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Strong constraints on the neural mechanisms underlying the
formation of place fields in the rodent hippocampus come from
the systematic changes in spatial activity patterns that are con-
sequent on systematic environmental manipulations. We de-
scribe an attractor network model of area CA3 in which local,
recurrent, excitatory, and inhibitory interactions generate appro-
priate place cell representations from location- and direction-
specific activity in the entorhinal cortex.

In the model, familiarity with the environment, as reflected by
activity in neuromodulatory systems, influences the efficacy and
plasticity of the recurrent and feedforward inputs to CA3. In
unfamiliar, novel, environments, mossy fiber inputs impose ac-
tivity patterns on CA3, and the recurrent collaterals and the
perforant path inputs are subject to graded Hebbian plasticity.

This sculpts CA3 attractors and associates them with activity
patterns in the entorhinal cortex. In familiar environments, place
fields are controlled by the way that perforant path inputs select
among the attractors.

Depending on the training experience provided, the model
generates place fields that are either directional or nondirectional
and whose changes when the environment undergoes simple
geometric transformations are in accordance with experimental
data. Representations of multiple environments can be stored
and recalled with little interference, and these have the appropri-
ate degrees of similarity in visually similar environments.
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The hippocampus is known to be involved in spatial learning and
memory in rodents. Some of the most convincing evidence for this
is the presence of place cells in areas CA3 and CA1 of the
hippocampus (O’Keefe and Dostrovsky, 1971; O’Keefe, 1976) and
of many other types of spatially selective cells in neighboring areas
(Quirk et al., 1992; Jung and McNaughton, 1993). Principal neu-
rons in CA3 and CA1 are active only when the animal is located in
a well defined local region of the environment (a place field)
(Muller et al., 1987) and collectively provide a population code for
spatial position (Wilson and McNaughton, 1993). The question we
address is how this comes to be in a way that is consistent with the
evidence for the involvement of the hippocampus in more general
forms of memory.

A key anatomical feature of area CA3 is that its pyramidal cells
receive the majority of their inputs from other CA3 pyramidal cells
(Amaral and Witter, 1989; Amaral et al., 1990). The resulting
recurrent network has been extensively explored as a plastic attrac-
tor model of the way that the hippocampus acts as a general
memory (Marr, 1971; McNaughton and Morris, 1987; Hasselmo et
al., 1996; Levy, 1996; Rolls, 1996) but has been widely ignored by
models that are intended to account for various properties of place
cells (Zipser, 1985; Sharp, 1991; Touretzky and Redish, 1996;
Burgess et al., 1997) (but see Battaglia and Treves, 1998).

The model of Samsonovich and McNaughton (1997) was the first
to explore the consequences of the CA3 attractor network for the
place cell representation. Their model assumes the existence of a
collection of independent continuous sets of attractors realized by
the CA3 recurrent network and successfully accounts for some of

the basic experimental observations about place cells. However, in
a model with fixed, independent sets of attractors, it is hard to
explain the recent experimental findings by Skaggs and McNaugh-
ton (1998), who found partially overlapping place cell representa-
tions in two distinct but similar-looking parts of an apparatus. Such
models generally predict either identical or completely different
firing patterns in this situation. In addition, Samsonovich and
McNaughton’s (1997) model does not address the question as to
how the strengths of the CA3 recurrent connections, which are
essential for the existence of appropriate attractors, become estab-
lished. As is critical for models in which the hippocampus acts as a
memory, there is substantial evidence for synaptic plasticity in most
major hippocampal pathways, including those providing feedfor-
ward inputs to area CA3 (Zalutsky and Nicoll, 1990; Breindl et al.,
1994) and the CA3 recurrent collateral connections (Zalutsky and
Nicoll, 1990; Debanne et al., 1998). These activity-dependent syn-
aptic changes provide the obvious means for setting up the appro-
priate connection strengths and, in conjunction with the attractor
structure, thereby allow us to relate a major aspect of spatial
processing to a major aspect of memory processing.

Brunel and Trullier (1998) and we (Káli and Dayan, 1998)
independently implemented models that rely on modifiable recur-
rent connections in CA3 to explain the differences in the direction-
ality of place cells in different kinds of environment. However, the
strongest challenge for models, and particularly models based on
attractor networks, comes from data on the behavior of place cells
in multiple environments that are similar or are related by simple
geometric manipulations. In this paper, we present an attractor
model with appropriate behavior in these cases.

RESULTS

Place field formation in simple environments
Our model is grounded in two assumptions. The first is that
observed place cell activity patterns reflect the stable states of the
CA3 attractor network, a network whose dynamics are governed by
its intrinsic recurrent excitatory connections supplemented by in-
hibitory feedback (Fig. 1). Inputs to CA3, arriving via learned
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feedforward connections from entorhinal cortex (EC), are used to
select among the stored attractors. We use experimental data, as
well as computational considerations, to propose some general
constraints on how the EC spatial representation may depend on
sensory features of the environment and also suggest a plausible
functional form for this dependence in the simple case that all the
information about location that is directly available comes from the
walls of the experimental apparatus.

The second basic assumption is that the network establishes new
attractors to represent novel situations. This involves an orthogo-
nalization process that is assumed to take place in the dentate
gyrus (DG), as well as on-line modulation of synaptic plasticity and
the relative efficacies of the different types of connections, con-
trolled by familiarity with the environment, possibly via neuro-
modulatory signals from septal nuclei.

In this section, we provide a detailed description of the main
components of our model, including the neural architecture (as
shown in Fig. 1) and dynamics, as well as the input representation.
We then demonstrate the basic properties of the model by showing
how place fields are generated in the simple case of a single
environment surrounded by walls, using an idealized set of weights.
In the next section, we tackle the issues related to learning, and
introduce a familiarity-based on-line learning process for establish-
ing an appropriate weight structure. The rest of the paper is
devoted to modeling a set of more complex experimental para-

digms. The values of the parameters used in the simulations are
summarized in Table 1.

CA3 neural architecture and dynamics
The main aspect of hippocampal circuitry we actually implement is
the CA3 recurrent network (Fig. 1). The model CA3 contains a
collection of 1200 pyramidal cells, each connected to all the others
through modifiable weights. This high degree of connectivity mim-
ics the extensive recurrent collateral connections of CA3 pyramidal
neurons (Ishizuka et al., 1990; Li et al., 1994). Owing to the
relatively small number of neurons in the model, the number of
connections per cell is still much lower than in reality, although the
degree of connectivity is higher. This does not pose a problem,
however, as long as the cells a particular neuron connects to can be
considered from a functional point of view as a random sample, the
number of connections per neuron is high enough, and any one
connection is weak enough. In this case, neural responses are
determined by averaged population effects, and the actual number
of connections only enters the calculations as a constant scaling
factor for the individual weights.

Local feedback and feedforward inhibition are thought to play
an important and complex role in neural dynamics in CA3. Inhib-
itory interneurons are spatially much less selective than pyramidal
neurons, but their activity during locomotion changes periodically
at the theta frequency. We ignore this temporal variation, as well as
the diversity of interneurons and patterns of connectivity, and
include in the model a single global inhibitory neuron, which
fosters competition between stored patterns and keeps global ac-
tivity levels approximately constant. This cell receives input from
all the excitatory neurons and provides inhibitory feedback to each
that is proportional to the product of the firing rate of the inhibi-
tory neuron and the depolarization of its postsynaptic target. This
nonlinear form of inhibition was chosen because our simulations
indicated that, compared with more conventional subtractive inhi-
bition, it leads to improved robustness in the network with respect
to variations in weight magnitude (for details on networks with
shunting inhibition, see Grossberg, 1988). It is also consistent with
the observed effect of GABAA receptor activation. We adapt the
equations introduced by Wilson and Cowan (1972) to model the

Figure 1. Model architecture. The inputs to the network are the activities
of neurons in entorhinal cortex, which are determined by sensory features
in the environment. This representation is then transformed by feedfor-
ward pathways (the direct perforant path connections to CA3 and the
pathway through the dentate gyrus) and recurrent processing in area CA3,
which involves lateral connections between CA3 pyramidal cells ( filled
circles), as well as their connections with an inhibitory neuron (open circle).
The solid lines indicate neuronal connections that are modeled explicitly,
and the thick lines (the CA3 recurrent connections and the perforant path
inputs to CA3) the ones that are modifiable. Each type of connection is
all-to-all in the model. All inputs to CA3 pyramidal cells are gated by
neuromodulatory signals (dotted lines) from septal nuclei, whose activity
depends on familiarity with the current environment.

