
low levels of control in Fig. 3A (see also Supplementary
material Eq. (10)). If a subject strongly believes it has
extensive control, the prior pðcak Þ will be such that distri-
butions with low entropy are inherently more probable,
and it will take a lot of persuasion from data to convince
Please cite this article in press as: Huys, Q. J. M., & Dayan, P. A Ba
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the subject that it has no control. Thus, under a high-con-
trol prior, all the predictive probability mass (pðnDþ1jnÞ) is
concentrated on the outcomes that have already been ob-
served. Conversely for a low-control prior the predictive
distribution is broader. Example consequences of the pre-
dictions are displayed in Fig. 3B–D, which we now unpack.

3.1.1. Exploration, incentive contrast and average reward
The predictive distribution of the unexplored action au

is flat, which means that the expected worth of just once
taking that action Q1ðauÞ (with the sometime superscript
on Q indicating the number of actions left to choose) is 3.
However, for the known action, outcome 4 (worth 4 units
of reward) was observed twice, and outcome 2 (worth 2)
only once. Thus, the expected worth Q 1ðakÞ of action ak un-
der both high and low-control priors exceeds that of action
au, though more so in the high- than in the low-control sit-
uation (Fig. 3B).

However, if more than one action remains to be taken, it
can become worth trying out the unknown button au to
ascertain whether its utility might exceed that of ak. In this
case, it would be worth exploiting in future choice(s). The
value of this uncertainty about au is exactly its potential
benefit, and motivates exploring the option. In reinforce-
ment learning, it is called an exploration bonus (Dayan &
Sejnowski, 1996; Sutton, 1991). In our particular case, the
Q value of au is calculated from the decision tree in a con-
ventional manner, and incorporates the value of explora-
tion directly, as ignorance about cau is explicitly captured.
yesian formulation of behavioral control. Cognition (2009),
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However, this is only possible because of the small sizes of
our domains. The optimal strategy is also known in one
very constrained class of more realistic optimal exploration
problems, in terms of what are called Gittins indices Gittins,
1989.1 However, Gittins indices are structurally brittle, and
do not apply in general circumstances; it is typically neces-
sary to approximate exploration bonuses.

The magnitude of the exploration bonus is a function of
the degree of control. To see this, imagine that button au

was chosen and yielded outcome (and thus reward) 5 (a
scrumptiously delicious chocolate bar). Under the high-
control prior, the predictive distribution will now be
strongly peaked at outcome 5, mandating the same button
au to be chosen again. However, under the low-control
prior, this individual outcome affects the predictive distri-
bution rather little. The subject would ascribe obtaining
outcome 5 to pure chance, and would not expect this for-
tuitous event to be repeated by pressing au. The conse-
quence is that ak would remain apparently superior,
preventing exploration.

Thus, under high-control priors, not only are actions that
lead to good outcomes aggressively exploited (and actions
with negative outcomes equally avoided), but the possibil-
ity of future exploitation also makes exploration worth-
while in the face of uncertainty. The opposite is true
under low-control priors, with outcomes biasing action
choice only weakly, and the lack of future exploitability
diminishing exploration bonuses. Fig. 3C shows the differ-
ence QDðauÞ � Q DðakÞ for D ¼ 1;2;3 remaining action
choices for the two control cases. This is positive for high
control, which is the effect of the uncertainty bonus; the
absolute size of the difference is also larger in this case.
To put it another way, as shown in Fig. 3D, under high-con-
trol priors, there is greater incentive contrast between ac-
tions. Furthermore, because rewards are exploitable and
punishments avoidable, the overall expected reward under
high-control priors is always greater (or at worst equal to)
that under low-control priors.

3.1.2. Generalization
The next critical question is whether accurate knowl-

edge about the level of control in an environment is infor-
mative. To put it another way, does knowledge about the
true extent to which an environment is controllable lead
to better behavior? If this is true and control is informative,
then it may be advantageous to generalize it across envi-
ronments that share controllability. One conclusion that
can be drawn from the previous section is that assuming
that the environment affords less control than is really
the case is disadvantageous, in that exploitable actions will
be missed. Fig. 4 considers the converse, showing the con-
sequence of over-estimating the controllability of the ac-
tions available in an environment. As can be seen, in this
case, only an underestimate of control is problematic; over-
1 Consider the case that the agent has access to a fictitious sure option
after any amount of exploration of a partially-known choice. The Gittins
index of the latter is the value of the sure option such that the agent is
exactly indifferent on its first decision between sure and partially-known
choices, and thus exactly captures the exploration-sensitive value of the
partially-known option.

Please cite this article in press as: Huys, Q. J. M., & Dayan, P. A Ba
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estimating control, on average, does not hurt performance,
since if outcomes have high entropy, any action is nearly as
good (or as bad) as any other. In sum, reward-maximising
behavior arises from a fixed assumption of low outcome en-
tropy. Knowledge of the true extent to which the environ-
ment is controllable does not translate into higher
average reward. This conclusion is not true for the more
sophisticated notions of control to which we now turn.

