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Abstract

In memory consolidation, declarative memories which initially re-
quire the hippocampus for their recall, ultimately become indepen-
dent of it. Consolidation has been the focus of numerous experi-
mental and qualitative modeling studies, but only little quantita-
tive exploration. We present a consolidation model in which hier-
archical connections in the cortex, that initially instantiate purely
semantic information acquired through probabilistic unsupervised
learning, come to instantiate episodic information as well. The hip-
pocampus is responsible for helping complete partial input patterns
before consolidation is complete, while also training the cortex to
perform appropriate completion by itself.

1 Introduction

The hippocampal formation and adjacent cortical areas have long been believed to
be involved in the acquisition and retrieval of long-term memory for events and
other declarative information. Clinical studies in humans and animal experiments
indicate that damage to these regions results in amnesia, whereby the ability to
acquire new declarative memories is impaired and some of the memories acquired
before the damage are lost.1 The observation that recent memories are more likely
to be lost than old memories in these cases has generally been interpreted as evidence
that the role of these medial temporal lobe structures in the storage and/or retrieval
of declarative memories is only temporary. In particular, several investigators have
advocated the general idea that, in the course of a relatively long time period
(up to decades in humans), memories are reorganized (or consolidated) so that
memories whose successful recall initially depends on the hippocampus gradually
become independent of this structure (see Refs. 2-4). However, other possible
interpretations of the data have also been proposed.5

There have been several analyses of the computational issues underlying consolida-
tion. There is a general consensus that memory recall involves the reinstatement
of cortical activation patterns which characterize the original episodes, based only
on partial or noisy input. Thus the computational goal for the memory systems is
cortical pattern completion; this should be possible after just a single presentation
of the particular pattern when the hippocampus is intact, and should be possible
independent of the presence or absence of the hippocampus once consolidation is
complete. The hippocampus plays a double role: a) supporting one-shot learning
and subsequent completion of patterns in the cortical areas it is directly connected
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Figure 1: (a:) Model architecture. All units in neocortical areas A, B, and C are
connected to all units in area E/P through bidirectional, symmetric weights, but
there are no connections between units on the same level. The hippocampus (HC)
is not directly implemented, but it can inuence and store the patterns in E/P.
(b:) Examples of the weights received by units in E/P from areas A-C after pre-
training. Each rectangle represents one unit in E/P, and each little square inside the
rectangles represents a weight; the color of the square indicates the magnitude of
the weight (black { large positive, white { large negative). The spatial arrangement
of the weights is only for visualization purposes; the weights from areas A, B, and
C are shown in the top, middle, and bottom third of the rectangle, respectively.

to, and b) directing consolidation by reinstating these stored patterns in those same
cortical regions and allowing the eÆcacies of cortical synapses to change.

Despite the popularity of the ideas outlined above, there have been surprisingly few
attempts to construct quantitative models of memory consolidation. Alvarez and
Squire (1994) is the only model we could �nd that has actually been implemented
and tested quantitatively. Although it embodies the general principles above, the
authors themselves acknowledge that the model has some rather serious limitations,
largely due to its spartan simplicity (eg it only considers 2 perfectly orthogonal
patterns over 2 cortical areas of 8 units each) which also makes it hard to test com-
prehensively. Perhaps most importantly, though (and this feature is shared with
qualitative models such as Murre (1997)), the model requires some way of estab-
lishing and/or strengthening functional connections between neurons in disparate
areas of neocortex (representing di�erent aspects of the same episode) which would
not normally be expected to enjoy substantial reciprocal anatomical connections.

In this paper, we consider consolidation using a model whose complexity brings to
the fore consideration of computational issues that are invisible to simpler proposals.
In particular, it treats cortex as a hierarchical structure, with hierarchical codes for
input patterns acquired through a process of unsupervised learning. This allows us
to study the relationship between coding for generic patterns, which forms a sort of
semantic memory, and the coding for the speci�c patterns through consolidation. It
also allows us to consider consolidation as happening in hierarchical connections (in
which the cortex abounds) as an alternative to consolidation only between disparate
areas at the same level of the hierarchy. The next section of the paper describes
the model in detail and section 3 shows its performance.

