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Abstract

Decision making lies at the very heart of many psychiatraedses. It is also a
central theoretical concern in a wide variety of fields ansl inadergone detailed,
in-depth, analyses. We take as an example Major Depresssgeder (MDD),
applying insights from a Bayesian reinforcement learniragrfework. We focus
on anhedonia and helplessness. Helplessness—a core elarttentonceptual-
izations of MDD that has lead to major advances in its treatimgharmacolog-
ical and neurobiological understanding—is formalized agrgke prior over the
outcome entropy of actions in uncertain environments. Aoh&, which is an
equally fundamental aspect of the disease, is related teffaetive reward size.
These formulations allow for the design of specific tasks &msure anhedonia
and helplessness behaviorally. We show that these behbw@asures capture
explicit, questionnaire-based cognitions. We also preeddence that these tasks
may allow classification of subjects into healthy and MDDup® based purely
on a behavioural measure and avoiding any verbal reports.

There are strong ties between decision making and psyghieith maladaptive decisions and be-
haviors being very prominent in people with psychiatricodikers. Depression is classically seen as
following life events such as divorces and job losses. Ltnal studies, however, have revealed
that a significant fraction of the stressors associated egfiression do in fact follow MDD onset,
and that they are likely due to maladaptive behaviors premntiin MDD (Kendler et al., 1999).
Clinically effective 'talking’ therapies for MDD such as gnitive and dialectical behavior therapies
(DeRubeis et al., 1999; Bortolotti et al., 2008; Gotlib ananiinen, 2002; Power, 2005) explicitly
concentrate on altering patients’ maladaptive behaviedstecision making processes.

Decision making is a promising avenue into psychiatry foteaist two more reasons. First, it
offers powerful analytical tools. Control problems rethte decision making are prevalent in a
huge diversity of fields, ranging from ecology to economim@mputer science and engineering.
These fields have produced well-founded and thoroughlyacherized frameworks within which

many issues in decision making can be framed. Here, we valldmn framing issues identified in
psychiatric settings within a normative decision makirapiework.

Its second major strength comes from its relationship togtdalogy, and particularly those neuro-
modulatory systems which are powerfully affected by allonajinically effective pharmacothera-

pies in psychiatry. The understanding of these systemsdrasfited significantly from theoretical

accounts of optimal control such as reinforcement lear(lhgntague et al., 1996; Kapur and Rem-
ington, 1996; Smith et al., 1999; Yu and Dayan, 2005; Dayah¥an 2006). Such accounts may be
useful to identify in more specific terms the roles of the weuwdulators in psychiatry (Smith et al.,
2004; Williams and Dayan, 2005; Moutoussis et al., 2008;dbegnd Huys, 2008).
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Figure 1: The learned helplessness (LH) paradigm. Threedetts are used in a sequence of
two tasks. In the first task, rats are exposed to escapabtescapable shocks. Shocks come on at
random times. The master rat is given escapable shocks gwiich off the shock by performing
an action, usually turning a wheel mounted in front of it. Ho&ed rat is exposed to precisely the
same shocks as the master rat, i.e its shocks are terminhtgdtiie master rat terminates the shock.
Thus its shocks are inescapable, there is nothing it carsdlh ib terminate them. A third set of rats
is not exposed to shocks. Then, all three sets of rats aresegdo a shuttlebox escape task. Shocks
again come on at random times, and rats have to shuttle tothiee side of the box to terminate
the shock. Only yoked rats fail to acquire the escape regporaked rats generally fail to acquire
a wide variety of instrumental behaviours, either deteediby reward or, as here, by punishment
contingencies.

This paper represents an initial attempt at validating dpigroach experimentally. We will frame

core notions of MDD in a reinforcement learning framework ase it to design behavioral decision
making experiments. More specifically, we will concentratetwo concepts central to current
thinking about MDD: anhedonia and learned helplessness Klldder and Seligman 1976; Maier

and Watkins 2005). We formulate helplessness paramdyrasiprior beliefs on aspects of decision
trees, and anhedonia as the effective reward size. Thissls to use choice behavior to infer the
degree to which subjects’ behavioral choices are chaiaeteby either of these. For validation,

we correlate the parameters inferred from subjects’ behavith standard, questionnaire-based
measures of hopelessness and anhedonia, and finally usédired parameters alone to attempt to
recover the diagnostic classification.