3.2. Controllably achievable outcomes

When the notion of control additionally encompasses
where the peaks of the outcome distributions across ac-
tions might be situated, not just the fact that there is such
a peak for each action individually, it becomes advanta-
geous to infer the true level of control and to generalize
it to new environments. The second notion of control, that
of controllably achievable outcomes, does just that.

Our simplified formulation defines priors over the joint
outcome probabilities pðCÞ for all the actions through the
medium of an auxiliary binary matrix M, whose ijth entry
determines whether outcome i is ‘‘controllably achievable”
by action j. Each action can have at most one controllably
achievable outcome; thus, if a column of the matrix M
has a unity entry at some outcome, then the outcome
probability distribution for that action is peaked at that
outcome. The total number of columns with one unity
entry is just the number of actions with a controllably
achievable outcome. The number of separate outcomes
jMj amongst these (obviously, jMj 6 L) is the number of
controllably achievable outcomes. If there are L possible
actions, jMj=L is the ‘‘fraction of controllably achievable
outcomes”. When this fraction is one, any outcome will
be the controllable consequence of at least one action. Ma-
trix M then formalizes the underlying structure of control.
Supplementary material Section 2 provides a more in-
depth discussion of the formulation.

The matrix C, which is generated from M, determines
the actual probabilities of each outcome from each action.
When Mij ¼ 1, Cij ¼ c and Ckj ¼ ð1� cÞ=ðL� 1Þ8k–i. Thus,
Fig. 4. Mismatch between environmental controllability and subjective
beliefs. The figure shows the average earned reinforcements for varying
subjective prior beliefs and environmental controllability. Only underes-
timation, but not overestimation, of the extent to which the environment
is controllable (in the entropy sense) has adverse consequences. When
the environment is highly stochastic, subjects’ behavior (and hence their
prior beliefs) have very little impact.

yesian formulation of behavioral control. Cognition (2009),
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as jMj ! L and as c ! 1, the outcome distributions of dif-
ferent actions diverge. Here, c captures the effect of the en-
tropy notion of control discussed above. If action j has no
controllably achievable outcome, then Cij ¼ 1=L;8i, i.e., is
maximally entropic. Supplementary material Section 2.1
gives an explicit example of how this formulation repli-
cates the effects illustrated above for the prior on outcome
entropy, and uses the notion of exploration depth to illus-
trate some differences.

Fig. 5 illustrates that it now does become advantageous
to generalize an accurate estimate of control. It does so in a
simple setting where only two out of the five possible out-
comes (1 and 5) yield rewards (0.3 and 0.7 respectively),
and only the inferior one (0.3) is controllably achievable.
Specifically, the auxiliary matrix M, the outcome distribu-
tions C ¼ fcag5

a¼1, of the 5 outcomes, the reward vectors
R, and the resulting vectors of true expected outcomes of
each action taken once individually �Q are

M ¼

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2
6666664

3
7777775

; C ¼

:8 :2 :2 :2 :2
:05 :2 :2 :2 :2
:05 :2 :2 :2 :2
:05 :2 :2 :2 :2
:05 :2 :2 :2 :2

2
6666664

3
7777775

; ð2Þ

R ¼

:3
0
0
0
:7

2
6666664

3
7777775

�Q ¼ :275 :2 :2 :2 :2½ �

As mentioned above, the matrix M indicates both where
and whether there is a peak in the outcome distribution.
By contrast, C contains the actual outcome distributions.
Here, jMj ¼ 1. As action 1 controllably achieves outcome
1 some 80% of the time, it is the optimal action. This is de-
Fig. 5. An illusion of too much control can be deleterious. The panels show the fr
of the prior number of observations (columns) and of the prior belief on the numb
see that the optimal action 1 is exploited most for the correct prior that assumes j
must be controllable (jMj ¼ 5), we see to the contrary that this optimal action 1
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spite the fact that it does not reliably lead to the single best
possible outcome.

The existence of the parameter c means that this notion
of controllability inherits most of the properties of the no-
tion based on the entropy of individual actions (see Sup-
plementary material Section 2.1 for a more in-depth
example). However, unlike the case for the entropy,
assuming too many actions are achievably controllable
can be deleterious. Fig. 5 demonstrates this explicitly.

A varying number of observations were generated from
random action choices. For each observation, a random ac-
tion was chosen, and an outcome picked based on the true
distribution C. The posterior and predictive distributions gi-
ven this data and the various priors were then evaluated.
The prior distribution allowed jMj controllable outcomes,
i.e. it allowed matrices C that were consistent with jMj ¼ 1
(Fig. 5A–D), jMj ¼ 2 (Fig. 5E–H) etc. The graphs show the fre-
quency with which each action was chosen in the first of two
extra picks, i.e., the proportion of cases for which
Q2ðaijNÞ > Q 2ðakjNÞ;8k–i based on the experience N. We
used Q2 to include the effect of an exploration bonus.

