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Abstract

Decision making lies at the very heart of many psychiatric diseases. It is also a
central theoretical concern in a wide variety of fields and has undergone detailed,
in-depth, analyses. We take as an example Major Depressive Disorder (MDD),
applying insights from a Bayesian reinforcement learning framework. We focus
on anhedonia and helplessness. Helplessness—a core elementin the conceptual-
izations of MDD that has lead to major advances in its treatment, pharmacolog-
ical and neurobiological understanding—is formalized as a simple prior over the
outcome entropy of actions in uncertain environments. Anhedonia, which is an
equally fundamental aspect of the disease, is related to theeffective reward size.
These formulations allow for the design of specific tasks to measure anhedonia
and helplessness behaviorally. We show that these behavioral measures capture
explicit, questionnaire-based cognitions. We also provide evidence that these tasks
may allow classification of subjects into healthy and MDD groups based purely
on a behavioural measure and avoiding any verbal reports.

There are strong ties between decision making and psychiatry, with maladaptive decisions and be-
haviors being very prominent in people with psychiatric disorders. Depression is classically seen as
following life events such as divorces and job losses. Longitudinal studies, however, have revealed
that a significant fraction of the stressors associated withdepression do in fact follow MDD onset,
and that they are likely due to maladaptive behaviors prominent in MDD (Kendler et al., 1999).
Clinically effective ’talking’ therapies for MDD such as cognitive and dialectical behavior therapies
(DeRubeis et al., 1999; Bortolotti et al., 2008; Gotlib and Hammen, 2002; Power, 2005) explicitly
concentrate on altering patients’ maladaptive behaviors and decision making processes.

Decision making is a promising avenue into psychiatry for atleast two more reasons. First, it
offers powerful analytical tools. Control problems related to decision making are prevalent in a
huge diversity of fields, ranging from ecology to economics,computer science and engineering.
These fields have produced well-founded and thoroughly characterized frameworks within which
many issues in decision making can be framed. Here, we will focus on framing issues identified in
psychiatric settings within a normative decision making framework.

Its second major strength comes from its relationship to neurobiology, and particularly those neuro-
modulatory systems which are powerfully affected by all major clinically effective pharmacothera-
pies in psychiatry. The understanding of these systems has benefited significantly from theoretical
accounts of optimal control such as reinforcement learning(Montague et al., 1996; Kapur and Rem-
ington, 1996; Smith et al., 1999; Yu and Dayan, 2005; Dayan and Yu, 2006). Such accounts may be
useful to identify in more specific terms the roles of the neuromodulators in psychiatry (Smith et al.,
2004; Williams and Dayan, 2005; Moutoussis et al., 2008; Dayan and Huys, 2008).
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Figure 1: The learned helplessness (LH) paradigm. Three sets of rats are used in a sequence of
two tasks. In the first task, rats are exposed to escapable or inescapable shocks. Shocks come on at
random times. The master rat is given escapable shocks: it can switch off the shock by performing
an action, usually turning a wheel mounted in front of it. Theyoked rat is exposed to precisely the
same shocks as the master rat, i.e its shocks are terminated when the master rat terminates the shock.
Thus its shocks are inescapable, there is nothing it can do itself to terminate them. A third set of rats
is not exposed to shocks. Then, all three sets of rats are exposed to a shuttlebox escape task. Shocks
again come on at random times, and rats have to shuttle to the other side of the box to terminate
the shock. Only yoked rats fail to acquire the escape response. Yoked rats generally fail to acquire
a wide variety of instrumental behaviours, either determined by reward or, as here, by punishment
contingencies.

This paper represents an initial attempt at validating thisapproach experimentally. We will frame
core notions of MDD in a reinforcement learning framework and use it to design behavioral decision
making experiments. More specifically, we will concentrateon two concepts central to current
thinking about MDD: anhedonia and learned helplessness (LH, Maier and Seligman 1976; Maier
and Watkins 2005). We formulate helplessness parametrically as prior beliefs on aspects of decision
trees, and anhedonia as the effective reward size. This allows us to use choice behavior to infer the
degree to which subjects’ behavioral choices are characterized by either of these. For validation,
we correlate the parameters inferred from subjects’ behavior with standard, questionnaire-based
measures of hopelessness and anhedonia, and finally use the inferred parameters alone to attempt to
recover the diagnostic classification.