1 Core concepts: helplessness and anhedonia

The basic LH paradigm is explained in figure 1. Its importasaeanifold: the effect of inescapable
shock on subsequent learning is sensitive to most classdsimially effective antidepressants; it

has arguably been a motivation framework for the developroéthe main talking therapies for

depression (cognitive behavioural therapy, Williams @99t has motivated the development of
further, yet more specific animal models (Willner, 1997)d érhas been the basis of very specific
research into the cognitive basis of depression (Petettsaln €993).

Behavioral control is the central concept in LH: yoked andtearat do not differ in terms of the
amount of shock (stress) they have experienced, only instefrthe behavioural control over it. It
is not a standard notion in reinforcement learning, andetlage several ways one could translate
the concept into RL terms. At a simple level, there is inteity more behavioural control if, when
repeating one action, the same outcome occurs again ang tgai if this were not true. Thus, ata
very first level, control might be related to the outcome @pyrof actions (see Maier and Seligman
1976 for an early formulation). Of course, this is too simplell available actions deterministically
led to the same outcome, the agent has very little contraiallyi if one were able to achieve all
outcomes except for the one one cares about (in the ratsseéaszhing off or avoiding the shock),
we would again not say that there is much control (see Huy872MHuys and Dayan (2007) for a
more detailed discussion). Despite its obvious limitagiome will here concentrate on the simplest
notion for reasons of mathematical expediency.
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Figure 2: Effect ofy on predictionsQ-values and exploration behaviour. Assume a slot machine
(blue) has been chosen five times, with possible rewardsahd that reward 2 has been obtained
twice, and reward 4 three times (inset in left pan&lgft: Predictive distribution for a prior with
negativey (low control) in light gray, and large (extensive control) in dark gray. We see that, if
the agent believes he has much control (and outcome distritsuhave low entropy), the predictive
distribution puts all mass on the observatioRght: Assume now the agent gets up to 5 more pulls
(tree depth 1-5) between the blue slot machine and a newgersiot machine. The orange slot
machine’s predictive distribution is flat as it has nevenbiied, and its expected value is therefore
3. The plot shows the difference between the values for tleestat machines. First consider the
agent only has one more pull to take. In this case, indepelydeinthe priors about control, the
agent will choose the blue machine, because it is just §igpatter than average. Note though that
the difference is more pronounced if the agent has a highi@arior. But things change if the agent
has two or more choices. Now, it is worth trying out the new hiaeif the agent has a high-control
prior. For in that case, if the new machine turns out to yielarge reward on the first try, it is likely
to do so again for the second and subsequent times. Thustitimeapout control determines the
exploration bonus.

The second central concept in current conceptions of MDBasaf reward sensitivity. Anhedonia,
an inability to enjoy previously enjoyable things, is onéwed symptoms necessary for the diagnosis
of depression (American Psychiatric Association, 1994 auinber of tasks in the literature have
attempted to measure reward sensitivity behaviourally. l1&Viiese generally concur in finding
decreased reward sensitivity in subjects with MDD, thesealte need further clarification. Some
studies show interactions between reward and punishmasitiséies with respect to MDD, but
important aspects of the tasks are not clearly understoad.inStance, Henriques et al. (1994);
Henriques and Davidson (2000) show decreased resonsiveh@&DD subjects to rewards, but
equally show decreased resonsiveness of healthy subgeptsitshments. Pizzagalli et al. (2005)
introduced an asymmetrically rewarded perceptual disogtion task and show that the rate of
change of the response bias is anticorrelated with subjactedonic symptoms. Exactly how
decreased reward responsivity can account for this is asprd not clear.

Great care has to be taken to disentangle these two conc&pteedonia and helplessness both
provide good reasons for not taking an action: either bexthesreinforcements associated with the
action are insufficient (anhedonia), or because the outdemet judged a likely result of taking
some particular action (if actions are thought to have lagteome entropy).

2 A Bayesian formulation of control

We consider a scenario where subjects have no knowledge afuitome distributions of actions,
but rather learn about them. This means that their prioefsefbout the outcome distributions are
not overwhelmed by the likelihood of observations, and nigs thave measurable effects on their
action choices. In terms of RL, this means that agents domatkhe decision tree of the problem
they face. Control is formulated as a prior distribution ba butcome distributions, and thereby as
a prior distribution on the decision trees.