Fig. 5A–D shows that the correct assumption that only
one outcome is controllably achievable leads to the exploi-
tation of action 1. As more outcomes are assumed achiev-
able, there is more persistent exploration. In the extreme
case that all outcomes are assumed achievable, action 1
ends up being avoided despite being optimal. This pattern
becomes clearer when more prior observations are used
to infer the predictive probabilities (rightmost column,
Fig. 5D and 5T), but is already apparent after few observa-
tions (on average two per action, leftmost column). As long
as the maximal reward is not exploitable, an assumption
that more outcomes are controllably achievable than is
actually the case will lead to more persistent exploration
and prevent adequate exploitation. The controllably
achievable fraction of outcomes is hence an informative
characteristic of an environment, making it legitimate that
it be generalized.
action of times each of the five available actions was chosen, as a function
er of controllably achievable outcomes. As more observations are used, we
Mj ¼ 1 controllable outcomes. For the prior that assumes that all outcomes

is avoided.

yesian formulation of behavioral control. Cognition (2009),
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3.3. Controllably achievable rewards

We have so far described two aspects of outcome distri-
butions that are important in relation to control: outcome
entropy, which relates more to ideas in psychology, and
outcome achievability, which is closer the notion of con-
trollability in engineering. One last, important, ingredient
is reinforcement. Arguably, it is not the crude number of
controllable outcomes that matters; but rather only con-
trol over those outcomes associated with most reinforce-
ment. In animal models, control tends to be defined in
terms of the availability of an action to achieve a desirable
goal. Similarly, helplessness in humans is typically charac-
terised in terms of high level rewards in interpersonal rela-
tionships or at work (Beck et al., 1979; Peterson et al.,
1993; Williams, 1992).

We therefore turn to our third and final notion of con-
trol, that of the fraction of controllably achievable rein-
forcements within an environment (Fig. 1C). Again, in a
highly abstracted environmental model, we use the vari-
able v (Supplementary material Eq. (20)) to characterize
the fraction of reinforcements that are available via con-
trollably achievable outcomes. For example, for the case
in Fig. 5 (matrices in Eq. (2), v ¼ 0:24, as only 0.3 of the to-
tal reinforcement is available via a controllably achievable
outcome (the action/ button 1 in matrix M), and the extent
of control is C11 ¼ 0:8.

This notion of controllability again inherits the main
properties of the previous notions. However, its focus on
reinforcement gives it greater psychological refinement.
Fig. 6 shows the effect of v and the reinforcement structure
on the predictive distribution. In this case, each of jAj ¼ 5
actions has already been taken three times, always leading
to outcome o ¼ a for action a (Fig. 6A), i.e. there is ample
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Fig. 6. Reinforcement-sensitive control. (A): For each action a, outcome o ¼ a w
figures D and E. Here, all outcomes, and thus all actions, carry sizeable reinforcem
reward. (D–F): Inferred action-outcome matrices. Because the tree is constructe
With the assumption that a large fraction of the rewards in panel B is controllab
recovered for all actions. (E): However, when v ¼ 0, the predictive distributions
outcome associated with the action is higher. The rewards here are still those from
with v ¼ 0, results in a predictive distribution that has low entropy for the actio
leads to the only reward available in this environment. Throughout, r ¼ 0:05. Sm
for the definition of r.
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evidence of perfect control. Fig. 6D and E are obtained with
the reward structure in panel B, where all outcomes carry
some reward, though not equal amounts. In panel D, v ¼ 1,
and thus only matrices M that have one unit entry in each
column, and correspondingly low entropy outcome proba-
bility vectors ca, are allowed to contribute to the predic-
tions. Overall, a very low entropy predictive distribution
is recovered for all actions, as all actions carry rewards.
However, when v is set to zero, the predictive distribution
changes. Now, to the extent that actions lead to rewarding
outcomes, the prior suggests that they will not do so with
low entropy. Thus, since all actions lead to some reward,
the entropies of their outcome distributions are all in-
creased. However, this effect is most pronounced for the
action leading to the largest reward, here action 1. Fig. 6F
shows a more extreme version of this when action 1 is
the only action leading to a reinforced outcome. Now all
actions are predicted to lead to outcomes deterministically,
apart from the one action which produces rewards. Thus,
the notion of controllable reward fraction allows us to cap-
ture the aspect of helplessness that is directed towards
reinforcements.

