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C. R. Gallistel and J. Gibbon (2000) presented quantitative data on the speed with which animals acquire
behavioral responses during autoshaping, together with a statistical model of learning intended to account
for them. Although this model captures the form of the dependencies among critical variables, its detailed
predictions are substantially at variance with the data. In the present article, further key data on the speed
of acquisition are used to motivate an alternative model of learning, in which animals can be interpreted
as paying different amounts of attention to stimuli according to estimates of their differential reliabilities
as predictors.

In autoshaping experiments on pigeons, birds acquire a classi-
cally conditioned peck response to a lighted key associated, irre-
spective of their actions, with the delivery of food (Brown &
Jenkins, 1968). As stressed persuasively by Gallistel and Gibbon
(2000), there is substantial experimental evidence in favor of a
simple quantitative relationship between the speed of acquisition
in autoshaping and the three critical variables shown in Figure 1A.
The first is I, the length of intertrial interval; the second is T, the
time during the trial for which the conditioned stimulus (CS; a
light in this case) is presented; and the third is the training sched-
ule, 1/S, which is the fractional number of deliveries per light (for
those birds that were only partially reinforced). Here, acquisition
speeds are typically measured in terms of the number of trials it
takes until a certain behavioral criterion is met, such as pecking
during the time the light is illuminated on three out of four
successive trials (Gallistel & Gibbon, 2000; Gibbon, Baldock,
Locurto, Gold, & Terrace, 1977).

The data in Figure 1B show that the speed of acquisition is
approximately inversely proportional to I/T. More precisely, the
median number, n, of rewards that must be presented until the
behavioral acquisition criterion is met is as follows:

n � 300� I

T�
�1

. (1)

This implies that the relatively shorter the presentation of light, the
faster the learning. Gallistel and Gibbon (2000) made two key
points about this relationship. First, the number of trials until
acquisition depends on the ratio of I/T and not on I and T sepa-

rately—experiments reported for the same I/T are actually per-
formed with I and T differing by more than an order of magnitude
(Gibbon et al., 1977). Second, Figure 1C shows that partial rein-
forcement has almost no effect when measured as a function of the
number of reinforcements (rather than the number of trials), be-
cause although it takes S times as many trials to acquire, there are
reinforcements on only 1/S trials. This effect holds over at least an
order of magnitude in S. Changing S does not change the effective
I/T when measured as a function of reinforcements, so this result
might actually be expected on the basis of Figure 1B.

Conversely, when rewards are no longer provided with the light,
responding slowly stops, a process called extinction. The data
show that about 50 rewards must be omitted before the satisfaction
of an extinction criterion that the preextinction response rate be
halved. The speed of extinction does not depend on the I/T ratio,
by sharp contrast with the speed of acquisition.

These quantitative data provide a most seductive target for
models of learning. Indeed, one of Gallistel and Gibbon’s (2000)
most important contributions is to place the behavior of the ani-
mals firmly in the domain of statistical normativity. Normative
models suggest that the decisions of the animals to start and stop
responding are actually correct according to a well-specified sta-
tistical model, given the information they have received about the
relationship between stimuli and rewards, and prior expectations.
Gallistel, Mark, King, and Latham (2001) showed directly that
animals can be statistically optimal detectors of rate changes such
as those that underlie autoshaping.

Gallistel and Gibbon (2000) suggested a model for acquisition
and extinction data that they called rate estimation theory (RET).
In RET, animals are estimating rates of reward delivery and start
responding to the light when it reliably signals an increase in the
reward rate over the context. Equally, in extinction, they stop
responding when they have observed enough omitted rewards that
they can be adequately certain the reward rate associated with the
light has changed.

In this article, we argue that it is not possible to fit the normative
statistical model underlying RET to the relevant acquisition data.
Further, we construct a normative model that does match these
quantitative data and also the relevant results of other experiments.
In the new model, stimuli compete to predict the delivery of
reward on the basis of estimates of the reliabilities with which they
make predictions. Our model incorporates quantitative versions of
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existing theoretical ideas about stimulus competition in classical
conditioning (e.g., Grossberg, 1982; Mackintosh, 1975; Pearce &
Hall, 1980).

Many of the key aspects of the data that motivated our model
have been noted previously and, indeed, have motivated the crit-
ical experiments such as those on fast contextual conditioning by
Balsam and Schwartz (1981).

Rate Estimation Theory

Gallistel and Gibbon (2000) are among the strongest proponents
of the quantitative relationships shown in Figure 1. To account for
them, Gallistel and Gibbon suggested that animals are estimating
the underlying rates of reward in the world, that is, the number of
rewards provided per unit time in the presence of the stimuli.