2 The Model

Figure 1a shows the architecture of the model, which involves three cortical areas
(A, B, and C) that represent di�erent aspects of the world. We can understand



consolidation as follows: across the whole spectrum of possible inputs, there is
structure in the activity within each area; but there are no strong correlations
between the activities in di�erent areas (these are the generic patterns referred
to above). Thus, for instance, nothing in particular can be concluded about the
pattern of activity in area C given just the activities in areas A and B. However, for
the speci�c patterns that form particular episodes, there are correlations in these
activities. As a result of this, it becomes possible to be much more de�nite about the
pattern in C given activities in A and B that reinstate part of the episode. Before
consolidation, information about these correlations is stored in the hippocampus
and related structures; after consolidation, the information is stored directly in the
weights that construct cortical representations.

The model does not assume that there are any direct connections between the
cortical areas. Instead, as a closer match to the available anatomical data, we
assume a hierarchy of cortical regions (in the present model having just two layers)
below the hippocampus. It is hard to establish an exact correspondence between
model components and anatomical regions, so we tentatively call the model region
on the top of the cortical hierarchy entorhinal/parahippocampal/perirhinal area
(E/P), and lump together all parts of the hippocampal formation into an entity we
call hippocampus (HC). E/P is connected bidirectionally to all the cortical areas.

Semantic learning

In a hierarchical model, we have to specify the relationship between activity in
E/P and that in areas A, B and C in generic or semantic circumstances (ie before
thinking about particular episodes). Here, the model borrows from the extensive
theories about the formation of hierarchical representations in cortex that comes
from work in unsupervised learning (eg Hinton & Sejnowski, 1999). The idea is that
top-down connections from E/P to A, B and C constitute a probabilistic generative
model that captures the joint probability distribution over the activities A, B and
C, ie the correlations between units both within and across areas. One general
role for such generative models (although it is rarely described in quite this way) is
to provide a statistically normative version of auto-associative memory, performing
probabilistic pattern completion in a way we describe below. Indeed, we use for
this hierarchical model a Restricted Boltzmann Machine (RBM),7 which is closely
related to the Hop�eld net,8 the paradigmatic auto-associative memory. However,
almost any well-founded unsupervised learning model could be used instead. It is
the relationship between generative models and auto-associative memory that will
allow us to model semantic and episodic knowledge together.

In the RBM, activities (xA;xB ;xC ;y) are binary, and weights are symmetric.
Since there are no connections within the areas (or within the E/P), the dynamics
of activity in the network consists of alternating updates in the two layers. At each
step, units within the layers are set according to the Markov chain Monte-Carlo
Gibbs sampling rule

x
A

i =

�
1 with probability �

�
[WA

:y]i
�

0 with probability 1� �
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[WA

:y]i
�

(and similarly for the others) where WA are the weights (including a bias term),
and �(x) = 1=(1 + exp(�x)) is the standard sigmoid function. All the units within
a layer can be updated in parallel. Input to a layer from the world clamps the
activities so that they do not change. Given clamped activities in xA and xB , say,
the network produce samples of xC according to a distribution

P [xC jxA;xB ;W] (1)

where W = fWA
;WB

;WC
g. Given appropriate weights W, this is how a gener-

ative model performs auto-association, completing xA;xB to the best �tting xC .



The weights W are assumed to be subject to slow plastic changes in order to �t
distributions such as that in equation 1 to the statistics of the patterns presented.
The learning rule is based on the standard Boltzmann Machine learning algorithm9

using Gibbs sampling, with the modi�cation that, in the negative phase, only one
full step of Gibbs sampling is done.10 This learning rule involves one phase of
Hebbian learning driven by activity patterns from the world, and one phase of anti-
Hebbian learning driven by patterns generated in response by the network, and is
well suited for extracting the statistical regularities in the input patterns.

Episodic learning

The hippocampus is not modeled explicitly in the current model. Instead, it is as-
sumed to be capable of three operations: (1) under appropriate conditions (eg when
the current stimulus con�guration is salient or important for some other reason), it
stores a representation of the current E/P pattern, which allows the reinstatement
of that E/P pattern if the corresponding hippocampal memory state is activated;
(2) if the current E/P pattern is suÆciently similar to a previously stored pattern,
the hippocampal representation for the stored pattern is activated (hippocampal
pattern completion), and, consequently, the stored E/P pattern gets reinstated; (3)
during consolidation, the patterns stored in the HC are activated intrinsically and
randomly (this may happen during slow wave sleep11), which leads to the rein-
statement of cortical patterns in the same way as during completion, at least given
appropriate weights.