4. Learned helplessness

We next consider how reward-sensitive control can ac-
count for the main features of LH. The standard experimen-
tal setup is presented in Fig. 7 with master, yoked and
control subjects. Shock-based helplessness training pro-
ceeds in one environment, with shocks for master and
yoked rats starting at unpredictable times and stopping
when the master performs a particular escape action, no
matter what the yoked rats do. We assume that subjects
extract from this a distribution over the degree of control-
4 5
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as observed 3 times. (B): Reward fractions for each outcome as used in
ents. (C): Reward fractions as used in panel F. One outcome carries all the
d from repeated choices, these are also inferred transition matrices. (D):

ly achievable (v ¼ 1), low entropy predictive distributions pðnDþ1jN;vÞ are
all have a high entropy, and to a greater extent when the reward of the
panel B. (F): The more extreme reward distribution of panel C, combined

ns that do not lead to rewards, but a high entropy for the one action that
aller r accentuates the effect further. See Supplementary material Eq. (21)

yesian formulation of behavioral control. Cognition (2009),
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Control

Master

Fig. 7. The learned helplessness paradigm. Three sets of rats are used in a sequence of two tasks. In the first task, rats are exposed to escapable or
inescapable unpredictable shocks. The master rats are given escapable shocks: they can switch off each shock by performing an action; usually turning a
wheel. The yoked rats are exposed to precisely the same shocks as the master rats, i.e. its shocks are terminated when the master rats terminate the shock.
Thus their shocks are inescapable. A third set of rats is not exposed to shocks. Then, all three sets of rats are exposed to a shuttle box escape task. Shocks
again come on at random times, and rats have to shuttle to the other side of the box to terminate the shock. Only the yoked rats fail to acquire the escape
response.
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lability v, and then use this distribution to derive predic-
tions in a second environment in which they have to learn
an (actually perfectly controllable) escape response (for
which action 1 leads to reward 0 and all other actions to
reward �1). Section 3.1.2 showed that optimal perfor-
mance generally ensues from correctly setting the control
parameters; we here show again that using a too small
(but correctly inferred) value of v in the second environ-
ment has a strong effect on escape training. In Supplemen-
tary material Section 3, we show that a maximum
likelihood estimate of v for the first environment can be
inferred from past observations N (Supplementary mate-
rial Section 3 and Fig. 5), and that past observations can
be included as an additional constraint on v when deriving
a predictive distribution (see Supplementary material Sec-
tion 3 and Eq. (22)). As mentioned above, we turn punish-
ment avoidance into appetitive safety by comparing
outcomes to the worst possible case:

~Ri ¼ Ri �min
j

Rj; ð3Þ

a manoeuvre whose validity we discuss in more depth in
the discussion.

Fig. 8A and B show the posterior distributions over v gi-
ven the observations in two initial environments affording
substantial (v ¼ 0:9) or little (v ¼ 0:1) controllably achiev-
able reinforcement respectively. In both cases, there were
80 observations overall, generated by random action
choices, and the posterior distributions are correctly
peaked around high and low values of v respectively. Sub-
jects were then transferred to a different environment and
experience a further 80 outcomes, but this time each ac-
tion a led to a fixed, deterministic2 outcome o ¼ a. Using
2 For convenience, this procedure eliminates the additional effects of
exploration during escape training. However, this would actually magnify
the findings.
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the prior derived from the first environment, and the obser-
vations in the second environment, the predictive distribu-
tion over future outcomes for each hypothetical value of v
is obtained and averaged over the distributions in Fig. 8A
and B (Supplementary material Eq. (23)).

Fig. 8C shows that when the distribution from Fig. 8A is
used, the predictions have high entropy; while Fig. 8D
shows that the distribution from Fig. 8B leads to low entro-
py predictions. As before, the predictive distributions can
be used to find the Q values of each action. Fig. 8E shows
that action 1 has a much higher value after exposure to
controllable reinforcements, and that the difference be-
tween actions is larger. Further, the average value is higher
(not shown). The second point is explored in more detail in
panel F, which shows the difference between actions 1 and
2 as a function of the shock size of actions 2-4. As expected,
the impact of an alteration of shock size on the Q values is
greater after exposure to escapable than inescapable shock.
Finally, Fig. 8G; H show the action choice probabilities,
again as the shock size is varied. Just as for the difference
between the Q values of actions 1 and 2, differences in
choice probabilities grow more rapidly after controllable
shocks. After extensive exposure to the controllable test
environment, the differences between the groups vanish
(not shown), because there is continued learning about v.