Table 1. Model parameters

Number of CA3 place cells N 1200
EC tuning amplitude b 100
EC spatial tuning width sEC 0.4
EC directional sharpness rEC 0.5
MF spatial tuning width sMF 0.2
MF directional sharpness rMF 1.5
Excitatory time constant t 100
Inhibitory time constant t9 0
Inhibitory feedback weight h 3
Pyramidal-to-inhibitory weight w 0.005
Excitatory gain b 1
Excitatory threshold m 80
Inhibitory gain g 1
Inhibitory threshold n 12
Running speed V 0.3
Spatial spread of familiarity s 0.075
Directional spread of familiarity r 3
Novelty decay rate a 250

The table displays the values of model parameters used in the simulations. sMF, sEC,
and s are in units such that the shorter side of the rectangular environment used in
most simulations is of unit length. t and t9 are given in time steps used during
simulations of recall, and all other quantities are in their natural units. Note that,
because the parameters only appear in certain combinations in the equations, some
groups of parameters can be changed together appropriately without affecting the
behavior of the model.
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dynamics of the CA3 neural population. The following set of
equations describes how the membrane potential of CA3 cells in
our model changes over time:

tu̇i 5 2 ui 1 O
j

Ji j gu~uj! 2 hgv~v!ui 1 Ii
PP 1 Ii

M F

t9v̇ 5 2 v 1 wO
j

gu~uj!, (1)

where ui is the membrane potential of the ith pyramidal cell, v is the
membrane potential of the global inhibitory cell (all relative to
their resting potentials), t and t9 are the membrane time constants
for pyramidal neurons and the inhibitory cell, respectively, Jij is the
strength of the connection from neuron j to neuron i, h is the
efficacy of inhibition, w represents the strength of the excitatory
connection from any one pyramidal cell onto the inhibitory cell,
and Ii

PP and Ii
MF are the inputs to cell i through the perforant path

and the mossy fibers (MF), respectively. gu(u) 5 b [u 2 m]1 is the
threshold linear activation function for the pyramidal cells, where
[. . .]1 makes all negative arguments zero but leaves positive num-
bers unaffected, m stands for the threshold, and b is the slope of the
activation function above the threshold. Similarly, gv(v) 5 g[v 2 n]1
for the inhibitory neuron. As will be described in detail later, some
of the terms in these equations are assumed to be influenced by
neuromodulatory control and therefore may be absent in certain
phases of processing.

The value of the inhibitory time constant t9 has no effect on the
location of the fixed points of the network, although it can change
their stability. In the simulations that are described later, we set
t9 5 0, so that v is always equal to wSj gu(uj). This simplifies the
theoretical treatment of the model and makes the simulations
numerically more stable. We conducted simulations to verify that,
within a wide range of the parameters, this manipulation does not
affect the qualitative dynamical behavior of the model and indeed
leads to the same stable patterns of activity. It is worth noting that,
in this general class of models (although in a different parameter
regimen), setting t9 . 0 can give rise to oscillations (which, of
course, are consistently observed in the hippocampus during active
behavior). Even in an oscillatory regimen, however, the mean
activities of the units can closely resemble the activities of the units
at the fixed points found when t9 5 0 (Li and Dayan, 1999).

Input representation
Instead of building a detailed model of rodent sensory processing,
we consider as inputs to our model the firing rates of pyramidal
neurons in superficial layers of entorhinal cortex, which provide
most cortical input to the hippocampal formation. Unfortunately,
there is relatively little direct experimental evidence about the
nature of spatial representations in EC and especially about how
these depend on details of the environment. However, there is
something of a consensus among modelers (Burgess et al., 1997),
which we generally follow. Although entorhinal neurons are found
to be spatially selective (Barnes et al., 1990; Quirk et al., 1992), they
appear to be much noisier and more broadly tuned than place cells
in the hippocampus. Quirk et al. (1992) also found them to be more
“sensory bound” than hippocampal cells in that their firing fields
transform in a smooth manner after substantial changes in the
shape of the environment. This is very unlike the complete remap-
ping seen in place cells under similar circumstances (Muller and
Kubie, 1987). The anatomy of the inputs to EC is rather better
understood (Burwell and Amaral, 1998). Many of the inputs to EC
come from higher order association areas, which contain complex
representations of the sensory information available to the animal.
In particular, cells may convey information about both the identity
of a perceived object and its location with respect to the animal, or,
to put it differently, about the location of the rat with respect to
particular objects in the world. Such information about multiple
objects may be combined in EC to form a more reliable view-based
representation of the animal’s location in space. Spatial informa-

tion derived from path integration may also be available and may
be combined with visual information to determine EC activities.

In the model, each EC cell is assumed to respond to a subset of
the available cues. Based on the suggestion that EC is involved in
conjunctive coding (Myers et al., 1995), each EC cell in our model
combines in a conjunctive manner the sources of spatial informa-
tion to which it is sensitive. Because the animal’s sensory experi-
ence depends on both its position and the direction it faces, we
assume (in the absence of data either way) that the activity of
entorhinal neurons is head direction-, as well as location-, depen-
dent. A model EC cell fires maximally when all the cues it is
sensitive to are in the positions corresponding to the preferred
location and orientation of the cell, and activity diminishes as some
or all of the sources of information signal a different location or
orientation. We achieve this by multiplying together gaussian tun-
ing curves, each of which is tied to the location of a different cue
and peaks at the preferred location of the cell. We assume that
these individual tuning curves can have different variances.

In cases in which the environment has walls, these were found to
be important sources of spatial information (O’Keefe and Burgess,
1996). For simplicity, we assume that the activities of EC neurons
are completely determined by the rat’s position and heading rela-
tive to the walls. We also restrict ourselves to rectangular environ-
ments and assume that all cells are sensitive to the position of all
four walls [whose allocentric bearings will be referred to as “north”
(N), “west” (W), “south” (S), and “east” (E)]. The only difference
in the cue selectivity of EC cells in our model is that they are
assumed to be sensitive to spatial information derived from path
integration to different degrees. However, because this last prop-
erty is only expected to be manifested under special circumstances,
we actually ignore this variation in most of what follows and only
consider it when we describe the results of our modeling of the
experiment of Skaggs and McNaughton (1998). We assume that the
tuning curve components tied to the walls of a rectangular appa-
ratus are ridge-like functions with gaussian dependence on the
distance from the wall. The variances of these tuning functions may
also depend on the location and heading of the animal; in partic-
ular, we assume that the variance is lower if the animal is closer to,
or facing away from, the wall. The latter dependence is based on
the influence of a path integration input whose precision is greater
when the animal is coming from somewhere nearer the wall and
should have been able to maintain its location accurately using path
integration.

The total activation of a model EC neuron as a function of the
rat’s location and heading is described by the following expression:

zk 5 bzk
Nzk

Wzk
Szk

EerEC cos~f 2 fk
EC! , (2)

where k indexes the neuron, b is a constant to set the scale, and zk
a

is the component of the tuning function of the neuron tied to wall
a. The last term describes the dependence on head direction (which
is assumed to be independent from the spatial components) as a
circular gaussian function (with sharpness parameter rEC) of the
difference between the current head direction f and the preferred
heading of the cell fk

EC. Equation 2 bears some resemblance to the
spatial tuning function used by Touretzky and Redish (1996), in
that it also takes the form of a product of terms corresponding to
different sources of information. However, they use this tuning
function to directly model the spatial response properties of hip-
pocampal place cells, and the parameters change with experience,
whereas our EC representation is always the same for a given
location and head direction in any particular environment.

The components of the tuning function tied to particular walls
have the following functional form:

zk
a 5 e

2
~da2dk

EC, a!2

2sEC, a
2

, (3)

where da is the actual distance from wall a (a can be N, W, S, or E),
dk

EC,a is the distance from wall a of the preferred location of the
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neuron, and sEC,a is the width of this component, which depends
on the current position and heading of the animal according to:

sEC,a 5 sEC~1 1 0.35da
2!~1 1 0.2 cos~f 2 fa!!, (4)

where fa is the direction of wall a (0, p/2, p, and 2p/2 for N, E, S,
and W, respectively), and sEC is a constant. Equation 3 and the
positional-dependence in Equation 4 are similar to the expressions
describing the spatial tuning of “sensory” cells in the model of
Burgess et al. (1997), and “boundary vector cells” of Hartley et al.
(2000). The numerical values of the parameters in the above
equations have been chosen suitably for environments of approxi-
mately the size used in most relevant experiments.

Figure 2a shows two examples of the spatial and directional
dependence of input components in EC, whereas Figure 2, b and c,
displays the resulting net spatial and directional tuning for a sample
EC neuron.

