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Abstract

Recurrent network models of area CA3 in
the hippocampus capture faithfully many
of the properties of place cells. However,
they seem ill suited to explaining the sub-
stantial experimental data on place cells in
environments with particular visual or geo-
metrical similarities. We show that a model
in which the activities of CA3 place cells
are determined mainly by modifiable re-
current connections (together with global
inhibitory feedback) is capable of repro-
ducing the major classes of behavior that
are observed. In visually similar envi-
ronments, the patterns of place cell activ-
ities have the appropriate degree of sim-
ilarity; after geometric transformations to
the environment, the model place fields un-
dergo geometric transformations, and also
remapping, induced (or uncovered) direc-
tionality and disappearance.

Introduction

The hippocampus is known to be involved
in spatial learning and memory in rodents.
Some of the most convincing evidence for
this is the presence of place cells in areas
CA3 and CA1 of the hippocampus, and
of many other spatially selective cells in
neighboring areas.5, 10 Principal neurons in
hippocampal areas CA3 and CA1 are active
only when the animal is located in a well-
defined local region of the environment (a
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place field),9 which collectively provide a
population code for spatial position. The
spatial relationship between place fields is
typically unpredictable in grossly different
environments.

To help understand information process-
ing in the hippocampal system, we have
investigated how the response characteris-
tics of place cells may be established, and in
particular how the animal’s sensory experi-
ence determines the the various properties
of place fields including location, shape,
and directionality. For instance, place cells
have an approximately circularly symmet-
ric structure in an open environment, and
a strong dependence on head direction in a
linear environment.

A host of models has been suggested to
account for these data, including one in a
previous study of ours,6 in which a central
role is played by recurrent connections in
CA3, acting as an plastic attractor network,
and various models of other groups,2, 11, 12, 17

in which attractor networks of other forms
are important. Experimental data from
more sophisticated paradigms, such as
those in which environments change, is
therefore necessary to distinguish between
the models.

In the next section, we summarize the
experimental observations on which the
model is tested. We then describe the
model in some detail, and present the re-
sults obtained from simulations. Finally,
we discuss some more general implications
of our results, analyze some of the limita-
tions of the current model, and compare
our approach to other related work.
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Background

Place fields are formed relatively quickly
(on the order of ten minutes) upon entry
into a new environment.16 The process
seems to require active exploration, and
probably depends on long-term potentia-
tion (LTP) within the hippocampus. Once
they are fully developed, place fields re-
main stable for several days, even if the
animal is absent from that particular envi-
ronment for most of the intervening time.14

Place cells have at most one place field
in regular environments. The bulk of the
place cell data comes from area CA1 rather
than CA3 – we assume that the results will
be true for CA3 too.

We model two classes of experiments
that hint at some of the complexities
of place cells. One studies the conse-
quences of creating an environment in
which two different regions look very sim-
ilar;13 and the other studies the effects on
pre-established place fields of various envi-
ronmental manipulations.

One experiment from the first class used
two separate regions that were visually al-
most identical. In this case, many place
cells turn out to have similar place fields;
whereas others have uncorrelated place
fields in the two regions. This finding chal-
lenges the idea that there is a predefined set
of uncorrelated attractors wired into the re-
current connections in CA3, because such
a model would predict either identical or
orthogonal firing patterns in different envi-
ronments or different parts of the same en-
vironment.

The general pattern of results from ex-
periments designed to test how manipulat-
ing the environment affects place cells is
that radical environmental change causes
a completely new, and apparently unre-
lated, spatial representation to develop.
However, subtler manipulations result in
a substantial proportion of place fields un-
dergoing simple geometric transformations
which reflect the transformation of the en-
vironment. For instance, rotation of all dis-
tal cues with respect to a circular appara-
tus results in a corresponding rotation of
the place fields.7 Scaling the experimental
apparatus leads to similar scaling of the lo-
cation and size of the place fields.