The model replicates part of the generalization finding
of Maier & Watkins (2005), who showed that yoked ani-
mals do not favor escape even though they might initially
escape correctly. Here, subjects initially choose actions
randomly, not knowing which outcomes they lead to. Even
after being given good evidence that they can escape the
shock, they will give little preference to escape (Fig. 8A
and C). The model also replicates the finding of Jackson,
Maier, & Rapaport (1978) that an increase in shock size
can ameliorate the effect of LH. Consider the case that
shocks of size 5 had been given in the escape task, so that
the escapably shocked animals are at ceiling. Increases in
yesian formulation of behavioral control. Cognition (2009),
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Fig. 8. Learned helplessness after acute severe shock. LH was simulated by first inferring distributions over v in one environment and then using this as a
prior over v in a second environment. In the first environment, all but outcome 4 were negative, in the second environment, all but outcome 1 were
negative. (A): posterior distribution over controllably achievable reinforcement v pðvjNISÞ given 80 observations NIS in a low-control (v ¼ 0:1) environment
in which inescapable shocks (IS) are presented. The distribution is concentrated on low values. (B): posterior distribution pðvjNESÞ given 80 observations NES

in a high-control (v ¼ 0:9) environment in which escapable shocks (ES) are presented. (C) and (D): Predictive distributions over outcomes for each action in
the test environment. For each action a in the test environment, outcome o ¼ a was observed 20 times, providing very strong evidence for full control.
However, given the low-control prior over v from panel A, the predictive distributions have high entropy. By comparison, given the high-control prior from
panel B, the predictive distributions have low entropy. (E): Q values of the four actions in the test environment (correcting back from the comparison to the
worst possible outcome). The best action (action 1) has smaller expected reward after exposure to uncontrollable reinforcement (solid line) than after
exposure to controllable reinforcement (dashed line). The difference between the actions is attenuated by exposure to uncontrollable rewards. (F):
Increasing the size of the punishment in the test environment has more drastic effects on the advantage of action 1 over the other actions after exposure to
controllable than uncontrollable reinforcers. Dark bars show difference between the Q value of action 1 and action 2 after ES, light bars after IS. (G) and (H):
If the Q values are used to derive a probabilistic policy via a softmax function, preference for action 1 (white bar) over other actions (light grey to dark grey
bars) increases faster with increasing reinforcer strength after controllable (H) than uncontrollable (G) reinforcement.
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shock strength will not increase the probability that the
master rats choose to escape, but it will increase the prob-
ability that the inescapably shocked animals will do so,
since these animals are still influenced by the actual Q
values.

5. Discussion

Simply put, by making rewards exploitable and punish-
ments avoidable, control renders the world more pleasant,
more colorful, and more worth exploring. This holds for all
three notions of control we presented. The different no-
tions are increasingly powerful and subsume each other:
the fraction of achievable outcomes relies on the notion
of outcome entropy, and the notion of achievable rewards
in turn adds a critical extra feature to straight
achievability.

To focus on the concepts, we used rather impoverished
and arbitrary mathematical formulations. For example, at
times we wrote outcome distributions as a mixture of a
uniform and a delta function (and, partly because of this,
replaced the Shannon entropy with a measure of the out-
put set size). We also considered the case of only a single
state. Clearly, these are very drastic reductions. However,
the machine learning and Bayesian reinforcement learning
literatures contain methods such as correlated Dirichlet
processes that could be used to express similar underlying
Please cite this article in press as: Huys, Q. J. M., & Dayan, P. A Ba
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notions about the priors pðcÞ over more general decision
problems with substantially greater flexibility, conciseness
and elegance (Dearden, Friedman, & Russell, 1998; Dear-
den, Friedman, & Andre, 1999; Friedman & Singer, 1999;
Huys, Vogelstein, & Dayan, 2009; Strens, 2000).

Even in our simple formulation, significant differences
were apparent between the different notions of controlla-
bility. In particular, the results on generalization suggest
that, unlike the other notions, outcome entropy by itself
is not a quantity that is worth inferring and projecting into
a new environment. Of course, it may be a simply com-
puted proxy for quantities which are more useful in re-
stricted classes of environment. Certainly an important
avenue of future research will be the creation and use of
specific behavioral tests to differentiate and enrich the var-
ious notions.

5.1. Learned helplessness

We presented a qualitative interpretation of LH through
a quantity we defined as the fraction of controllably
achievable reinforcement that an environment affords.
The generalization of this quantity to new environments
can account for an acquired escape deficit in yoked ani-
mals; it accounts for the sensitivity of the escape deficit
to the shock size used in the escape condition; and it rep-
licates the finding that the escape deficit persists against
yesian formulation of behavioral control. Cognition (2009),
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good evidence that escape is effective in switching off the
shock (Jackson et al., 1978; Maier & Watkins, 2005). In hu-
mans, while our models can offer a qualitative account for
some data (Miller & Seligman, 1975), there is a severe
dearth of strictly behavioral findings, and we refrained
from attempting to model explicit judgements. We hope
that these formulations will make it possible to collect
more precise data on control and helplessness in humans.