The concentration parameterof a Dirichlet process can very simply parametrise entremg,
if used as a prior, allow for very efficient updates of the e distributions of actions. Let
us assume we have actiomswhich have as outcomes rewarfs and keep countVy(r,a) =



> kik<tian—a Or.r, Of the number of times a particular rewards R was observed for each action

a € A, wheret is the number of times that action has been choseis, the reward on thé" trial
andJ is the Kronecker delta. The predictive distribution foriects is then
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P(7'|Nt,a,a) = WB(T) -+ m

Nt (Tv a) (1)
Here, B(r) is the base distribution, which we assume is flat, &hda) = >, N.(r,a) is the
number of times action was chosen up to trigl Thus, the first time an action is chosen, we draw
a sample fromB(r). Fora = 0, we then always draw that very same sample againaFerco, we
keep drawing from the same flat outcome distribution. Thugery simply determines the entropy
of the actions’ outcome distribution. To match parametdtues onto control more intuitively, let
~v = —log(«) be the control parameter.

The action choice problem is now to choose actios argmax, Q(a|N), where theQ values are
defined by the Bellman equation of our problem:

Qi(alNe,v) = D p(r|Ny,a,7)[r + argmax Q;(a’| Ny (r), 7)) @)

whereN,; 1 (r) is the count including the (anticipated) rewardT he effect of the parameteron Q
values is illustrated in Figure 2. One can now infer the maximikelihood (ML) parameters of the
prior by writing the probability of the subject’s observettians as a standard softmaxed version of
the Q values:

(3.8ur = argmax p(at| N, v, B) )
e t
exp(ﬂQﬁ(""‘Nt’V))
Yo exXp(BQui(a/[Nt, 7))
where we have introduced a second parame@tevhich is either the softmax inverse temperature,

or, alternatively and equivalently, the size of the rewgttle maximum ofR and 5 are not both
inferable from action observations only).

where p(a¢|Ne, 7, 3) “4)

Simulations of the inference revealed that the parametarsl3, our inferred reward sensitivity and
prior on control, were correlated. To alleviate this probjsubjects were additionally given a reward
sensitivity task which was interleaved with the controktésee below for the task descriptions).
The structure of the reward sensitivity task is such @aglues are correctly defined by a Rescorla-
Wagner (RW) learning rule:

W (a) = (1-)Qf" (a) + ery ®)

whereQ!*"W (a) is the Q value of actior at choicet, ¢ is the learning rate, and actions probabilities
again defined via softmax with a parametens in equation 4. Note, importantly, i) that this is
not dependent on, the prior belief about control and ii) that unlike equatidrabove, this is a
'model-free’ algorithm that does not look ahead and thussduoat take anticipated rewards into
account). Combining inference in the two tasks (shayinigetween them), allows us to use the
reward sensitivity task as a prior ghfor the control task and to eliminate the correlation.

2.1 Task and subjects

Control task: The effects illustrated in figure 2 are easily elicited in mlie behavioral task.
Subjects are told to imagine that they are in a large casimbyall be dropped randomly in each of
100 rooms. In each room, they will get to choose between shahines. At first, they see only one
slot machine, which they have to choose. Next, they get toshbetween two slot machines. A new
machine is presented whenever all machines on the screernbleaw tried. Thus, the exploratory
drive is always maintained with one unexplored slot mach8wbjects get 8 choices per room, and
thus get to try a maximum of 8 machines once in each room. Sisbgee informed that outcomes
for each slot machine are between 0 and 9 points. Overaljestsbare thus always kept in the
dark about the true outcome distribution of any one slot rimechThus, their prior beliefs become
relevant. For healthy control subjects, one room was chi@saomly and the total number of points
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Figure 3: Repeat modulation. Bottom plots: Probability lebasing a slot machine again given that
it has just yielded a particular outcome. Control subjectsimgray and MDD subjects in red (all
individuals as dots, meanis 1 std. err. as bars; red dots on the right of bars, gray doteeleft of
bars). Top plots: uncorrected p-values comparing the twapmg for every individual outcome. Left
panel: after observing a particular outcome once, Righepeaafter observing the same outcome
on a particular machine twice in a row. The p-values at thendjzate the ANOVA interaction of
outcome size with group. Thus, we see here that subjectsMitD are more likely to stick with

a bad machine, and more likely to move away from a good macfiihe same result is observed
when fitting sigmoids to each subject and comparing theliefeparameters (data not shown).

earned in that room determined the payment (1 point = 1 US$ipmim 10US$, maximum 50US$).
MDD subjects were given the same instructions, but, forcallieasons, could not be paid.