1 Core concepts: helplessness and anhedonia

The basic LH paradigm is explained in figure 1. Its importanceis manifold: the effect of inescapable
shock on subsequent learning is sensitive to most classes ofclinically effective antidepressants; it
has arguably been a motivation framework for the development of the main talking therapies for
depression (cognitive behavioural therapy, Williams (1992), it has motivated the development of
further, yet more specific animal models (Willner, 1997), and it has been the basis of very specific
research into the cognitive basis of depression (Peterson et al., 1993).

Behavioral control is the central concept in LH: yoked and master rat do not differ in terms of the
amount of shock (stress) they have experienced, only in terms of the behavioural control over it. It
is not a standard notion in reinforcement learning, and there are several ways one could translate
the concept into RL terms. At a simple level, there is intuitively more behavioural control if, when
repeating one action, the same outcome occurs again and again, than if this were not true. Thus, at a
very first level, control might be related to the outcome entropy of actions (see Maier and Seligman
1976 for an early formulation). Of course, this is too simple. If all available actions deterministically
led to the same outcome, the agent has very little control. Finally, if one were able to achieve all
outcomes except for the one one cares about (in the rats’ caseswitching off or avoiding the shock),
we would again not say that there is much control (see Huys (2007); Huys and Dayan (2007) for a
more detailed discussion). Despite its obvious limitations, we will here concentrate on the simplest
notion for reasons of mathematical expediency.
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Figure 2: Effect ofγ on predictions,Q-values and exploration behaviour. Assume a slot machine
(blue) has been chosen five times, with possible rewards 1-5,and that reward 2 has been obtained
twice, and reward 4 three times (inset in left panel).Left : Predictive distribution for a prior with
negativeγ (low control) in light gray, and largeγ (extensive control) in dark gray. We see that, if
the agent believes he has much control (and outcome distributions have low entropy), the predictive
distribution puts all mass on the observations.Right: Assume now the agent gets up to 5 more pulls
(tree depth 1-5) between the blue slot machine and a new, orange slot machine. The orange slot
machine’s predictive distribution is flat as it has never been tried, and its expected value is therefore
3. The plot shows the difference between the values for the two slot machines. First consider the
agent only has one more pull to take. In this case, independently of the priors about control, the
agent will choose the blue machine, because it is just slightly better than average. Note though that
the difference is more pronounced if the agent has a high control prior. But things change if the agent
has two or more choices. Now, it is worth trying out the new machine if the agent has a high-control
prior. For in that case, if the new machine turns out to yield alarge reward on the first try, it is likely
to do so again for the second and subsequent times. Thus, the prior about control determines the
exploration bonus.

The second central concept in current conceptions of MDD is that of reward sensitivity. Anhedonia,
an inability to enjoy previously enjoyable things, is one oftwo symptoms necessary for the diagnosis
of depression (American Psychiatric Association, 1994). Anumber of tasks in the literature have
attempted to measure reward sensitivity behaviourally. While these generally concur in finding
decreased reward sensitivity in subjects with MDD, these results need further clarification. Some
studies show interactions between reward and punishment sensitivities with respect to MDD, but
important aspects of the tasks are not clearly understood. For instance, Henriques et al. (1994);
Henriques and Davidson (2000) show decreased resonsiveness of MDD subjects to rewards, but
equally show decreased resonsiveness of healthy subjects to punishments. Pizzagalli et al. (2005)
introduced an asymmetrically rewarded perceptual discrimination task and show that the rate of
change of the response bias is anticorrelated with subjects’ anhedonic symptoms. Exactly how
decreased reward responsivity can account for this is at pressent not clear.

Great care has to be taken to disentangle these two concepts.Anhedonia and helplessness both
provide good reasons for not taking an action: either because the reinforcements associated with the
action are insufficient (anhedonia), or because the outcomeis not judged a likely result of taking
some particular action (if actions are thought to have largeoutcome entropy).

2 A Bayesian formulation of control

We consider a scenario where subjects have no knowledge of the outcome distributions of actions,
but rather learn about them. This means that their prior beliefs about the outcome distributions are
not overwhelmed by the likelihood of observations, and may thus have measurable effects on their
action choices. In terms of RL, this means that agents do not know the decision tree of the problem
they face. Control is formulated as a prior distribution on the outcome distributions, and thereby as
a prior distribution on the decision trees.