Prior to the end of consolidation, the hippocampus guides the process of proba-
bilistic pattern completion by providing something like a very strong prior over the
activities y associated with the patterns that are stored. The ultimate e�ect of
consolidation in the model is to change the weights W such that they themselves
embody this self-same strong prior, without the need for hippocampal input. Note
that the hippocampus does not need to be able to reinstate xA;xB and xC di-
rectly, rather it does it using the generic knowledge encoded in the weights W by
reinstating only the y pattern.

3 Simulations

In the simulation, each of the four cortical areas (A, B, C, and E/P) contained 100
units. For each of A, B, and C, we generated 10 random binary patterns (denoted
xA1

�xA10
;xB1

�xB10 and xC1
�xC10 , each bit of which is turned on with probability

1=2). These stand for the di�erent stimuli that can be represented in any one of
these areas. During the semantic learning phase, these patterns are presented to the
network in random combinations (eg an input example could be xA1xB6xC3), which
corresponds to prior exposure of the system to events involving di�erent combina-
tions of stimuli. In all, 50,000 presentations were made and cortical weights were
modi�ed using the RBM learning algorithm. This leads to a population code in
E/P for the patterns presented in the input layer, and establishes a correspondence
between the representations in areas A-C and those in E/P in the form of a genera-
tive model. Examples of the resulting weights for E/P units are shown in Figure 1b.
Some of the units seem to specialize in representing just a single input area and
ignore the others, while other weights are completely global.

Next, 8 speci�c input patterns (xA1xB1xC1�xA8xB8xC8) were designated as episodic
patterns to be memorized. The E/P population codes in which they result were
determined and stored in the hippocampus. Finally, a consolidation phase was
run. This phase consists of alternating blocks of two types of presentations. The
�rst is identical to those in the pre-training phase, and corresponds to continued
exposure to the same kinds of stimuli (while awake, or perhaps during a sleep stage
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Figure 2: (a:) Threshold selection for hippocampal completion. The black bars represent
the frequency histogram of the squared distances between the E/P representations of
partial patterns and the correct full pattern; the gray bars are the same for the partial
patterns and all the stored patterns other than the correct one; the white bars represent
the distances between the E/P representations of the stored patterns and all other valid
full patterns. Setting the threshold for completion of the E/P pattern to a stored pattern
to 20 (dotted line) makes it possible to correctly complete 90% of partial patterns while
leaving the representations of full patterns mostly unchanged. (b:) Convergence to the
memorized pattern in area C (after consolidation) while a partial pattern is presented in
areas A and B. The top part of the �gure shows the �rst �ve iterations in the absence of
the hippocampus and the correct pattern at the bottom; the bottom part shows the �rst
iteration in the presence of the hippocampus. Only the �rst 20 units in area C are shown;
the top row in both cases is the initial random pattern.

characterized by independent random activations of cortical areas). The second type
of presentation starts from hippocampal activation of one of the stored patterns in
E/P, and activation spreads to the rest of the cortex from there. Otherwise the
learning procedure is unchanged. This phase also consisted of 50,000 presentations
altogether, divided into 50 blocks. Within each block, 900 presentations of the
second type were followed by 100 presentations of the �rst type.

After each phase of training, the performance of the network was tested in several
ways, both in the presence and in the absence of the HC. The ability of the network
to recall the stored memories was assessed by presenting parts of these patterns
as inputs to see whether they can be completed. Partial patterns consisted of the
correct pattern in two input areas (say, xA1xB1), and random activation in the third
area (xC). Next, the activities in E/P were computed. In cases when the HC was
present, the E/P pattern was then compared to each of the stored representations,
and, if it was suÆciently close to one of them (using an arbitrary threshold of 20
on the squared distance), it was replaced by that stored pattern; otherwise, it was
left unchanged. This is intended to correspond to familiarity-based modulation of
hippocampal processing, and allows good separation of E/P patterns corresponding
to partial cues from the representations of other possible input patterns. It also
allows selection of the correct stored pattern, as evidenced by Figure 2a. Then the
cortical network was allowed to run for 20 iterations (with xA1xB1 clamped). Some
examples of the convergence to the correct pattern in area C (after consolidation,
with and without HC) are shown in Figure 2b. The �nal activation patterns in
area C were classi�ed as follows: correct pattern (xC1), other memorized pattern
(one of xC2�xC8), other (not memorized) valid pattern (xC9

;xC10), and none of the
above. Small errors in the recalled patterns (a square distance of 2) were allowed
in assessing the �rst three classes. The frequency distribution of errors (squared
distance from the correct pattern) was also determined.