Nevertheless, there are several major limitations of this
work. Perhaps the most significant mismatch is that none
of the stress-induced animal models is devoid of anxiety;
LH itself has been proposed to be a better model of post-
traumatic stress disorder than depression (Maier & Wat-
kins, 2005). Even a single exposure to a stressor can have
lasting effects (Cordero, Venero, Kruyt, & Sandi, 2003; Mi-
tra, Jadhav, McEwen, Vyas, & Chattarji, 2005). In a very de-
tailed, in-depth study, Strekalova, Spanagel, Bartsch, Henn,
& Gass (2004) found that anxious effects are not limited to
LH, but that milder forms such as chronic mild stress also
tend to produce anhedonia in combination with anxiety.
In a sense, appetitive LH (Goodkin, 1976; Overmier, Patter-
son, & Wielkiewicz, 1980) is a more precise test of the the-
ory; otherwise, we need to combine a more complete
picture of aversive processing together with these priors.
Computational views on aversion, and the difference be-
tween aversive and appetitive processing are evolving
(Dayan & Huys, in press; Daw, Kakade, & Dayan, 2002;
Klopf, Weaver, & Morgan, 1993; Moutoussis, Bentall, Wil-
liams, & Dayan, 2008; Schmajuk & Zanutto, 1997) but they
are not ready to be combined with the sort of analysis we
have presented here.

Next, we have oversimplified the treatment of general-
ization. As we mentioned above, aspects such as predic-
tions about the mean valence of actions are likely to
generalize too. Most complex is the possibility that Pavlov-
ian effects (notably withdrawal directly associated with
predictions of aversive outcomes) could perturb goal-di-
rected and/or habitual control to greater or lesser degrees,
particularly in the aversive domain. The complexities of
this interaction are only just starting to be examined and
modelled (Dayan, Niv, Seymour, & Daw, 2006; Dayan &
Huys, 2008; Dayan & Huys, in press). In our treatment of
LH, the agent effectively assumed that there is just one le-
vel of controllability which applies to both environments.
Chronic mild stress models point in a different direction.
Here, animals are exposed to a sequence of only mildly
aversive and uncontrollable environments. Animals only
generalize to a new environment once they have been ex-
posed to several such environments. Thus, animals initially
treat environments somewhat separately, and only gener-
alize once there is good evidence that all environments
share an aversive nature. Such effects can be accommo-
dated using hierarchical and mixture models of control,
which also speak to the notion of a ‘locus of control’ in hu-
mans (Huys, 2007).

Finally, we only presented an application of the most
complex notion of control to learned helplessness. The ex-
tent to which the other two notions of control could pro-
vide an account depends on the precise setup. In chronic
mild stress, for instance, although animals are exposed to
mildly aversive stimuli in many environments, they are of-
Please cite this article in press as: Huys, Q. J. M., & Dayan, P. A Ba
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ten still free to roam and experience controllable reinforce-
ments in other aspects of their behavior. Similarly, in
learned helplessness, animals are exposed to uncontrolla-
ble shocks for only about one hour. The rest of the time
they are in their home cages. Overall then, it is not the case
that they do not have control at all. Rather, they do not
have control over some, specific and affectively very sali-
ent, outcomes. It is this that makes the last notion of con-
trollably achievable reward most appropriate for LH.

5.2. Depression

This paper is an attempt to consider findings relevant to
psychiatry in a framework of normative affective decision-
making. The consequences we derived all result from
applying standard, normative, probabilistic and operations
research principles of inference and optimal action selec-
tion, and thus suggest that what are termed models of dis-
ease might be optimal reactions to classes of events in
subjects’ environments. This is, of course, not a novel state-
ment. Rather, it is already implicit in animal models of psy-
chiatric disorders which induce abnormalities in healthy
animals by environmental manipulations (see Huys, 2007
for further discussion). It is important to point out that
while both animal and the present models suggest that a
normal response to environmental contingencies might
look like depression, they cannot, and do not attempt to,
claim that this is the only route to the disease. As noted
in the introduction, even in the context of our model, it
could well be that inference proceeds normatively and cor-
rectly within any environment, but that this inference is
confounded by a prior on control, or a tendency to gener-
alize, that is non-normative. Such maladaptive priors or
generalization tendencies might be the consequence of a
number of malfunctions in learning about or recalling prior
environmental contingencies, aspects of which are most
likely genetically encoded. Finally, it is conceivable that
such interactions between priors and environments could
capture some of the effects of so-called gene-environment
interactions (Caspi et al., 2003).

Our account amounts to a very spartan view of one part
of a highly complex and incompletely-understood disease.
The animal models on which we have focused most di-
rectly are themselves starkly simplified from the true dis-
order. As such, the present model is emphatically not
intended to be a model’of depression’. Rather, the aim
was to achieve a computational formulation of a concept
that is crucial to our understanding of depression. As
pointed out in the introduction, there is no accepted defi-
nition of control. We hope that the definitions provided
here, which are loosely based on notions in psychology,
psychiatry and systems control, will help to refine the phe-
nomenon in terms that link reinforcement learning and
psychiatric disorders. Such a formulation should help
bridge human and animal studies, and promote more spe-
cific dissection of the phenomena, for instance through
elicitation of a subject’s or patient’s prior beliefs in a purely
behavioral setting (Huys et al., 2009), independently of the
origin of these prior beliefs.