The concentration parameterα of a Dirichlet process can very simply parametrise entropy,and,
if used as a prior, allow for very efficient updates of the predictive distributions of actions. Let
us assume we have actionsA which have as outcomes rewardsR, and keep countNt(r, a) =
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∑
k:k<t;ak=a δr,rk

of the number of times a particular rewardr ∈ R was observed for each action
a ∈ A, wheret is the number of times that action has been chosen,rt is the reward on thetth trial
andδ is the Kronecker delta. The predictive distribution for action a is then

P (r|Nt, a, α) =
α

α + Nt(a)
B(r) +

1

α + Nt(a)
Nt(r, a) (1)

Here, B(r) is the base distribution, which we assume is flat, andNt(a) =
∑

r Nt(r, a) is the
number of times actiona was chosen up to trialt. Thus, the first time an action is chosen, we draw
a sample fromB(r). Forα = 0, we then always draw that very same sample again. Forα = ∞, we
keep drawing from the same flat outcome distribution. Thus,α very simply determines the entropy
of the actions’ outcome distribution. To match parametric values onto control more intuitively, let
γ = − log(α) be the control parameter.

The action choice problem is now to choose actiona = argmaxa Q(a|N), where theQ values are
defined by the Bellman equation of our problem:

Qt(a|Nt, γ) =
∑

r

p(r|Nt, a, γ)[r + argmax
a′

Qt(a
′|Nt+1(r), γ)] (2)

whereNt+1(r) is the count including the (anticipated) rewardr. The effect of the parameterγ onQ
values is illustrated in Figure 2. One can now infer the maximum likelihood (ML) parameters of the
prior by writing the probability of the subject’s observed actions as a standard softmaxed version of
theQ values:

{γ̂, β̂}ML = argmax
γ,β

∏

t

p(at|Nt, γ, β) (3)

where p(at|Nt, γ, β) =
exp(βQt(a|Nt, γ))∑
a′ exp(βQt(a′|Nt, γ))

(4)

where we have introduced a second parameterβ, which is either the softmax inverse temperature,
or, alternatively and equivalently, the size of the rewards(the maximum ofR andβ are not both
inferable from action observations only).

Simulations of the inference revealed that the parametersγ andβ, our inferred reward sensitivity and
prior on control, were correlated. To alleviate this problem, subjects were additionally given a reward
sensitivity task which was interleaved with the control task (see below for the task descriptions).
The structure of the reward sensitivity task is such thatQ values are correctly defined by a Rescorla-
Wagner (RW) learning rule:

QRW
t (a) = (1 − ǫ)QRW

t−1 (a) + ǫrt (5)

whereQRW
t (a) is theQ value of actiona at choicet, ǫ is the learning rate, and actions probabilities

again defined via softmax with a parameterβ as in equation 4. Note, importantly, i) that this is
not dependent onγ, the prior belief about control and ii) that unlike equation2 above, this is a
’model-free’ algorithm that does not look ahead and thus does not take anticipated rewards into
account). Combining inference in the two tasks (sharingβ between them), allows us to use the
reward sensitivity task as a prior onβ for the control task and to eliminate the correlation.

2.1 Task and subjects

Control task: The effects illustrated in figure 2 are easily elicited in a simple behavioral task.
Subjects are told to imagine that they are in a large casino, and will be dropped randomly in each of
100 rooms. In each room, they will get to choose between slot machines. At first, they see only one
slot machine, which they have to choose. Next, they get to choose between two slot machines. A new
machine is presented whenever all machines on the screen have been tried. Thus, the exploratory
drive is always maintained with one unexplored slot machine. Subjects get 8 choices per room, and
thus get to try a maximum of 8 machines once in each room. Subjects are informed that outcomes
for each slot machine are between 0 and 9 points. Overall, subjects are thus always kept in the
dark about the true outcome distribution of any one slot machine. Thus, their prior beliefs become
relevant. For healthy control subjects, one room was chosenrandomly and the total number of points
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Figure 3: Repeat modulation. Bottom plots: Probability of choosing a slot machine again given that
it has just yielded a particular outcome. Control subjects are in gray and MDD subjects in red (all
individuals as dots, means± 1 std. err. as bars; red dots on the right of bars, gray dots on the left of
bars). Top plots: uncorrected p-values comparing the two groups for every individual outcome. Left
panel: after observing a particular outcome once, Right panel: after observing the same outcome
on a particular machine twice in a row. The p-values at the topindicate the ANOVA interaction of
outcome size with group. Thus, we see here that subjects withMDD are more likely to stick with
a bad machine, and more likely to move away from a good machine. The same result is observed
when fitting sigmoids to each subject and comparing the inferred parameters (data not shown).

earned in that room determined the payment (1 point = 1 US$, minimum 10US$, maximum 50US$).
MDD subjects were given the same instructions, but, for ethical reasons, could not be paid.