The main results of the simulations are displayed in Figure 3. Before memoriz-
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Figure 3: Recall performance. The four columns of plots represent the four cases in which
performance was tested. These are: (a) after generic pretraining, either before memorizing
the speci�c patterns, or after memorizing them but with the hippocampus removed before
consolidation could take place; (b) after memorizing the episodes, in the presence of HC;
(c) after consolidation, in the presence, or (d) in the absence of HC. The top row of plots
shows the frequency distribution of the distance between the pattern recalled (after 20
iterations) and the correct pattern; the bottom row shows the relative frequencies of the
qualitatively di�erent possible results of the recall process: (1) correct pattern; (2) other
memorized pattern; (3) other valid pattern; (4) none of the above.

ing the episodic patterns, or, equivalently, if the hippocampus is removed before
any consolidation can occur, only semantic knowledge about the input patterns is
available. Consequently, given the partial pattern xA1xB1 , all valid patterns in
area C (xC1�xC10) are still equally likely, and are ultimately generated in approx-
imately equal proportions by the network. However, the network often does not
settle into one of the valid patterns within the �rst 20 iterations. This situation
changes dramatically after the selected patterns are stored by the hippocampus.
The E/P representations corresponding to the partial patterns are now recognized
and completed by the hippocampus in most cases, which leads to good completion
in the input areas due to the existing generative model relating activity in y to xC .

The subsequent consolidation process alters the cortical weights so that the corti-
cal network now represents a di�erent probability distribution over the inputs; in
particular, the probabilities corresponding to the memorized patterns are increased
relative to all other patterns. This results in some further improvement in the pat-
tern completion performance of the full network (neocortex + hippocampus). More
importantly, however, the changed cortical weights can support the recall of the
stored patterns on their own, so that the removal of the hippocampus at this stage
hardly a�ects the recall of consolidated patterns.

An important point about the consolidation process is that it should not impair
the ability of the network to represent valid input patterns other than the ones
memorized and consolidated, or to reconstruct these other input patterns from
their E/P representations. It is relatively easy to come up with a learning algorithm
which completes any input pattern to one of the patterns stored, but, among other
things, such a network would �nd it diÆcult to memorize any additional input
patterns subsequently. Our model, on the other hand, retains its ability to represent
arbitrary combinations of the valid input patterns after consolidation (and, indeed,
at all stages of training). We checked this by presenting input patterns di�erent
from the memorized episodes, and verifying that the one-step reconstruction in the
input areas (after processing in E/P and, if applicable, the HC) was closer to the



pattern presented than to any other valid pattern. We found this to be the case for
all the patterns we tested, at all stages of training (after pre-training), both with
and without the HC.

4 Discussion

By placing consolidation in the context of a hierarchy of cortical areas, we have
been able to consider a number of crucial issues that simpler models �nd hard to
address, in particular the way that storing episodic information might be temporar-
ily parasitic on the (prior) storage of semantic information. Thus, it also captures
and re�nes prior qualitative insights such as that the hippocampus might some-
how store pointers to cortical memories (that, in this case, are dereferenced via the
population code in E/P).

Various extensions to the model are desirable. Two straightforward extensions are
to a deeper cortical hierarchy (possible because the RBM model has a natural
hierarchical extension) and to slow, hippocampally-independent cortical learning of
speci�c information (via an explicit gross change to input statistics that is normally
created implicitly by the hippocampus during consolidation). We also intend to
model the hippocampal system in much more detail, particularly in the context of
fast and slow learning. The longer-term stability of both hippocampal and cortical
representations also needs to be addressed, together with the phenomena of normal
forgetting.
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