In an experiment of O’Keefe and
Burgess,8 a rat, which has initially experi-
enced a rectangular box, is transferred into
a new box that differs from the original
one only in the length of one side. In this
case, stretching the environment had one
of the following general effects: some fields
remained fixed with respect to one of the
walls of the apparatus; some changed their
location and/or shape in correspondence
with the transformation of the box; others
developed a second peak in the direction of
stretching, sometimes in conjunction with
a novel, induced, dependence on head
direction in the new environment.

The Model

Our model started from the observation
that most of the natural inputs that might
control place cells would inevitably depend
on head direction, even in open field envi-
ronments. We showed that the recurrent
connections in area CA3 could eliminate
this directionality in open field environ-
ments, provided that they could undergo
associative Hebbian plasticity.1, 6 However,
in our model, CA3 forms an attractor net-
work, a structure that had been believed to
have difficulty accounting for experimental
observations on the behavior of place cells
in multiple, closely related, environments.
In this paper we show how our model cap-
tures these results too.

Figure 1a shows the model. The main
part of the hippocampal circuitry we actu-
ally implement is the CA3 recurrent net-
work – the properties of other areas are
taken into account through the way they
determine the input to CA3. We model
CA3 as a collection of 1200 pyramidal cells,
each connected to all the others through
modifiable weights. We also include a
global inhibitory neuron in the model,
which provides feedback inhibition for the
pyramidal neurons, and keeps global activ-
ity levels approximately constant.

Based on experimental data on the ef-
fects of septal (cholinergic and GABAergic)
modulation in the hippocampus and the-
oretical results for autoassociative memo-
ries,15 we employ the suggestion3 that the
hippocampal network has two modes of
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Figure 1: a: Model architecture; b: In-
puts to place cells and c: their final activ-
ities in a rectangular box, as a function of
their preferred locations, for two popula-
tions of CA3 neurons with preferred head
directions indicated by the arrows; d: The
place field of a selected cell, with the head-
ing of the rat indicated by the arrows. Note
that the directionality in the input gets sup-
pressed by the attractor network.

operation. When the rat is in a familiar en-
vironment, no learning takes place in any
of the connections, the relative efficacy of
the mossy fiber inputs with respect to the
perforant path connections and CA3 recur-
rent synapses decreases, and the intrinsic
dynamics of the recurrent network domi-
nates activity in CA3. This is called ‘recall
mode’. On the other hand, when the rat
first encounters a new environment, learn-
ing in both the perforant path inputs to
CA3 and the recurrent connections is en-
abled, the recurrent connections are sup-
pressed, inhibition in CA3 is reduced, and
inputs through the mossy fiber connections
dominate. This state of the network is
called ‘learning mode’. We show how the
pattern of weights set up during learning
can produce the patterns of activity of place
cells seen subsequently.

The dynamics of unit activities is de-
scribed by the following equations:

_ui = ��ui +
X

j

Jijgu(uj)� hgv(v)ui + Ii

_v = ��v + w

X

j

gu(uj)

(1)

where ui is the membrane potential of the
ith pyramidal cell, v is the membrane po-
tential of the global inhibitory cell, 1=�

is the membrane time constant, Jij is the
strength of the connection from neuron j

to neuron i, h is the efficacy of inhibition,
w represents the strength of the excitatory
connection from any one pyramidal cell
onto the inhibitory cell, Ii represents all ex-
ternal inputs to this cell from outside CA3,
and gu(u) = �(u� �)�(u� �) is the activa-
tion function for the pyramidal cells, where
� is the unit step function (zero for nega-
tive arguments and one for positive ones).
� stands for the threshold and � is the slope
of the activation function above the thresh-
old. Similarly, gv(v) = (v��)�(v��). The
recurrent weights change in learning mode
according to:

_Jij = ��Jij + uigu(uj) (2)

Each CA3 cell receives a large number of
perforant path inputs, which initially have
small random weights, and these connec-
tions undergo Hebbian synaptic modifica-
tion similar to that described for the recur-
rent weights. We assume that there is at
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most one active mossy fiber input to a CA3
neuron at any given time, and we charac-
terize CA3 pyramidal cells by the preferred
location of its most active input in the envi-
ronment where the rat is trained initially.