Feedforward connections
There are two separate neural pathways from EC to area CA3 (Fig.
1), which have quite different characteristics and likely serve dif-
ferent computational purposes (McNaughton and Morris, 1987;
Treves and Rolls, 1992). One of these pathways is via the perforant
path projection to the DG, which in turn provides a set of feedfor-
ward inputs to CA3 through the mossy fibers. Dentate granule cells
are spatially selective, and, at least in linearly restricted environ-
ments, they have also been found to be sensitive to direction (Jung
and McNaughton, 1993). Unlike EC neurons, dentate granule cells
have sharper spatial tuning than CA3 place cells, and we assume
that they are also sharply tuned for head direction. Episodic mem-
ory theories of hippocampal function suggest that an important
function of the DG is that of orthogonalization, i.e., reducing the
similarity between input patterns to facilitate their discrimination
(O’Reilly and McClelland, 1994; Treves and Rolls, 1994), and, in
keeping with the theme of linking memorial and spatial processing,
we assume it plays a similar role for spatially-based inputs. One way
the DG is thought to decrease pattern overlap is to implement a
sparser representation (perhaps through direct competitive inter-

actions), and indeed, the proportion of active cells in the DG at any
given time is reported to be only ;0.5% (Jung and McNaughton,
1993; B. L. McNaughton, cited by O’Reilly and McClelland, 1994).

A typical CA3 pyramidal cell receives on the order of 50 MF
inputs, which are thought to be relatively powerful (Yamamoto,
1982; McNaughton and Morris, 1987). Combined with the sparse-
ness of the DG representation, this means that a CA3 neuron is
very unlikely to have more than one active mossy fiber input at any
given time. In circumstances under which CA3 cells are driven
primarily by these inputs, place cells essentially inherit the tuning
characteristics of their afferent granule cells. We assume, for sim-
plicity, that each CA3 cell has at most one active MF input in any
given environment. This defines the base preferred location and
direction for that neuron, which, of course, may then be altered by
the recurrent connections in CA3. Multiple active MF inputs may
explain why some place cells have multiple place fields even in
simple environments (Muller et al., 1987); however, we ignore this
complexity for the purpose of this paper. In addition, to make
better use of the limited number of cells we can implement in our
numerical simulations, all our model CA3 pyramidal cells are
activated by MF inputs somewhere in any given environment,
rather than the 30% or so found in practice (Wilson and McNaugh-
ton, 1993).

In its current form, the model considers both the mossy fiber
connections and the perforant path connections from EC to DG as
being fixed. Because our goal is to model activity in CA3, and that
is completely determined by its inputs and internal dynamics, we
can therefore skip modeling the dentate gyrus explicitly and pro-
ceed by characterizing how the MF input to CA3 (which results
from processing in DG) depends on the characteristics of the
environment. We assume that, for any single environment, the MF
input to CA3 place cells has a similar functional form to the tuning
function of EC cells described in the previous section, but both the
spatial and the directional tuning is assumed to be sharper as a
result of sparsification and orthogonalization in DG (Fig. 2d–f).
This can be achieved by replacing the spatial spread parameter sEC
with a smaller value, sMF, and by replacing rEC, characterizing the

Figure 2. Input components and net spatial and directional tuning. a, The dependence of a single (essentially one-dimensional) spatial component of the
tuning function of cells in EC on the distance of the rat from the wall to which that component is tied. Two examples are shown, with preferred distances
of 0.5 and 1.5, respectively; for each preferred distance, the solid curve is for the case when the rat is facing the wall, and the dashed curve is for the opposite
head direction. Note how the width of the curve changes with preferred distance and actual head direction. b, The net two-dimensional tuning of a sample
EC neuron in a rectangular box of dimensions 2 3 1; the preferred location of the cell is (0.5, 0.4); the current heading of the rat at each location is the
same as the preferred head direction of the cell. c, This polar plot shows the activity of an EC neuron as a function of the difference between its preferred
direction and the actual heading of the rat. d–f, Plots similar to a–c, for the MF inputs to CA3; note that both the spatial and the directional tuning is much
sharper here because of the orthogonalization property of the dentate gyrus. For all contour plots in this article, darker shading indicates higher activity,
and the contour lines are at 20, 40, 60, and 80% of the maximum activity of the given cell or set of cells. Activities are normalized and the absolute values
are omitted in most figures because these could be set arbitrarily in the model by changing parameters essentially unconstrained by experimental data.

7466 J. Neurosci., October 1, 2000, 20(19):7463–7477 Káli and Dayan • Recurrent Model of CA3 Place Fields



sharpness of directional tuning, with a larger rMF in Equations 2
and 4. The proposed orthogonalization property of the dentate
gyrus becomes more pronounced when we look at multiple envi-
ronments. We assume that, except when two environments are
quite similar, the MF inputs to CA3 in two different environments
are completely unrelated. We will return to the case of exception-
ally similar environments in a later section.

The perforant pathway (PP) also provides a direct connection
between EC and CA3 and has a large degree of divergence and
convergence. Thus, CA3 cells can sample the EC representation
very effectively. In the model, we implement this property using
all-to-all connections between EC and CA3 neurons, although this
is obviously a simplification. This pathway is also known to be
capable of long-term synaptic plasticity (Breindl et al., 1994). In the
model, the strengths of these connections (denoted by Wik for the
connection from entorhinal cell k to CA3 cell i) are initially set to
zero, and they are assumed to be modifiable by associative Hebbian
learning.

Network dynamics
Although we will shortly be interested in the spatial representation
that results from on-line learning during exploration, we first test
our model using an idealized set of connection strengths to gain
some insight into its dynamical behavior. For this, we just assume
that the weights result from an idealized form of Hebbian associa-
tive learning, and thus reflect the correlations between connected
neurons. It has been noted (Muller et al., 1991; Shen and Mc-
Naughton, 1996) that such an associative learning process for
spatially selective neurons can lead to connections whose strength
is a function of the distance between the preferred locations of the
presynaptic and postsynaptic neurons, exactly the sort of connec-
tions that can support a place field-like attractor structure in CA3
(Samsonovich and McNaughton, 1997). Here we assume that the
CA3 recurrent weights are determined by the correlations between
the mossy fiber inputs to the cells, and the perforant path weights
between EC and CA3 are given by the correlations between EC
activities and MF inputs to CA3. These correlations are calculated
as spatial averages (which assumes spatially homogeneous explora-
tion) over all locations and head directions in the part of the
environment in which the postsynaptic cell is active, resulting in
the following expressions for the recurrent weights Jij and perforant
path weights Wik:

Jij 5 k

EEE
Ii

M F.0

Ii
M F Ij

M F dx d y df

EEE
Ii

M F.0

dx d y df

and

Wik 5 k

EEE
Ii

M F.0

Ii
M F zk dx d y df

EEE
Ii

M F.0

dx d y df

(5)

where Ii
MF is the mossy fiber input to neuron i in CA3, zk is the

activity of neuron k in entorhinal cortex, and k sets the learning rate.
Using these expressions, we can calculate the weights resulting

from even exposure to a rectangular box (with one side twice as
long as the other). Then, letting Ii

PP 5 ¥kWikzk and Ii
MF 5 0, where

zk is the EC activity pattern corresponding to a particular location
and heading in the environment, we simulate the neural dynamics
described by the full Equations 1 for a fixed number of iterations
(using Euler’s method). We find that, within a broad range of

model parameters, the network always settles into a stable state by
the end of the iterations. Furthermore, for most initial CA3 activity
patterns, the same final state is reached for given feedforward
inputs. This shows that these states are actually attractors of the
neural dynamics and that they have suitably large basins of attrac-
tion. The final state of the network was determined for different
input patterns in EC, representing different positions and head
directions of the animal over a grid that covered the whole envi-
ronment. The firing rate map for a given cell is defined as the final
activity of that cell as a function of the actual location and head
direction of the animal.

Throughout the paper, two different kinds of plots are used to
display the activities of neurons (and their inputs). Quantities
characterizing single cells as a function of actual position and
heading (such as firing rate maps) are shown in a “single-cell plot,”
which is the kind of plot traditionally used to describe the spatial
activity patterns of place cells. A single-cell plot may contain
multiple subplots to represent different headings at any given
location. The second kind of plot we use is the “population plot,”
which describes the behavior of all the cells with the actual position
and heading of the animal kept fixed. In the population plot, we
arrange cells with a given preferred direction on an imaginary
plane according to their preferred locations (for CA3 place cells,
this is defined as the preferred location of their active mossy fiber
input). A complete population plot would include eight subplots,
one for each population of cells with a different preferred direction,
but we typically show only one, two, or four of these, depending on
the degree of variation with preferred direction in that particular
case. Population plots in this paper are marked with P in the bottom
right corner for easy identification.