Reward sensitivity task: Subjects chose repeatedly (300 times) between two staaterd$ with
probabilistic binary outcomes. The underlying probaigiitof a reward changed as a (squashed)
Ornstein-Uhlenbeck process. This task was thus accurdeggribed by a standard Rescorla-
Wagner (RW) rule (Daw et al., 2006).

Questionnaire measuresFinally, each subject filled out two questionnaires: thelBeelplessness
Score (BHS), and the Beck Depression Inventory (BDI) whighstandard questionnaire measures
of hopelessness and anhedonia respectively. We extrdweghhedonic subcomponent, BDla, as
the sum of responses on questions 4, 12, 15 and 21 of the BDI.

Subjects: We recruited 17 healthy control subjects from the communlfy subjects with MDD
were recruited as part of an ongoing treatment study, aneldatsktake the behavioural test while
waiting to see the psychiatrists. All subjects were givemleStructured Clinical Interview for DSM-

IV (First et al., 2002a,b). All MDD subjects met criteria farcurrent major depressive episode.
Three subjects had additionally a diagnosis of either PAigorder (2) or Bipolar Disorder 11 (1).
All the healthy control subjects had neither a present payit disorder, nor a history thereof. All
procedures were approved by the New York State Institue ydtRatry Institutional Review Board.
The subjects were matched for sex and educational levehdiufior age. We thus included age
in our model formulations to exclude its effects as a nuisarariable. The depressed sample was
older, but throughout, the effects of age correlatgativelywith those of depression.

3 Results

3.1 Reward sensitivity

Preliminary analysis: Repeat modulation, a very simple proxy measure of choigesjqes a first
glimpse at the effects of depression on the first task. Figusbows the probability with which
subjects chose a slot machine again after having receivedmes 0-9. As groups, MDD subjects
both avoid bad and exploit good machines less. Nearly hal§tibjects with MDD show very little
modulation with rewards. As a group, MDD subjects appear $essitive to the reward structure in
the first task.
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Reward sensitivity: The main hypothesis with respect to reward sensitivity & subjects’ empir-
ically observed reward sensitivity in equation 5 is inversely related to their expressed antiagdo
BDIla, in the questionnaires. We can build this into the actiooice model by parametrisigin the
QR value (equation 5) above explicitly as a function of the dgjoesaire anhedonia scoféDIa:

B(BDIa, AGE) = 83BDIa + cgAGE + (4

If the hypothesis is true and subjects with higher BDla ssoleindeed care less about rewards, we
should observe that; < 0. Here, we included a regressor for tHé/E as that was a confounding
variable in our subject sample. Furthermore, if it is truattanhedonia, as expressed by the ques-
tionnaire, relates to reward sensitivity specifically, wewld be able to write a similar regression
for the learning rate (from equation 5)

e¢(BDIa,AGE) =0.BDIa + ¢ AGE + (.

but find thaté, is not different from zero. Figure 4 shows the ML values foe ffarameters of
interest (emphasized in blue in the equations) and confinatspeople who express higher levels
of anhedonia do indeed show less reward sensitivity, butaddaiffer in terms of learning rate. If
it were the case that subjects with higher BDla score weltdggs attentive to the task, one might
also expect an effect of BDla on learning rate.

3.2 Control

Validation: The control task is new, and we first need to ascertain thggstsiwere indeed sensitive
to main features of the task. We thus fit both a RW-learning (ak in the previous section, but
adjusted for the varying number of available actions), dwdftll control model. Importantly, both
these models have two parameters, but only the full contoalehhas a notion of outcome entropy,
and evaluations a tree. The chance probability of subjext8bns was 0.37, meaning that, on
average, there were just under three machines on the scféemprobability of the actions under
the RW-learning rule was better at 0.48, and that of the foitol model 0.54. These differences
are highly significant as the total number of choices is 29@0us, we conclude that subjects were
indeed sensitive to the manipulation of outcome entropy,that they did look ahead in a tree.