We model the two sets of inputs to CA3
as follows. In common with many mod-
els,15 we assume that neurons in entorhinal
cortex respond in a conjunctive manner to
available sources of spatial information. In
general, these may include local as well as
distant sensory cues of all modalities, and
also ideothetic information (from path inte-
gration). We do not model any of the pro-
cesses by which this information becomes
available; instead, we treat them equally as
constraints on the set of locations where a
given cell fires. Each cell responds to a sub-
set of the available cues. It fires maximally
when all the cues it is sensitive to are in
the position corresponding to the cell’s pre-
ferred location, and activity diminishes as
some or all of the sources of information
signal a different location. We achieve this
by multiplying together Gaussian tuning
curves, each of which is tied to the location
of a different cue and peaks at the preferred
location of the cell. We assume that these
individual tuning curves can have differ-
ent variances, which may reflect the uncer-
tainty of the animal about its location based
solely on that cue. These variances may
also depend on the location and heading of
the animal – in particular, we assume that
the variance is lower if the animal is closer
to the wall, or facing away from the wall.
The latter dependence is based on the as-
sumption that the animal is coming from
somewhere nearer the wall and has been
able to maintain its location accurately us-
ing path integration. Dentate granule cells
are thought to have similar response prop-
erties, though their tuning is assumed to be
sharper.

Perforant path and recurrent weights
are acquired during the learning phase.
We model exploration during learning by
imagining that the rat receives even expo-
sure across the whole apparatus. During
the recall phase, the final activities of the
cells are calculated as a function of location,
by integrating equations 1 for a fixed time
using Euler’s method. The network always
settles into a stable state by the end of the
iterations.

Figure 2: The place fields of three selected
cells and the feedforward input they re-
ceive in the simulation of the experiment
by Skaggs and McNaughton; in each pair
of figures, the left one shows the input and
the right one the place field.

The attractors that are learned in this
model in an open environment such as a
rectangular box resemble thresholded two
dimensional Gaussian bumps of activity in
the space where neurons are arranged on
an imaginary plane according to their pre-
ferred locations. During recall, the location
of the bump is determined by the feedfor-
ward input so that the activity profile pro-
vides the best possible fit to the input. This
is demonstrated for the simple case of a sin-
gle rectangular box by Figure 1b-d, which
also shows that although inputs to CA3
strongly depend on head direction, the at-
tractor dynamics can suppress this depen-
dence so that the final activities vary only
slightly with preferred head direction. In
turn, this results in place fields with little
directional sensitivity. Recall is dominated
by the recurrent connections (on average,
only about 5 % of the input to each cell
comes from feedforward activation). In any
environment that causes this particular set
of attractors to appear (ie all similar envi-
ronments), the shape of the place fields is
determined by the way that the position of
the bump of activity in its own coordinate
frame changes as the animal moves around
in the environment.

Two Similar Environments

In the experiment by Skaggs and Mc-
Naughton,13 there are two visually iden-
tical boxes, which are likely distinguished
by idiothetic information. They give rise to
place cells, some of which have place fields
in the same location in both environments.
This is hard to account for using attractor
networks with pre-wired attractors,4 which
find it difficult to have different but similar
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firing patterns emerge in the two parts of
the apparatus.

A natural model of the input to the place
system is that some of the dentate granule
cells are driven primarily by visual inputs
(i.e., they are insensitive to the signals that
distinguish the two regions), while others
are driven mostly by path integration infor-
mation or a combination of the two. Thus
the former population of cells receives the
same input at corresponding locations in
the two boxes, while the latter receives dif-
ferent inputs. Since the first time the rat is
introduced into the apparatus it is allowed
to explore it entirely, we do not treat the
two halves of the environment differently
during the learning phase.