The results of the simulations with the “ideal” weights are
summarized in the population plots of Figure 3, which display
activities in EC, net perforant path inputs, and final activities in
CA3 for all cells with two particular (opposite) preferred head
directions, when the model rat is at a given location, facing in a
particular direction. Figure 3 shows that the final states of the
model CA3 network resemble thresholded two-dimensional gaus-
sian bumps of activity in the population plot. This type of solution
can emerge spontaneously from the network dynamics even in the
absence of external inputs, in which case the location of the bump
is random, i.e., determined by the initial neural activities, as well as
various other factors, including the distribution of preferred loca-
tions and directions of the neurons. Although the network only has
a finite number of point attractors (possible stable activity patterns)
in the absence of input, when there is even a small perforant path
input to CA3, the location of the bump is determined by this input
so that the activity profile provides the best possible fit to the input.
The position of the peak varies continuously, and the shape of the
activity profile is essentially constant. This holds in our model if the
net feedforward input to the most active CA3 neurons is between
;1 and 30% of the summed input they receive from other CA3
cells; in most simulations, we set the relative efficacies of perforant
path and recurrent synapses so that this ratio is ;5%.

Figure 3a illustrates how inputs are used by the network to
effectively select one of the possible final states. First of all, the EC
activity pattern (which is determined by sensory features in the
environment as already described) gives rise to a pattern of per-
forant path inputs to CA3, which is centered on neurons with
preferred locations close to the actual position of the rat, although
the profile is even broader than the activity profile in EC. This is
the consequence of plasticity of the perforant path in the learning
phase, which establishes an association between EC cells and CA3
neurons with similar preferred locations and head directions.
Based on the learned weights, the PP projection also reduces
directionality substantially, so that inputs to CA3 already depend
less on the preferred head direction of the cell than neuronal
activities in EC. The shape of the final activity profile across place
cells is, however, essentially determined by the CA3 internal dy-
namics, resulting in a spatial activity profile that is much more
sharply peaked than the feedforward inputs. Furthermore, the final
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activities of the cells are essentially independent of their preferred
head direction. The resulting model place fields (i.e., single-cell
activity maps) possess many of the characteristics of real place cell
firing patterns recorded in open environments. As we will see later
(see Fig. 6a), they are unimodal, approximately gaussian with
circular symmetry, and essentially nondirectional.

Figure 3 reveals how nondirectional place fields result despite
the directional input representation in EC. The two parts of the
figure compare the activities of EC neurons, the PP inputs to CA3
place cells, and the final activities of place cells as the model rat
faces in two opposite directions at the same location. Because of
the properties of the PP projection discussed above, place cells
receive relatively similar inputs in the two cases. More importantly,
however, this leads to the emergence of the same, nondirectional,
attractor in CA3, making the place fields independent of head
direction. It should be emphasized that, given the dominance of
internal connections in determining the final state of the system,
even PP inputs as similar as those in Figure 3, a and b, could easily
lead to fundamentally different patterns of final activity if the two
input patterns biased the system toward different attractors. Indeed,
these same two EC input patterns do actually give rise to two very
dissimilar final patterns if the weights are set up during a directed
search task like the one described later (instead of the omnidirec-
tional random exploration assumed here).

On-line learning of attractors
So far, we have assumed that weights proportional to the spatially
averaged correlations between cells had been established by an
appropriate learning procedure before spatial activity patterns are
measured. We have not yet shown that a neurobiologically standard
Hebbian learning rule, applied to the activity patterns occurring in
the network during random exploration of an environment, is
capable of establishing this kind of weight structure, within the
time window during which place fields are seen to develop in
experiments (on the order of 5 min) (Wilson and McNaughton,
1993).

A general property of attractor networks is that, to store more
than a single pattern, the recurrent connections need to be sup-

pressed while new patterns are learned. Experimental data and
theoretical considerations have been adduced to justify models of
CA3 in which the relative strengths and adaptability of mossy fiber
input and perforant path and recurrent collateral input is different
between initial learning about an environment and recall of infor-
mation within a familiar environment. We adopt the suggestion of
Hasselmo et al. (1996) that is based on experimental data on the
effects of septal (cholinergic and GABAB receptor-mediated) mod-
ulation in the hippocampus.

In particular, substances that activate muscarinic cholinergic
receptors or GABAB receptors in the hippocampus were found to
selectively suppress excitatory recurrent synapses in area CA3
compared with feedforward excitatory connections (Ault and Na-
dler, 1982; Hasselmo et al., 1995). In addition, cholinergic input to
the hippocampus has been shown to enhance long-term synaptic
plasticity (Burgard and Sarvey, 1990; Huerta and Lisman, 1993)
and leads to the suppression of inhibition (Pitler and Alger, 1992)
and the direct depolarization of hippocampal pyramidal neurons
(Benardo and Prince, 1982). These effects of cholinergic modula-
tion create exactly the right circumstances for the learning of new
information in the hippocampus while minimizing interference
from previously stored information. This is convincingly illustrated
by the associative memory model of Hasselmo et al. (1995) in which
several moderately overlapping input patterns can be stored and
recalled successfully using feedback cholinergic modulation of net-
work parameters.

It turns out that attractor networks with continuous attractors,
such as ours, face a more stringent requirement for learning be-
cause of potential bias in the sampling of a continuous set of input
patterns, and we therefore consider a slightly different model of
neuromodulatory control. In the resulting on-line learning proce-
dure, plasticity is gated by familiarity, and we show that it leads to
weights similar to those in the ideal model described above and, thus,
a place cell representation similar to ones observed experimentally.

In our model, the hippocampal network has two modes of
operation. When the rat first encounters a new environment, learn-
ing in both the PP inputs to CA3 and the CA3 recurrent synapses

Figure 3. The formation of nondirectional place
fields. a, b, The bottom plot in each case shows the
actual position (indicated by the cross) and head
direction (indicated by the arrow) of the rat in the
environment. The other plots are population
plots (as defined under Results, Network dynam-
ics, and marked with P), and they show, at the
location and direction in the bottom plot, the
activities of cells in EC, the net PP inputs to CA3
neurons (Ii

PP), and the final activities of the same
place cells (marked CA3), as a function of the
preferred location of the neuron; the two col-
umns in both a and b are for cells with preferred
head direction indicated by the arrow above each
column.
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is enabled, synaptic transmission through the recurrent connections
is suppressed, inhibition in CA3 is reduced, and inputs through the
mossy fiber connections dominate. This state of the network is
called “learning mode.” On the other hand, when the rat is in a
highly familiar environment, no learning takes place in any of the
connections, the MF inputs are relatively less effective than the PP
connections and CA3 recurrent synapses, and the intrinsic dynam-
ics of the recurrent network dominates activity in CA3, leading to
previously established attractors. This is called “recall mode.”

Initial learning in a novel environment is essentially input-driven
because of the suppression of recurrent activity, but this phase is
responsible for setting up the attractors and feedforward associa-
tive projections that determine the patterns of place cell activity
seen subsequently. Note that synapses are modified even when
their efficacy is reduced to zero by neuromodulation, i.e., when the
postsynaptic effect of perforant path and recurrent connections is
negligible in the learning phase.

Perforant path and recurrent weights are acquired during
the learning phase. The neural dynamics described by Equa-
tions 1 is simplified substantially in this phase by making the
recurrent connections ineffective and neglecting inhibition, leaving
tu̇i 5 2ui 1 Ii

MF. Assuming that the MF inputs change more slowly
than the membrane time constant, the membrane potential of CA3
place cells during the learning phase is given by ui 5 Ii

MF. Appli-
cation of a Hebbian learning rule (with the addition of weight decay
to prevent weights from growing indefinitely) to these activities
leads to weights that are proportional to the temporally averaged
correlations between presynaptic and postsynaptic cells. The only
difference between these weights and the ideal ones used in earlier
simulations is that, whereas the ideal weights were obtained by
averaging the product of presynaptic and postsynaptic activities
across spatial locations and headings, this on-line method calcu-
lates averages across time. The two processes become exactly
equivalent if we assume that, during initial exploration in the
environment, the rat receives even exposure to all combinations of
location and head direction allowed by the apparatus (and the
movement pattern followed).

However, there are two potential differences between uniform
spatial averaging and temporal averaging over random exploration,
the first coming from any systematic spatial bias (which depends on
the exploration strategy), and the second coming from random
deviations from this ideal, if biased, exploration. Figure 4a shows a
sample path from a simulation of a common exploration paradigm
(which is essentially equivalent to experiment 1 by Markus et al.,
1995). This shows the first 5 min of exploration in a new environ-
ment while a rat chases food pellets thrown into random locations
in a rectangular apparatus. Once it has retrieved one pellet, the
next one is thrown in at random. We assume that the rat runs at a
constant speed V, and it always heads essentially in the direction of
the next food pellet, with random fluctuations in direction. The
exact movement laws and parameters were taken from the model of
Brunel and Trullier (1998).