Prior belief about control:  Applying the procedure from the previous task to the maik, tag
write the main parameters of equations 2 and 4 as functiotieeajuestionnaire measures and infer
linear parameters:

v (BDIa,BHS,age) = xy1BHS+0,1BDIa+ cy1AGE + (41
v2(BDIa,BHS,age) = X12BHS+0,20BDIa+ c2AGE + (2
B(BDIa,BHS,age) = xpBHS+03BDIa+ cgAGE + (3

Importantly, because the BDla scores and the BHS score®ardated in our sample (they tend to
be large for the subjects with MDD), we include the crossae@,:, 62, x4), as we are interested
in the specific effects of BDla ofi, as before, and of BHS on
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We here infer and display two separate valyesnd~,. These correspond to the level of control
in the first and the second half of the experiment. In fact,a@bel the LH experiments better, the
slot machines in the first 50 rooms were actually very noigy firue~), which means that subjects
were here exposed to low levels of control just like the yokad in the original experiment. In the
second half of the experiment on the other hand, slot mashéreled to be quite reliable (high true

7)-

Figure 5 shows again the ML values for the parameters oféstdemphasized in blue in the equa-
tions). Again, we find that our parameter estimate are vepyificantly different from zerox three
standard deviations).

The effect of the BHS score on the prior beliefs about contrisl much stronger in the second half
than of the experiment in the first half, i.e. the effect of BbiSthe prior belief about control is
particularly prominent when subjects are in a high-contmfironment and have previously been
exposed to a low-control environment. This is an intergsparallel to the learned helplessness
experiments in animals.

3.3 Classification

Finally we combine the two tasks. We integrate out the le@ynateec, which we had found not be
related to the questionnaire measures (c.f. figure 4), aadhesdistribution ovef; from the first
task as a prior distribution ofi for the second task. We also put weak priorsyaand infer both3
and~ for the second task on a subject-by-subject basis. Figurm@sthe posterior values far
andg for MDD and healthy subjects and the ability of a linear diffessto classify them.

4 Discussion

In this paper, we have attempted to provide a specific fortimnaf core psychiatric concepts in
reinforcement learning terms, i.e. hopelessness as ah@ii@f about controllability, and anhedonia
as reward sensitivity. We have briefly explained how we ekpezse formulations to have effect
in a behavioural situation, have presented a behaviorkleagglicitly designed to be sensitive to
our formulations, and shown that people’s verbal expressitopelessness and anhedonia do have
specific behavioral impacts. Subjects who express anhadbsplay insensitivity to rewards and
those expressing hopelessness behave as if they had giéds eat outcome distributions of ac-
tions (slot machines) are very broad. Finally, we have shibahthese purely behavioural measures
are also predictive of their psychiatric status, in that wexenvable to classify patients and healthy
controls purely on the basis of performance.

Several aspects of this work are novel. There have beengu®eattempts to map aspects of psy-
chiatric dysfunction onto specific parametrizations (Goégal., 1996; Smith et al., 2004; Williams
and Dayan, 2005; Moutoussis et al., 2008), but we believiedtimawork represents the first attempt
to a) apply it to MDD; b) make formal predictions about subjeehavior ¢) present strong evi-
dence linking anhedonia specifically to reward insengjtigicross two tasks d) combine tasks to
tease helplessness and anhedonia apart and e) to use thokaaferences for classification. The
latter point is particularly important, as it will deterngirany potential clinical significance (Veiel,
1997). In the future, rather than cross-validating wittpees to say DSM-IV criteria, it may also be
important to validate measures such as ours in their own ingbngitudinal studies.



Several important caveats do remain. First, the populatése not fully matched for age. We in-
cluded age as an additional regressor and found all results tobust. Secondly, only the healthy
subjects were remunerated. However, repeating the aisglyssented using only the MDD subjects
yields the same results (data not shown). Thirdly, we havgetdully mirrored the LH experiments.
We have so far only tested the transfer from a low-controirenwnent to a high-control environ-
ment. To make statements like those in aniteatnedhelplessness experiments, the transfer from
high-control to low-control environments will need to beaexned, too. Fourth, the notion of con-
trol we have used is very simple, and more complex notionsldheertainly be tested (see Dayan
and Huys 2008). Fifth, and maybe most importantly, we havarsonly attempted to classify MDD
and healthy subjects, and can thus not yet make any stateraleotit the specificity of these ef-
fects with respect to MDD. Finally, it will be important topkcate these results independently, and
possibly in a different modality. Nevertheless, we belithase results to be very encouraging.
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