Some examples of the place fields that
develop in this model are shown in Fig-
ure 2, along with the feedforward inputs
they receive. Those cells that only receive
visual input have similar place fields in
the two boxes, and cells whose inputs are
different in the two regions only have a
place field in one of the boxes. In other
words, our model behaves very much like
a feedforward model in this respect, al-
though, as in figure 1, it would behave un-
like a feedforward model in rendering the
place fields independent of head direction.
Most importantly, our model does not suf-
fer from the problems of attractor networks
with prewired attractors, and accommo-
dates comfortably the graded similarity of
the firing patterns in each environment.

Geometric Manipulations

We also investigated what happens to the
place fields if the environment undergoes
some simple geometric transformations.
We assume that learning is triggered by
exposure to a novel situation, and that
the transformed environment in this case
is similar enough to the original one so
that no significant learning occurs subse-
quently. Therefore, the attractors estab-
lished in the first environment are the final
states of the network dynamics in the new
environment as well, and place fields are
determined by the way that the inputs (as
a function of location) in the new environ-
ment select attractors established in the old
environment.
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Figure 3: a: The place fields of four selected
cells in the original and the stretched en-
vironment in our simulation of the experi-
ment by O’Keefe and Burgess; b: Direction-
ality of the place field shown in the bottom
right corner of part a; the place field de-
pends on the heading of the rat (indicated
by the arrows).

Figure 3a shows the place fields of four
model CA3 neurons in a rectangular box
which was used during initial learning, and
a larger square box which was obtained by
stretching the rectangular box by a factor of
two. The place fields follow the transfor-
mation of the box; that is, their centers re-
main at the same relative distance from op-
posite walls, and their shapes become elon-
gated along the direction of stretching. As
revealed by Figure 3b, and as is evident
for some of the cells recorded in the ex-
periments,8 the fields consist of directional
subcomponents. That the geometrical ma-
nipulation can induce directionality argues
powerfully against models for which circu-
lar symmetry in open fields is a trivial con-
sequence of the � 300Æ field of view of rats
or for which plasticity is unimportant. It
arises here because the inputs have direc-
tional dependencies.

In the model just described, inputs to
each cell were fully determined by its pre-
ferred location and head direction, and the
actual position and head direction of the
rat. As a result, all place fields behaved
in essentially the same way. By contrast,
when we allow random variations across
cells in the degree to which they are sen-
sitive to the locations of different walls, dif-
ferent cells respond differently to the trans-
formation of the environment (Fig. 4). The
figure shows examples of fields that remain
at a fixed position with respect to one of the
walls, or develop a second peak in the di-
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Figure 4: Four examples of place fields in
the two environments in a model which al-
lows random variations in the sensitivity of
place cells to the location of different cues.

rection of stretching, or remap to a different
location, or disappear completely. There-
fore, the model displays the broad classes
of response observed in real place cells.

Discussion

We have presented an attractor model of
the recurrent network in CA3 which gen-
erates non-directionality in open field envi-
ronments (and, though we did not demon-
strate it here, directionality in linear track-
like environments6), graded similarity be-
tween place fields in two visually similar
environments, and appropriate place field
remapping following geometric transfor-
mations.

The model avoids the pitfalls of attractor
networks with fixed attractors (eg failing
to account for the graded similarity) and,
by capturing induced directionality follow-
ing geometric transformations, captures ex-
perimental findings more proficiently than
the (albeit more straightforward) model of
O’Keefe and Burgess,8 without any need to
adjust threshold or other parameters for in-
dividual cells.

We have left several important issues un-
explored. Preliminary results confirm that
the model also captures the observed ef-
fects in cue rotation and removal experi-
ments. We need to study in more detail the
source of individual differences between
cells with similar preferred locations. In the
model, these differences come from varia-
tions in the set of features to which each
cell responds, but further quantitative anal-
ysis needs to be done to answer this ques-
tion. We also plan to assess the relevance
of learning in the new environment, partic-
ularly in relation to possible interference.

Further, our model only addresses the be-
havior of cells in area CA3, and we plan to
model area CA1, which is a further plastic
synapse away, which is actually the source
of most of the experimental data.
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