Even at a first glance, this exploration strategy clearly results in
an inhomogeneous sampling of the environment. We quantify
variations in exposure to different locations and directions in the
apparatus by convolving the sample path with a gaussian, yielding
the function:

g~x*, f*, t! 5 E
0

t

e2
~x~t9!2x*!2

2s 2 1r cos~f~t9!2f*!dt9 (6)

where t is time since the beginning of exploration, x(t) and f(t) are
the rat’s position and heading at time t, s is the width of the spatial
gaussian, and r is the sharpness of the circular gaussian applied to
differences in direction. This measures sampling density as a func-
tion of position and direction, and an example (after 5 min of
exploration, averaged over all directions) is shown in Figure 4b.
There is clear deviation, both random and systematic, from a
uniform sampling density. The random aspect of the deviation

turns out to be benign, because it does not destroy the overall
structure of the attractors. However, the fact that, on average,
the animal spends several times as much time at a location near
the center of the apparatus than at a location near the edges, causes
the naive on-line Hebbian learning procedure to produce a non-
uniform weight structure, resulting in a very poor place cell repre-
sentation. An example of this is given in Figure 5a; the network
possesses just two or three distinct attractors, and only neurons that
are active in one of these attractors ever become active in this
environment. This effect cannot be mitigated by increasing explo-
ration time and is also persistent with respect to the specifics of the
movement laws. In particular, although rats have a tendency to stay
close to the walls of the apparatus (Muller et al., 1987), this is
unlikely to precisely counterbalance the effect described above and
result in spatially and directionally unbiased exploration.

Systematic differences in sampling density have a profound effect
on the resulting attractor structure because of the continuous
nature of the set of patterns that need to be represented by the
network. This requires the set of recurrent weights to be such that
the activity patterns corresponding to all different positions in the
environment are equally stable. Continuous attractor networks like
ours are generally known to be very sensitive to the regularity of
the recurrent weight structure (Zhang, 1996; Pouget et al., 1998),
and most such previous models were forced to set these weights by
hand.

Using all patterns indiscriminately during on-line learning is also
questionable from a computational point of view, especially in the
presence of substantial sampling bias. Learning should be gated by
familiarity; the more familiar a part of the environment, the less
about it that should be learned. Figure 4a shows that familiarity is
actually a graded quantity, because the animal has more exposure
to the center of the environment than the perimeter. Therefore, we
use a graded familiarity signal, like the one proposed by Hasselmo
et al. (1995). Note that it is not clear how familiarity is measured;
for instance, Hasselmo et al. (1996) even suggest that a feedback

Figure 4. Nonuniform sampling of the environment during random explo-
ration. a, An example trajectory, showing the first 5 min of exploration in
our simulation of a common paradigm in which the rat chases food pellets
thrown into random locations in the environment. Note that some parts of
the environment are visited much more frequently than others. b, Convo-
lution of the path in a with a two-dimensional gaussian (s 5 0.075), which
measures exposure to locations in the apparatus ( g(x*,f*, t)), summed over
all directions, after 5 min of exploration.
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loop involving the septal nuclei and the hippocampus itself might
be responsible. We adopt the simple procedure of using the expo-
sure measure of Equation 6, gating learning according to:

J̇ij 5 e2ag~x~t!,f~t!,t!ui~t! gu~uj ~t!! and Ẇik 5 e2ag~x~t!,f~t!, t!ui~t! zk~t!
(7)

where s, r, and a were determined so that the amount of learning
that occurs in different parts of the apparatus is as uniform as
possible after 5, or more, minutes of exploration. The application
of this learning procedure results in an attractor structure not very
different from the one defined by the ideal weights described
earlier, and, as shown in Figure 5b, leads to a good place cell
representation after just 5 min of exploration, in agreement with
experimental data. The weight structure becomes increasingly uni-
form, given more exploration, and the place fields duly become
increasingly regular.

Although the efficacies of the different types on inputs to CA3
cells may also be modulated in a graded manner (this may even
involve the same signals that modulate plasticity), we currently use
a simple heuristic based on the notion of two distinct processing
modes as described above. Recall mode is entered after a fixed
amount of exploration per unit area of the environment (by which
time learning has saturated essentially everywhere in the environ-
ment) or immediately upon entry into the environment if it is
similar enough to an environment already explored; otherwise,
learning is initiated. More precisely, we skip learning in a new
environment only if it shares most sensory features with an envi-
ronment that is completely familiar to the animal, i.e., one that has
been thoroughly explored.

Modeling more complex paradigms
So far, we have shown that an attractor-based model, using weights
defined by correlations between the feedforward activations of
cells, can account for many of the experimentally observed basic
properties of the CA3 spatial representation. We have also de-
scribed a two-mode on-line learning process that computes an

approximation to these ideal weights and results in a very similar,
although slightly less regular, place cell representation. In this
section, we show how our model can also account for experimental
results in a number of more complex paradigms, including the
task-dependence of place field directionality, the coexistence of
several “orthogonal” representations for very different environ-
ments as well as overlapping representations for very similar envi-
ronments, and the transformations of place fields after manipula-
tions of the environment. We ran all simulations using both
idealized, correlation-based weights and those resulting from on-
line learning and got qualitatively similar results in all cases. Most
figures display results obtained using the ideal weights, because
these tend to illustrate our points more clearly because of the lack
of randomness.

Task-dependence of directionality
We have already described how random exploration in an open
environment can lead to nondirectional place fields (an example of
which is shown in Fig. 6a), through the establishment of appropri-
ate attractors in CA3. In agreement with the recent modeling study
by Brunel and Trullier (1998), we found that the ability of the
recurrent network to suppress the directionality of the inputs
depends critically on the set of locations and head directions
experienced by the rat during learning. Place cells become
direction-independent only in situations in which the animal is
exposed to a wide range of directions at a particular location. On
the other hand, when the behavioral task or the environment itself
constrains the set of directions experienced at a given location, as
in a radial maze or when the rat is required to follow a specific
route in an open field, place cells retain their intrinsic direction-
ality. Even in these cases, the width of directional tuning can,
however, be modified by the recurrent network. These results are in
good agreement with experimental findings (Muller et al., 1994;
Markus et al., 1995). The dependence of directionality on move-
ment patterns is illustrated in Figure 6b, which shows the place field
of the same model CA3 cell that appears in Figure 6a, for a rat that

Figure 5. Place cell firing patterns during recall, after using different learning procedures. The figure shows the firing rate maps of 18 randomly selected
CA3 place cells after the exploration shown in Figure 4a, a using simple Hebbian learning and b using the familiarity-based learning procedure to establish
the weights. The place fields in b closely resemble experimental place fields and provide good coverage of the whole environment. Conversely, the spatial
firing patterns in a reflect essentially two different attractor states containing only a small proportion of the neurons, perturbed to some extent by the
feedforward input.
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has performed a different behavioral task in the same environment.
In this task, which can be thought of as a simplified version of the
directed search task described by Markus et al. (1995), the rat is
required to run back and forth between the two shorter walls of the
environment to obtain reward. For the idealized case, we model
this by assuming during exploration that the rat is now exposed
only to the two directions parallel to the long walls instead of all
directions at each location. Everything else in the simulations is left
the same. This change affects the correlations between place cells
in the learning phase, resulting in altered weight structure, which,
in turn, changes the attractors. In agreement with experimental
data, the new attractors do not eliminate the directionality of the
inputs to the place cells. In fact, two very distinct sets of attractors
are established, one corresponding to each of the two directions
sampled during learning. To illustrate this point, in the bottom half
of Figure 6, we plotted the maximum activity of the place cell
shown at the top of the figure, as a function of the animal’s heading.
In the rat trained using random exploration, the activity of the cell
is essentially direction-independent; however, if we train the rat in
the shuttling task instead, the cell fires at a high rate for all
directions with a westward component and is completely silent for
all directions with an eastward component. Cells that prefer direc-
tion east behave in exactly the opposite way. Once more, the results
of simulations with the on-line learning procedure are similar to
those obtained using the ideal weights, although the differences in
directionality between the two training paradigms are generally
somewhat reduced, and activity changes with head direction tend
to be more graded. For further discussion on how different behav-
ioral paradigms might lead to spatial representations with different
degrees of directionality, see Brunel and Trullier (1998).