We call the “true” rate associated with the light �l, and that
associated with the background context �b. The background con-
text is the ever-present experimental chamber. RET uses an addi-
tive model for the delivery of reward, in that when the light is on,
the true rate of reward is the sum �l � �b. With just the back-
ground alone, the rate is �b. The underlying rates are not directly
observable by the animal, and so it faces the inference problem of
estimating them based on the rewards and stimuli that are pre-
sented. Under RET, the rewards that are presented are allocated or
apportioned between the light and the background, and the rates
are estimated by dividing the total number of apportioned rewards
by the total time of stimulus presentation.

To put this more formally in the context of the experiment of
Figure 1, we can say that the rate of reward during the background
is estimated by the mean rate �� b � nb/tb, where tb is the cumulative
exposure to the background alone and nb is the number of rewards
apportioned to the background during this time. In the experiment,
no rewards are actually apportioned to the background, because
their occurrence is tied to the light. However, it cannot safely be
concluded that the background’s mean rate is 0. Rather, this only
justifies that the estimated mean rate is no higher than the recip-
rocal of the total exposure to the background, �� b � 1/tb, and RET
uses this conservative estimate for �� b. In n trials, tb � nI. A
standard Bayesian treatment of inference in these circumstances
would lead to a similar conclusion.

Because RET uses an additive model for the delivery of reward,
the rate of reward when the light is on (and the background is also
present) is �� l � �� b � nl/tl, where nl is the number of rewards
delivered when the light is on and tl is the cumulative exposure to
the light. Here, if there is no partial reinforcement (S � 1), then
nl � n and tl � nT (see Figure 1A). Thus,

�� l � �� b �
n

nT
�

1

T
, �� b �

1

tb
�

1

nI
. (2)

Notice that as the number of trials grows, and so more rewards are
observed when the light is on, the estimated rate with the light is
constant, whereas the background rate continually drops as 1/n.

Gallistel and Gibbon (2000) took the further important step of
relating the rates �l and �b to the decision of the animals to start
responding. Gallistel and Gibbon suggested that acquisition should
occur when the animals have strong evidence that the fractional
increase in the reward rate while the light is on is greater than some
threshold. Thus, acquisition should occur when there is sufficient
evidence that

Figure 1. Autoshaping. A: Experimental paradigm. Top: The light is
presented for T s every C s and is always followed by the delivery of food
(filled circle). Bottom: The food is delivered with probability 1/S � 1/2 per
trial. In some cases, the length of the intertrial interval I is stochastic, with
the appropriate mean. B: Log-log plot of the number of reinforcements to
a given acquisition criterion versus the I/T ratio for S � 1. The data are
median acquisition times from 12 different laboratories. A linear fit to log
I/T is shown. C: Log-log acquisition curves for various C/T ratios and S
values. The main graph shows trials versus S; the inset shows reinforce-
ments versus S. From “Time, Rate, and Conditioning,” by C. R. Gallistel
and J. Gibbon, 2000, Psychological Review, 107, p. 298. Copyright 2000
by the American Psychological Association. Adapted with permission of
the authors.
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� l � �b

�b
� �, (3)

where � is the threshold (which should be greater than 1). As the
actual rates are unobservable, inferred estimates of them must be
used to decide whether or not the criterion has been met. RET uses
mean rates for this purpose, asking when

�� l � �� b

�� b
� �. (4)

Substituting the estimates given by Equation 2 gives (1/T)/(1/nI) �
�, or equivalently,

n � �� I

T�
�1

, (5)

which is evidently linear. This conforms to the empirical data in
Figure 1B and Equation 1, for � � 300.

Under a partial reinforcement schedule, the number of trials it
takes to observe n rewards becomes nS. However, the total time
that the light is observed during these trials and the total time the
background is observed by itself during these trials both go up by
the same factor of S. Thus, partial reinforcement should have no
effect on the number of rewards it takes for the acquisition crite-
rion to be satisfied. As Gallistel and Gibbon (2000) noted, the
irrelevance of S should be expected on the basis of Equation 1,
because changing S does not change the effective I/T when mea-
sured as a function of reinforcements. For the remainder of the
article, we therefore no longer explicitly consider partial
reinforcement.

RET suffers from two main problems, which motivated our
search for an alternative. First, the value of � � 300 is inconsistent
with data on the effects of presenting rewards when the back-
ground is present by itself (Jenkins, Barnes, & Barrera, 1981).
Second, the model is silent on why acquisition should be dramat-
ically faster if the context is extinguished prior to autoshaping
(Balsam & Gibbon, 1988; Balsam & Schwartz, 1981). The value
� � 300 can also be ecologically questioned, as it suggests an
inordinate statistical conservatism.