Our account does differ from certain other computa-
tional, or normative, explorations of psychiatric conditions.
yesian formulation of behavioral control. Cognition (2009),
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We do not argue that depression is an adaptive means to
achieve a particular goal (Nesse, 2000; Stevens & Price,
2000); rather, depressive behavior results from a mismatch
between the environment’s characteristics and a subject’s
assumptions about them. Mismatches in parameters of this
sort have been considered in previous work (Smith, Li,
Becker, & Kapur, 2004; Smith, Becker, & Kapur, 2005; Smith,
Li, Becker, & Kapur, 2006; Williams & Dayan, 2005) Again,
the claim that there is a ‘normative’ route to depression
opens up aspects of psychiatric diseases to powerful, for-
mal, analyses. We believe that this is their major strength.

5.3. Goal-directed and habitual choices

We also presented a rather impoverished view of the
way that the key reinforcement learning concepts to which
we have referred map onto the neural architecture of affec-
tive control (and thereby link to the behavioral neurosci-
ence of the animal models). Very briefly, there are rather
direct mappings; but they can only be understood in the
context of the substantial recent work devoted to distin-
guishing different algorithmic and anatomical structures
that influence action choice, notably separating habitual
or cached control from goal-directed or forward model-
based control (Dickinson & Balleine, 2002; Daw, Niv, &
Dayan, 2005). These different decision-makers incorporate
the sort of prior knowledge we have been discussing in dif-
ferent ways, potentially leading to different outcomes.

Goal-directed or model-based control involves building
a model of the environment and performing a form of tree-
like search to find the best action (Bertsekas & Tsitsiklis,
1996; Sutton & Barto, 1998). Since we formulated our no-
tions of controllability exactly as Bayesian priors over such
learnable models, they could straightforwardly influence
goal-directed decision-making. This is also implied in var-
ious experimental studies (Abramson et al., 1979; Alloy &
Abramson, 1982; Maier & Seligman, 1976). In addition,
the human literature on LH focuses substantially on con-
scious and goal-directed behavior and choice (Alloy et al.,
1999; Miller & Seligman, 1975; Peterson et al., 1993; Selig-
man, 1975), and recent investigations of the neurobiologi-
cal substrates of learned helplessness have implicated
regions that are involved in goal-directed control (Amat
et al., 2005), whose human analogues are important in
depression and also in normal higher cognitive function
(Mayberg et al., 2005).

By contrast, in habitual control, animals are assumed to
use experience to acquire cached values for actions, which
obviates the need for tree search in making decisions (Daw
et al., 2005). Habitual learning does not make use of learned
models of the environment, and so cannot readily incorpo-
rate the effects of priors over such models on the cached
values. Nevertheless, general consequences of some such
priors, such as the degree of variability in the environment
(which is related to entropy) (Yu & Dayan, 2005) and even
the overall expected reward, can affect the course of habit-
ual learning. Indeed, the conventional animal paradigms of
LH have been interpreted in a habitual rather than goal-di-
rected context (Bouton, 2006; Overmier & Seligman, 1967;
Seligman, 1975), and these aspects have been addressed
(Huys, 2007) using the different psychological and psychi-
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atric concept of blunting (Rottenberg, Gross, & Gotlib,
2005), which involves a suppression of the responsiveness
of basic systems that evaluate reinforcing inputs. However,
unlike plausible models of blunting, some aspects of con-
trollability are known to generalize across reinforcer va-
lence, with rats exposed to inescapable shocks showing
pure appetitive learning deficits, and those exposed to
uncontrollable positive reinforcements equally exhibiting
an escape deficit (Goodkin, 1976; Overmier et al., 1980).
Certainly, more work on separating out the effect of priors
on different decision-making systems is pressing.

5.4. Dopamine

One important influence on this study that flows
through the use of concepts from reinforcement learning,
is the roles in affective decision-making ascribed to neuro-
modulators that are prominent in psychiatry (Doya, 2002;
Montague, Dayan, & Sejnowski, 1996; Niv, Daw, Joel, &
Dayan, 2007; Schultz, 1998; Servan-Schreiber, Printz, & Co-
hen, 1990; Yu & Dayan, 2005). In particular, dopamine has
relatively strong links to depression, with tonic levels of
this neuromodulator appearing, by some lights, to be the
most natural neurobiological substrate for control (Will-
ner, 1983; Willner, 1985b). Mania is characterised by delu-
sions of control, and is treated with DA antagonists (note
that dopamine has also been linked to ‘‘cognitive control”,
Cohen, Braver, & O’Reilly, 1996, which is a very different
sense of the word control than ours here). Increases in to-
nic DA increase specific motivational drives but also ac-
tions in general.