Very different environments
Experiments in which the firing rate maps of place cells are
recorded in multiple environments that are similar to a controlled
degree can provide valuable information about how input repre-
sentations depend on details of the environment, how they are
transformed into the place cell representation, and also about
possible interference between representations of different environ-
ments realized by the same network of place cells. The general
pattern of results is that radically different environments give rise
to very different and apparently unrelated place cell representa-
tions (O’Keefe and Conway, 1978; Muller and Kubie, 1987; Bos-
tock et al., 1991). On the other hand, when a previously familiar
environment is subjected to subtle alterations, the place cell rep-
resentation often stays basically the same (O’Keefe and Conway,
1978; Bostock et al., 1991) or changes according to the transforma-
tion of the environment (Muller and Kubie, 1987; O’Keefe and
Burgess, 1996).

To test our model in the first type of situation, we added another
model environment to the one described in the previous section
and tested whether these two environments can be learned and
recalled simultaneously without interference. The two environ-
ments are very different in terms of visual appearance; the new
environment has a circular shape and is assumed to carry visual
features that are dissimilar to the ones in the rectangular box.
Therefore, we assume that the spatial characteristics of both EC
neuronal activities and mossy fiber inputs to CA3, as well as their
relationships, are completely independent in the two environments,
i.e., for instance, knowing the relative locations of maximum ac-
tivity for two EC neurons in one environment carries no informa-
tion about the relationship of their preferred locations in the other
environment. However, as a worst case scenario, we use exactly the
same neuronal populations to represent the two environments; if
these populations are distinct to any extent, this can only improve
the separability of the two environments. Because we are inter-
ested in interactions between different environments and not in
extending our input model to curved walls and other cues, we
derive the inputs in the circular environment assuming that there is
a very salient square box (which looks very different from the
rectangular box) surrounding the circular arena so that the inputs
are determined by distances from the walls of the square box in the
same way as before.

Initial learning in the rectangular environment is performed
using the on-line procedure described in the previous section, and
the resulting place cell firing patterns are determined as before.
Then the weights are modified by running a learning phase in the
circular environment, and spatial firing distributions during recall
are determined in both environments to assess interference caused
by exposure to the other environment.

Figure 7 shows the firing rate maps of five model CA3 cells in the
rectangular apparatus before any exposure to the circular environ-
ment (top row) and in the rectangular and the circular apparatus
after learning in both environments (middle and bottom rows). In
general, there is no systematic relationship between the location of
place fields in the two different environments, which indicates that
several different sets of attractors can be stored and recalled inde-
pendently in the model.

Comparing the top and bottom rows of Figure 7 reveals that most
place cells have very similar firing rate maps in the rectangular box
before (R1) and after (R2) training in the circular environment. In
particular, for the majority of CA3 cells, the location of maximal
firing, the size, shape, and directionality (data not shown) of the
place field are all virtually unchanged. Consequently, the overall
structure of the spatial representation is essentially unaffected by
exposure to a different environment. However, for a minority of
place cells, experience in the circular environment resulted in a
more radical change in the firing rate map in the rectangular box
(as in the last example in Fig. 7). The most commonly observed
types of change were the appearance of a new place field and the
disappearance of one previously present. These probably occurred
when the changes in the net input received by the cell (resulting

Figure 6. The task-dependence of directionality. The contour plots show
the place field of a CA3 cell that prefers the left direction, when the rat
faces in the direction indicated by the arrows, and the polar plots show the
maximum firing rate (indicated by the crosses, and relative to the maximum
rate when averaged across directions) of the same neuron as a function of
head direction; a, in a model rat which explored the environment randomly
during the learning phase; b, in a model animal that always ran in one of the
directions parallel to the long walls of the box during learning. The top plot
is empty in b because the cell does not fire at all in that direction in this
case. The effect of the attractor dynamics is very prominent in the all-or-
none nature of activity in the directional plot in b (all the points in the
bottom half of the plot collapsed to the origin). The maxima of the top and
bottom contour plots correspond to the crosses at 270 and 90°, respectively,
in the polar plots.
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from the weight changes that took place in the other environment)
caused the neuron to cross the dynamic threshold for activation.
Learning to represent a new, orthogonal environment can be
thought of as introducing noise into both the feedforward and the
recurrent weights as far as the representation of the original envi-
ronment is concerned.

To quantify the change caused by exposure to a different envi-
ronment, we computed the overlap between the overall CA3 spatial
representations in the rectangular box before and after learning in
the circular environment. To obtain a scale against which we can
measure differences in overlap and also to facilitate direct compar-
ison with experimental data, we generated from our firing rate
maps a large number of spike count samples, assuming independent
Poisson noise for all cells and bins. Maximum firing rates, bin sizes,
and session time were similar to those in experiments (Muller et al.,
1987). The correlation coefficient between samples from the R1
and R2 spatial representations was found to be 0.754 6 0.001
(mean and SD), which is significantly lower (t test, p , 0.0001) than
the correlation between different samples from R1 (0.911 6 0.001)
but significantly higher ( p , 0.0001) than the correlation between
samples from R1 and a version of R1 in which place cells have been
randomly reshuffled (20.005 6 0.0005). These figures confirm our
observation that, although there is a certain degree of degradation,
the spatial representation after learning in an orthogonal environ-
ment remains quite similar to the original one. Furthermore, be-
cause the number of neurons and connections is much larger in the
real hippocampus than in the model and not all neurons are active
in any particular environment, interference between representa-
tions of different environments is likely to be less severe, and the
number (and perhaps the spatial extent) of environments that can
be stored is probably larger.

Finally, our model would also produce orthogonal place cell
representations for environments that differ only in shape (Muller
and Kubie, 1987), even from nonorthogonal input representations
(Quirk et al., 1992), provided that the DG can separate the input
patterns effectively, and the two environments are perceived as
different so that learning is initiated in both environments.

Geometric manipulations
We also investigated what happens to place fields in our model if
the environment undergoes some simple geometric transformation.
We chose to model the experiment of O’Keefe and Burgess (1996)
because of its relatively complex pattern of results. In this experi-
ment, a rat, which has been thoroughly familiarized with a rectan-
gular box, is transferred into a new box that differs from the original
one only in the length of one or both sides. We will concentrate on

the case when the second environment is a larger square box that
can be obtained by stretching the original box by a factor of two. In
this case, stretching the environment had one of the following
general effects (O’Keefe and Burgess, 1996): some fields remained
fixed with respect to one of the walls of the apparatus; some
changed their location and/or shape in correspondence with the
transformation of the box; others developed a second peak in the
direction of stretching. Many of the cells with two-peaked or
stretched fields also developed directional-dependence, i.e., the
location of maximum activity depended on the heading of the rat,
usually in the way that the subfield closer to a wall was more active
when the rat was facing away from that wall.

We assume that learning is triggered by exposure to the novel
situation of the initial, rectangular box and that the transformed
environment in this case is similar enough to the original one so
that no significant learning occurs subsequently. Therefore, the
attractors established in the first environment are the final states of
the network dynamics in the new environment as well, and place
fields are determined by the way that the inputs (as a function of
location and direction) in the new environment select attractors
established in the old environment.

Figure 8a shows the place fields of four model CA3 neurons in
the rectangular box that was used during initial learning and in the
larger square box. The place fields follow the transformation of the
box; that is, their centers remain at the same relative distance from
opposite walls, and their shapes become elongated along the direc-
tion of stretching. As revealed by Figure 8b, the fields consist of
directional subcomponents with the observed relationship between
subfield position and preferred direction.

We can understand some of the characteristics of transformed
place fields by looking at attractor selection in our model. Attrac-
tors have a regular, compact shape if place cells are characterized
by their preferred locations in the original environment; on the
other hand, we have no a priori knowledge about what they look
like as a function of preferred locations in the new environment.
Thus, it is much easier to understand the transformations occurring
in the system if we look at activities in the new environment (the
square box) as a function of the preferred coordinates of the
neurons in the old environment (the rectangle). This is illustrated
in Figure 9, which shows the activities of EC neurons, PP inputs to
CA3, and final activities (after recurrent processing) in CA3 at
three different locations in the square box, all as functions of
preferred locations in the rectangular box. The activities of EC
cells are determined by multiplying together (gaussian-tuned) com-
ponents whose activities depend on the animal’s heading and its
position with respect to the walls. Because the walls have moved