Reward sensitivity task: Subjects chose repeatedly (300 times) between two stacks ofcards with
probabilistic binary outcomes. The underlying probabilities of a reward changed as a (squashed)
Ornstein-Uhlenbeck process. This task was thus accuratelydescribed by a standard Rescorla-
Wagner (RW) rule (Daw et al., 2006).

Questionnaire measures:Finally, each subject filled out two questionnaires: the Beck Helplessness
Score (BHS), and the Beck Depression Inventory (BDI) which are standard questionnaire measures
of hopelessness and anhedonia respectively. We extracted the anhedonic subcomponent, BDIa, as
the sum of responses on questions 4, 12, 15 and 21 of the BDI.

Subjects: We recruited 17 healthy control subjects from the community. 15 subjects with MDD
were recruited as part of an ongoing treatment study, and asked to take the behavioural test while
waiting to see the psychiatrists. All subjects were given a full Structured Clinical Interview for DSM-
IV (First et al., 2002a,b). All MDD subjects met criteria fora current major depressive episode.
Three subjects had additionally a diagnosis of either PanicDisorder (2) or Bipolar Disorder II (1).
All the healthy control subjects had neither a present psychiatric disorder, nor a history thereof. All
procedures were approved by the New York State Institue of Psychiatry Institutional Review Board.
The subjects were matched for sex and educational level, butnot for age. We thus included age
in our model formulations to exclude its effects as a nuisance variable. The depressed sample was
older, but throughout, the effects of age correlatenegativelywith those of depression.

3 Results

3.1 Reward sensitivity

Preliminary analysis: Repeat modulation, a very simple proxy measure of choices, provides a first
glimpse at the effects of depression on the first task. Figure3 shows the probability with which
subjects chose a slot machine again after having received outcomes 0-9. As groups, MDD subjects
both avoid bad and exploit good machines less. Nearly half the subjects with MDD show very little
modulation with rewards. As a group, MDD subjects appear less sensitive to the reward structure in
the first task.
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the ML values and the red represent three times
that. Thus, the effect of the BHS on control is
captured byγ that of BDIa on reward sensitivity
is captured byβ as predicted.

Reward sensitivity: The main hypothesis with respect to reward sensitivity is that subjects’ empir-
ically observed reward sensitivityβ in equation 5 is inversely related to their expressed anhedonia,
BDIa, in the questionnaires. We can build this into the action choice model by parametrisingβ in the
QRW value (equation 5) above explicitly as a function of the questionnaire anhedonia scoreBDIa:

β(BDIa,AGE) = θβBDIa + cβAGE + ζβ

If the hypothesis is true and subjects with higher BDIa scores do indeed care less about rewards, we
should observe thatθβ < 0. Here, we included a regressor for theAGE as that was a confounding
variable in our subject sample. Furthermore, if it is true that anhedonia, as expressed by the ques-
tionnaire, relates to reward sensitivity specifically, we should be able to write a similar regression
for the learning rateǫ (from equation 5)

ǫ(BDIa,AGE) = θǫBDIa + cǫAGE + ζǫ

but find thatθǫ is not different from zero. Figure 4 shows the ML values for the parameters of
interest (emphasized in blue in the equations) and confirms that people who express higher levels
of anhedonia do indeed show less reward sensitivity, but do not differ in terms of learning rate. If
it were the case that subjects with higher BDIa score were just less attentive to the task, one might
also expect an effect of BDIa on learning rate.

3.2 Control

Validation: The control task is new, and we first need to ascertain that subjects were indeed sensitive
to main features of the task. We thus fit both a RW-learning rule (as in the previous section, but
adjusted for the varying number of available actions), and the full control model. Importantly, both
these models have two parameters, but only the full control model has a notion of outcome entropy,
and evaluations a tree. The chance probability of subjects’actions was 0.37, meaning that, on
average, there were just under three machines on the screen.The probability of the actions under
the RW-learning rule was better at 0.48, and that of the full control model 0.54. These differences
are highly significant as the total number of choices is 29600. Thus, we conclude that subjects were
indeed sensitive to the manipulation of outcome entropy, and that they did look ahead in a tree.