Niv, Daw, & Dayan (2005), Niv et al. (2007) give a de-
tailed, quantitative account of various of these effects by
proposing that tonic DA reports the average reward ex-
pected from emitting actions per unit time. This then acts
as a form of opportunity cost penalizing sloth and deter-
mining the appropriate vigor of responding. This notion
is related to the formulation of controllably achievable re-
ward here in the sense that as v! 1, actions are increas-
ingly worth the effort. Indeed, there are some indicators
that tonic DA is not only enhanced by rewards, but also
by controllable punishments (Cabib & Puglisi-Allegra,
1996; Horvitz, 2000), both of which need to inspire appro-
priate actions. A litmus test of a link between control and
dopamine would be to measure tonic DA levels in situa-
tions of uncontrollable rewards.

In terms of depression, this account predicts a correla-
tion between motivational deficits and prior expectations
of no control. Certainly, the most severely depressed pa-
tients appear to suffer both from a motivational deficit
and feelings of helplessness (Parker & Hadzi-Pavlovic,
1996), but specific tests are needed before this question
can be answered precisely.

Nevertheless, this is clearly not the whole story. We
have argued that controllability is a complex construct of
the goal-directed system. However, dopamine is more clo-
sely associated with appetitive habitual control, and so its
ability to represent a variable like controllable reinforce-
ment independent of valence could be questioned. Further,
we currently lack a descriptively adequate model of the ef-
fect of general motivation on goal-directed control.
yesian formulation of behavioral control. Cognition (2009),
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5.5. Symmetry between rewards and punishments

A particular spur to this formulation of controllability
was the observation that exposure to uncontrollable rein-
forcers has effects that generalize across reinforcer valence
(Brickman, Coates, & Janoff-Bulman, 1978; Gambarana
et al., 1999; Gardner & Oswald, 2001; Goodkin, 1976; Job,
2002; Mineka & Hendersen, 1985; Muscat & Willner,
1992; Overmier et al., 1980; Willner, 1997; Zacharko, Bow-
ers, Kokkinidis, & Anisman, 1983; Zacharko & Anisman,
1991). This is specially important given the very different
neurobiological substrates of reward and punishment pro-
cessing. It is also the main aspect of LH that cannot be
straightforwardly accounted for by habits devoid of the no-
tion of control (Huys, 2007), since no link exists between
analgesia (which is known to be inducible by shocks and
stress), and decreased reward sensitivity (indeed, opioids
tend towards the opposite effect, enhancing positive val-
ues). To account for the blunting symmetry seen in LH,
our formulation of controllably achievable reinforcement
is valence-free, in that it is a measure only of the normalised
fraction of the total reinforcement available in the environ-
ment (Eq. (3) and Supplementary material Section 3).

In the absence of experiments that directly assess goal-
directed learning (such as reinforcer devaluation; Balleine
& Dickinson, 1998; Dickinson & Balleine, 2002) in these
models of depression, it appears that a behavioral insensi-
tivity to reinforcers which is symmetrical in terms of va-
lence is the strongest index for an involvement of a goal-
directed notion of control as proposed here. Unfortunately,
the data on human depression are not strong enough to
buttress any conclusions. Some studies on the primary sen-
sitivity to reinforcers (e.g., physiological responses to emo-
tional scenes in movies; Rottenberg, Kasch, Gross, & Gotlib,
2002) have reported symmetrical effects, but these are not
informative about the goal-directed system. Questionnaire
data on the other hand seems to indicate a perceived hyper-
sensitivity to punishments together with a hyposensitivity
to rewards (Lewinsohn, Youngren, & Grosscup, 1979; Wi-
chers et al., 2007), but this data is confounded both by re-
ports and by potential changes in primary sensitivity.

In human depression, the cognitive (Beck et al., 1979),
LH (Maier & Seligman, 1976) and hopelessness theories
(Abramson, Metalsky, & Alloy, 1989), while not directly
interpretable in the behavioral reinforcement learning
terms used here, do posit that a decreased perception of
control is central to depression, in a manner that is applied
without difference to both positive and negatively valenced
events. Notably, depressed people generally attribute posi-
tive events to chance, and negative events to stable causes
beyond their reach. This means that they cannot exploit po-
sitive or avoid negative events – precisely what is expected
from the sort of general lack of control we have discussed.

6. Conclusion

In summary, we have developed three formulations of
controllability in terms of characteristics of the priors over
the outcomes afforded by an environment. Assuming that
subjects infer degrees of control from one set of environ-
Please cite this article in press as: Huys, Q. J. M., & Dayan, P. A Ba
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ments and generalize them to other environments, we
showed that we could qualitatively capture many aspects
of animal models of depression, a condition in which con-
trollability is believed to play a significant role. We offer
our precise formalizations as a new substrate for clarifica-
tion and categorization in patients.
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