Figure 7. Very different environments. This figure shows the place fields of five selected place cells in a rectangular and a circular apparatus that have
very different sensory features. The top row (R1) shows the place fields after learning in the rectangular apparatus but before any experience in the circular
one, and the middle and bottom rows show the place fields in the circular and rectangular environments (C and R2, respectively) after the rat has become
familiar with both. There is no obvious relationship between place fields of the same cell in the two environments. The effect of encoding a second
environment on the place cell representation in the first environment can be assessed by comparing the top and bottom rows. Although there are some
visible changes, these tend to be small and do not affect the general structure of the spatial representation. One of the few exceptions is shown on the far
right in which a place cell that had been silent in the rectangular environment becomes active there after experience in the circular environment.
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relative to each other, the different components lead to different
estimates of position in the old coordinate system. Combining such
inputs conjunctively leads to an EC activity profile that peaks
somewhere between the positions indicated by individual walls. For
instance, when the rat is halfway between the two walls that have
been moved apart, listening to one of these walls would indicate
that the animal is located at the opposite wall, and the resulting EC
activity profile is centered on neurons like the middle of the
rectangular box (Fig. 9, bottom lef t contour plot). Because the PP
connections were established in the rectangular box, the PP input
pattern to CA3 cells is centered around the same location as the EC
activity pattern if both are viewed as a function of preferred
coordinates in the rectangle (Fig. 9, compare first and second
columns). The recurrent connections then sharpen the activity
profile considerably but leave the location of the bump (in the old
coordinate system) essentially unchanged. The final activities of
CA3 cells as a function of location in the square box define the
place fields in the new environment. We can see that, as the rat
moves around in the new environment, the activity packet also
moves smoothly on the plane defined by the preferred locations of
place cells in the rectangular box. This results in a smooth trans-
formation of place fields between the two environments. In addi-

tion, the activity packet moves more slowly in the stretched direc-
tion in the old coordinate system than the actual speed of the rat in
the new environment, or, in other words, the rat needs to travel
approximately twice as much in the square box than in the rectan-
gular box for the activity profile to shift by the same amount;
consequently, place fields become elongated in the direction of
stretching.

The emergence of directional subcomponents can be understood
by looking at how the activities of EC cells and the resulting
activities of CA3 neurons depend on the head direction of the rat.
This is depicted in Figure 10, which shows that, because of the
dependence on head direction of the rat’s confidence in the inputs
from different walls (as described earlier), conflicting sources of
information are weighted differently depending on which way the
rat faces. The EC activity profile and, consequently, the CA3
activity profile, shift as the rat turns around in the square box, and
the result is that a given place cell fires maximally at different
locations depending on head direction. In the example shown in
Figure 10, the activity profile shifts north when the rat faces north,
and shifts south when the rat faces south. In an apparent paradox,
from the perspective of a single place field, this actually has the
opposite effect (Fig. 8b), that the center of the place field is farther

Figure 8. Place fields in transformed environments. a, The place fields of four selected cells in the original and the stretched environment in our
simulation of the experiment by O’Keefe and Burgess (1996); the firing rates shown are averages over all head directions. b, Directionality of the place
field shown in the bottom right corner of a; the place field depends on the heading of the rat (indicated by the arrows). This dependence on head direction
is induced by the transformation of the environment; place fields in the original environment are essentially nondirectional (like the one shown in Fig. 6a).

Figure 9. Place field stretching. The population
plots of this figure show the neuronal activities in
EC, the PP inputs to place cells, and the CA3 final
activities as a function of the preferred location of
the neuron in the original, rectangular box, for
three different positions of the rat in the square
box, indicated by the crosses in the plot on the lef t.
The plots only show cells with preferred direction
north, and the model rat faces west in all cases.
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south when the animal faces north, and vice versa. The easiest way
to see this is to ask where in the environment the rat has to be when
it is facing in a particular direction, to arrange for exactly the
population activity across CA3 shown in the middle of Figure 10.
The answer to this will tell us how the favored location of the most
active cell in this population depends on direction. When the rat
faces north, the activity profile shifts north, so the rat must be
displaced relatively south to compensate for this. Thus, the location
for the peak response of the cell is shifted south. The converse is
also true; when the rat actually faces south, then the place field
moves north.

Very similar environments
Skaggs and McNaughton (1998) conducted an experiment de-
signed specifically to probe the relationship between spatial repre-
sentations in environments with a high degree of similarity. In this
experiment, animals explored an apparatus that consisted of two
visually identical boxes connected by a corridor. Many place cells
were found to have similar place fields in the two regions, whereas
others had uncorrelated place fields. This finding challenges the
idea that there is a predefined set of uncorrelated attractors wired
into the recurrent connections in CA3 (Samsonovich and Mc-
Naughton, 1997), because such a model would predict either iden-
tical or orthogonal firing patterns in different environments or
different parts of the same environment. This particular problem
may be solved by postulating a hierarchy of fixed attractors with
various degrees of overlap (Samsonovich et al., 1998); however, it
still remains to be explained why similar representations are se-
lected in very similar environments. On the other hand, the attrac-

tors established in our model are input-dependent, which in prin-
ciple allows attractors with an arbitrary degree of similarity, and
directly defines the association between attractors and environ-
ments. Therefore, we simulated the experiment by Skaggs and
McNaughton (1998) in our model to study the spatial representa-
tions in very similar environments.

We still do not model the different sources of spatial information
explicitly. We assume that there are some inputs (e.g., signals
derived from path integration) that allow the two boxes to be
distinguished, whereas other inputs to the system (e.g., local visual
cues) are identical at corresponding locations in the two boxes.
Because cells in EC are assumed to respond to different inputs to
a randomly varying extent and to encode these inputs conjunc-
tively, we applied the following scheme to determine activities in
EC at locations inside the two boxes. EC cells are now character-
ized by a preferred location (and also a preferred head direction)
based on visual inputs (this is now actually a set of two locations,
one in each box), as well as a polarization index (P), which is
defined as the maximum firing rate for the cell in the north box
minus the maximum firing rate in the south box, divided by the
maximum rate in any of the boxes. P is always between 21 and 1,
its magnitude indicates how much that particular cell is influenced
by cues that distinguish the two boxes, and its sign shows which box
the neuron prefers. We assign P values to EC cells randomly from
a uniform distribution. The firing rate of an EC neuron is then
given by zk 5 (1 1 Pk)zk9 in the north box and zk 5 (1 2 Pk)zk9 in
the south box, where zk9 is a function of coordinates within the
current box, and it depends on spatial position and head direction
the same way as zk in Equation 2. We assume that the MF inputs
to CA3 can be characterized similarly; however, because of the
orthogonalizing properties of the dentate gyrus, P values do not
vary continuously but only take the values 21, 0, and 1, each with
probability of a third. This means that there is a population of cells
in CA3 that receives the same input at corresponding locations in
the two boxes during learning, whereas another population receives
different inputs. Because the first time the rat is introduced into the
apparatus it is allowed to explore it entirely, we do not treat the two
halves of the environment differently during the learning phase.

Some examples of the place fields that develop in this model are
shown in Figure 11. There are cells that have similar firing rate
patterns in the two boxes, whereas others are active in only one of
the boxes, in accordance with experimental observations. In other
words, our model has no difficulty storing and recalling partially
overlapping spatial representations. In the model, the degree of
overlap is determined by the extent of orthogonalization occurring
in DG, i.e., what proportion of granule cells distinguishes between
the two boxes; CA3 cells simply inherit the selectivity of their MF
inputs as attractors are established during the learning phase. Most
EC neurons are active in both boxes, although to a different extent
(Fig. 12a). Consequently, all CA3 cells that are active in this
environment get a substantial PP input in both boxes (Fig. 12b);
however, the activity patterns encoded during learning are restored
by the recurrent connections and feedback inhibition, and the PP
input only determines which of these patterns emerges. The figures
also show that although EC neurons have relatively broad tuning
curves, and this results in CA3 cells receiving feedforward input
that is even more broadly tuned, the final tuning of CA3 neurons is
considerably sharper because of recurrent activity. The attractor
network also renders place cells directionally nonselective, just as
before.

DISCUSSION
Principal findings
We have presented a plastic attractor network model of CA3 place
cells that describes how a conjunctive representation of location-
and direction-specific sensory information in entorhinal cortex can
be transformed by feedforward pathways and recurrent processing
in the hippocampus, into a place cell representation whose prop-
erties match a wide range of experimental observations. In partic-

Figure 10. Directionality of stretched place fields. Population plots of EC
neuronal activities and CA3 final activities (of the same sets of cells as in
Fig. 9), as a function of the preferred locations of the neurons in the
rectangular box, for different headings of the rat (indicated by the arrows)
at a single location in the square box (marked by the middle cross in Fig. 9).
The middle row of plots is for both directions east and west because these
lead to the same activities for the neurons displayed here. The position of
the input peak changes as the rat faces in different directions (because of
the dependence on head direction of the breadths of the input components
tied to different walls), and the position of the final activity profile in CA3
changes accordingly. This shift can be compensated for by changes in
location (as seen in Fig. 9), resulting in the directional subfields shown in
Figure 8b.
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ular, our model (1) accounts for the head direction-independence
of place cells in open environments, as well as their directionality
in linearly restricted environments, (2) demonstrates how several
different environments can be stored and recalled independently by
the CA3 recurrent network, (3) produces place cell activity patterns
with an appropriate degree of overlap in visually similar environ-
ments, and (4) correctly captures the transformations of place fields
after simple geometric manipulations of the environment.