Prior belief about control: Applying the procedure from the previous task to the main task, we
write the main parameters of equations 2 and 4 as functions ofthe questionnaire measures and infer
linear parameters:

γ1(BDIa,BHS, age) = χγ1BHS + θγ1BDIa + cγ1AGE + ζγ1

γ2(BDIa,BHS, age) = χγ2BHS + θγ2BDIa + cγ2AGE + ζγ2

β(BDIa,BHS, age) = χβBHS + θβBDIa + cβAGE + ζβ

Importantly, because the BDIa scores and the BHS scores are correlated in our sample (they tend to
be large for the subjects with MDD), we include the cross-terms (θγ1, θγ2, χγ), as we are interested
in the specific effects of BDIa onβ, as before, and of BHS onγ.

6



2 4 6 8 10 12 14 16

−2

−1

0

1

2

3

reward sensitivity β

c
o
n
tr
o
l γ

83% correct
69% sensitivity
94% specificity
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We here infer and display two separate valuesγ1 andγ2. These correspond to the level of control
in the first and the second half of the experiment. In fact, to parallel the LH experiments better, the
slot machines in the first 50 rooms were actually very noisy (low trueγ), which means that subjects
were here exposed to low levels of control just like the yokedrats in the original experiment. In the
second half of the experiment on the other hand, slot machines tended to be quite reliable (high true
γ).

Figure 5 shows again the ML values for the parameters of interest (emphasized in blue in the equa-
tions). Again, we find that our parameter estimate are very significantly different from zero (> three
standard deviations).

The effect of the BHS score on the prior beliefs about controlγ is much stronger in the second half
than of the experiment in the first half, i.e. the effect of BHSon the prior belief about control is
particularly prominent when subjects are in a high-controlenvironment and have previously been
exposed to a low-control environment. This is an interesting parallel to the learned helplessness
experiments in animals.

3.3 Classification

Finally we combine the two tasks. We integrate out the learning rateǫ, which we had found not be
related to the questionnaire measures (c.f. figure 4), and use the distribution overβ from the first
task as a prior distribution onβ for the second task. We also put weak priors onγ and infer bothβ
andγ for the second task on a subject-by-subject basis. Figure 6 shows the posterior values forγ
andβ for MDD and healthy subjects and the ability of a linear classifier to classify them.

4 Discussion

In this paper, we have attempted to provide a specific formulation of core psychiatric concepts in
reinforcement learning terms, i.e. hopelessness as a priorbelief about controllability, and anhedonia
as reward sensitivity. We have briefly explained how we expect these formulations to have effect
in a behavioural situation, have presented a behavioral task explicitly designed to be sensitive to
our formulations, and shown that people’s verbal expression of hopelessness and anhedonia do have
specific behavioral impacts. Subjects who express anhedonia display insensitivity to rewards and
those expressing hopelessness behave as if they had prior beliefs that outcome distributions of ac-
tions (slot machines) are very broad. Finally, we have shownthat these purely behavioural measures
are also predictive of their psychiatric status, in that we were able to classify patients and healthy
controls purely on the basis of performance.

Several aspects of this work are novel. There have been previous attempts to map aspects of psy-
chiatric dysfunction onto specific parametrizations (Cohen et al., 1996; Smith et al., 2004; Williams
and Dayan, 2005; Moutoussis et al., 2008), but we believe that our work represents the first attempt
to a) apply it to MDD; b) make formal predictions about subject behavior c) present strong evi-
dence linking anhedonia specifically to reward insensitivity across two tasks d) combine tasks to
tease helplessness and anhedonia apart and e) to use the behavioral inferences for classification. The
latter point is particularly important, as it will determine any potential clinical significance (Veiel,
1997). In the future, rather than cross-validating with respect to say DSM-IV criteria, it may also be
important to validate measures such as ours in their own right in longitudinal studies.
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Several important caveats do remain. First, the populations are not fully matched for age. We in-
cluded age as an additional regressor and found all results to be robust. Secondly, only the healthy
subjects were remunerated. However, repeating the analyses presented using only the MDD subjects
yields the same results (data not shown). Thirdly, we have not yet fully mirrored the LH experiments.
We have so far only tested the transfer from a low-control environment to a high-control environ-
ment. To make statements like those in animallearnedhelplessness experiments, the transfer from
high-control to low-control environments will need to be examined, too. Fourth, the notion of con-
trol we have used is very simple, and more complex notions should certainly be tested (see Dayan
and Huys 2008). Fifth, and maybe most importantly, we have sofar only attempted to classify MDD
and healthy subjects, and can thus not yet make any statements about the specificity of these ef-
fects with respect to MDD. Finally, it will be important to replicate these results independently, and
possibly in a different modality. Nevertheless, we believethese results to be very encouraging.
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