Furthermore, we have shown that the neural connections re-
quired for this spatial representation can be computed from the

correlations between the input-driven feedforward activations of
neurons during initial exploration of the environment, using a
familiarity-based on-line learning procedure.

Although the representations formed may be useful for spatial
tasks, such as navigation (Burgess et al., 1997; Foster et al., 1998,
2000), a major goal for our model was to show how ideas about how
nonspatial information is processed by the hippocampus are in
accordance with data on place fields.

Components of the model
The idea of using attractor networks for computations has been
applied in various settings (Somers et al., 1995; Zhang, 1996;
Pouget et al., 1998); such networks have been shown to be capable
of amplifying certain facets of their inputs (Ben-Yishai et al.,
1995), as well as creating invariance (Chance et al., 1999). Our
model, and that of Brunel and Trullier (1998), display both behav-
iors simultaneously; the recurrent network enhances the spatial
tuning of place cells but suppresses their directional tuning in open
field environments. Under attractor dynamics (which we assume
characterizes well the average behavior of CA3 across theta oscil-
lations), it is unwise to invent rules describing how individual place
cells respond in various situations; rather, the system is better
described collectively, by identifying the attractors and specifying
which attractor gets selected for any particular input. The attractor
concept also helps explain the persistence of spatial firing patterns
in the face of environmental manipulations, such as cue removal or
cue rotation (O’Keefe and Conway, 1978; Muller and Kubie, 1987),
as well as the abrupt changes that ensue for changes of other kinds
(e.g., changing the shape of the environment from circular to
square) (Muller and Kubie, 1987) or of a larger magnitude. Feed-
forward models (Sharp, 1991; Burgess et al., 1997; Hartley et al.,
2000), albeit ignoring the recurrent connections, can also be made
to exhibit many of the properties we have demonstrated. We have
not yet modeled the pathway from CA3 to CA1, assuming that the
spatial properties of the latter faithfully reflect those of the former,
assuming normal plasticity. CA1 is, of course, the source of the
bulk of the experimental data on place fields.

The learning rule was chosen as a crude model of experimental
long-term synaptic plasticity, and we have ignored most empirical
complexities. We have not taken into account the fact that the sign
and magnitude of long-term synaptic modification depends on the
relative timing of presynaptic and postsynaptic activity (Levy and
Steward, 1983; Markram et al., 1997), which has been suggested as
a mechanism underlying a navigational role of place cells (Blum
and Abbott, 1996). Indeed, the recurrent weights in our model
ultimately learn a weight structure similar to the “cognitive graph”
described by Muller et al. (1991, 1996).

Similar proposals to ours have been put forward in associative
memory models of the hippocampus (Treves and Rolls, 1992) as to
the separate roles for the indirect pathway to CA3 via the dentate
gyrus (which defines attractors during the learning mode) and the
direct perforant path (which selects attractors during recall mode).
However, the activity patterns representing location and direction
are intrinsically continuous, and thus strongly overlapping, so the

Figure 11. Place fields in our simulation of Skaggs and McNaughton (1998). The figure shows the place fields of five CA3 place cells in the two identical
boxes; activity in the corridor connecting the boxes was not simulated.

Figure 12. Input representation and inputs to CA3 in our simulation of
Skaggs and McNaughton (1998). a, The activities, as a function of location
in the apparatus, of three entorhinal neurons that have the same preferred
(visual) location within the boxes but different degrees of polarization (as
defined under Results, Very different experiments; the polarization indices
are 20.01, 0.25, and 20.70, respectively). b, This part of the figure, which
displays the perforant path inputs to the first three CA3 place cells of Figure
11, shows that, as a result of learning in the perforant pathway, some place
cells receive similar inputs at corresponding locations in the two boxes,
whereas others receive inputs of different magnitudes, setting the stage for
the CA3 recurrent network that makes these differences much more pro-
nounced (as seen in Fig. 11).
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patterns that are retrieved can differ in systematic ways from all the
patterns encountered during learning (e.g., being insensitive to
head direction in open field environments). The relationship be-
tween attractor networks storing discrete versus continuous sets of
patterns, particularly regarding their storage capacity, has been
studied by Samsonovich (1997) and Battaglia and Treves (1998).

Maintaining such overlapping attractors requires a learning rule
that compensates for systematic spatial biases during exploration by
gating learning through familiarity in a graded rather than a binary
manner, a subtlety not necessary for the very distinct attractors
assumed by memory models. Gating of synaptic effectiveness
(among the MF, PP, and recurrent collateral connections) and
plasticity may be mediated by either closely coupled or more
distinct mechanisms (e.g., acetylcholine vs GABA) (Sohal and
Hasselmo, 1998; Hasselmo, 1999), but there is very little evidence
to distinguish between these possibilities at this point.

Exactly how entorhinal and dentate neurons encode features in
the environment and how they respond to manipulations of the
environment is not experimentally clear. Our choice was necessar-
ily somewhat arbitrary; the aim has been to show that there exists
at least one reasonable choice that results in place fields consistent
with experimental data in a wide range of experimental situations.
Our entorhinal representation is similar to that of Burgess et al.
(1997), except that their units are directionally nonselective, and
each is tied to exactly two orthogonal walls of the environment. In
their model, place cell firing patterns are then determined through
the feedforward weights connecting EC to CA3; these weights are
set up using a competitive learning scheme similar to the one used
by Sharp (1991) to model the formation of place fields. Competitive
learning supports the separation of different input patterns in these
models; in our model, the same task is thought to be accomplished
through processing by the dentate gyrus. It is possible, of course,
that both of these processes contribute to pattern separation in the
hippocampus.

Comparison with other models
Apart from Brunel and Trullier (1998), the models of Samsonovich
and McNaughton (1997) and Burgess et al. (1997) are closest to
ours. The most important distinction from Samsonovich and Mc-
Naughton (1997) is that it relates the position of the activity profile
(or “packet”) in CA3 (as an attractor network) to external coordi-
nates in a different way, assuming a hard-wired system that is
capable of updating the position of the CA3 activity packet based
on self-motion information and a learned association with sensory
representations that can be used to correct for accumulated errors
in path integration. Learning works differently in our model, and
the metric of the place cell representation reflects the way in which
the EC representation depends on external coordinates, including
sensory features of the environment and, to account for the for-
mation and maintenance of place fields in darkness, self-motion
information. The direct involvement of the hippocampus itself in
path integration is controversial (Alyan and McNaughton, 1999;
Maaswinkel et al., 1999).

Burgess et al.’s (1997) model also accounts for some of O’Keefe
and Burgess’s (1996) data. Their results are complementary to the
ones we presented here, in that their model captures the behavior
of those place cells that remain fixed with respect to one wall or
develop a second place field after stretching the environment, while
our model correctly describes those place fields that follow the
transformation of the environment and also explains the acquired
directionality of stretched place fields in the transformed environ-
ment. A modified version of our model, which incorporates random
variations in the extent to which input cells respond to different
spatial cues, reproduces all the observed classes of place field
transformation. Because of its randomness, it offers less insight into
the underlying mechanisms than the model described here. Our
model also accounts for other properties of place cells, such as
directionality and nondirectionality.

Critical experiments
Various experiments could, in principle, test the key assumptions
and predictions of our model. First, pharmacological or molecular
biological blockade of plasticity in the CA3 recurrent connections
should prevent the formation of a new representation in a novel
situation. According to our model, the system would either remain
trapped in learning mode, which would be indicated by, among
other things, retained directionality of place fields in an open field,
or recall attractors from one or more environments explored before
the blockade, resulting in irregular or fragmented place fields.
Direct manipulations of the neuromodulatory control mechanisms
governing the choice of learning versus recall mode should have a
similar effect. Unfortunately, there exist many different forms of
experimental plasticity, and it is not clear which in particular are
most relevant for learning in vivo.

Our model predicts that the CA3 place cell representation
should be different during the first few minutes of exploration in a
new environment from the time after the animal has become
familiar with its surroundings. In particular, place cells are ex-
pected to be directional in any novel environment immediately
after entry and become nondirectional later in open environments.

Analysis of our model also indicates that the amount of training
in a given environment might have a significant effect on the place
cell representation in a similar environment encountered subse-
quently, because only well established attractors are assumed to be
capable of being recalled. For instance, we would expect to see a
less obvious relationship between place fields in different environ-
ments in the experiment of O’Keefe and Burgess (1996) if, instead
of training the rat in one size of box before allowing it to explore
the others, they had made it explore all four environments in
quick succession, especially if the rat is prevented from using
extramaze cues.
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