First, under RET, rewards that are presented during the intertrial
interval (when the light is off) are apportioned to the background,
giving it a nonzero rate. Of course, this rate may nevertheless be
lower than that for the light. In the case of Figure 2A, for instance,
�l � 9�b, and acquisition is found empirically to occur in 30
rewards, which is comparable to the speeds shown in Figure 1
(Jenkins et al., 1981). Under RET, acquisition can only occur at all
if (�l � �b)/�b � �, and so this experiment provides an upper
bound of � � 9. This bound is greatly at variance from the
estimate � � 300 that comes from Figure 1. To spell it out: Either,
if � � 300, then we would not expect acquisition at all in the
Jenkins, Barnes, and Barrera study, or, if � � 9, then the acqui-
sition speeds shown in Figure 1 should be 30 times faster (as
shown in Figure 2B). Even � � 9 is likely to be well above the
actual threshold for response, because acquisition occurs relatively
quickly for this I/T ratio compared with its speed for other ratios.

Second, more evidence for this same conclusion comes from
cases in which the context is extinguished prior to autoshaping. In
most experiments on autoshaping, animals are given prior experi-
ence of reinforcements in the context alone (usually in the form of

hopper training) to help familiarize them with the environment.
The seemingly simple manipulation of extinguishing the context
prior to autoshaping produces extremely rapid learning to the light
(Balsam & Gibbon, 1988; Balsam & Schwartz, 1981). More gen-
erally, the speed with which responding to the light is acquired is
strongly affected by the provision of rewards with the background
alone, prior to autoshaping (see Figure 3A; Balsam & Schwartz,
1981). Figure 3B shows the results of a study intended to examine
this quantitatively. Balsam and Schwartz measured the acquisition
speed during standard autoshaping as a function of the number of
rewards provided in the context in the time before the light was
introduced and autoshaping began (see Figure 3A). As a control,
the context was first extinguished to erase associations formed in
hopper training before the rewards were provided in the context
and without the light. Reconciling the data in Figure 3 and Figure 1
(i.e., Equation 1), it would seem that about 30 prior rewards must
have been given in the context prior to conditioning to the light
(for the studies in Figure 1), which is roughly consistent with the
experimental procedures used (Gibbon et al., 1977; Gibbon &
Balsam, 1981).

Equally important, and pointed out by Gibbon and Balsam
(1981), is that the rate at which these prior context rewards are
presented seems to have little effect on the subsequent speed of
acquisition to the light. Gibbon and Balsam considered acquisition
times from a different set of experiments in which about 60
rewards were given in hopper training, prior to autoshaping, in
each case at different rates. The differences in the rates of prior
rewards had no significant effect on the speed of subsequent
acquisition.

Figure 2. A: The figure is not drawn to scale. Rewards given in the
intertrial interval (background rewards) at a constant rate of 1/75 s, while
the rate with light is 1/8 s. Acquisition occurs in about 30 rewards for this
case (Jenkins, Barnes, & Barrera, 1981). B: The threshold � must satisfy
� � 10 for acquisition to occur in A. The solid line shows the predicted
acquisition speed for � � 10 for various I/T values, and, for comparison,
the crosses show the actual acquisition speeds as in Figure 1B. Acquisition
is predicted to be 30 times too fast.
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These data pose a tricky conundrum for RET for two reasons.
First, Gibbon and Balsam (1981) interpreted their data as implying
that the rate associated with the context adapts quickly, so that the
prior context rate does not affect the time it takes to acquire
responding to the light. However, RET does not have this expla-
nation open to it. Consider the case that the rates of delivery of
reward before and after the light is introduced are the same. A
natural mechanism in RET that allocates rewards between the light
and the context would allocate all the rewards to the context,
because no change in rate is consequent on the introduction of the
light. Therefore, the animal should never acquire responding to the
light. However, given other rates of delivery of reward to the light,
RET would be forced to allocate rewards to the light, and so
acquisition could happen. RET therefore predicts an essential
dependence of acquisition on the rate at which the prior context
rewards are delivered, contrary to Gibbon and Balsam’s data. A
similar argument can be made that, under RET, there should be a
dependence of acquisition times on the absolute difference be-
tween the reward rates before and after the light is introduced. No
such dependence is observed.

The second problem posed by the prior context rewards has to
do with the strong dependence shown in Figure 3B on the number

of rewards that are provided. Gibbon and Balsam’s (1981) expla-
nation that the speed of learning about the context is fast does not
accommodate this aspect of the data. RET is similarly silent.
Worse, however, under a statistical interpretation of RET, the
dependence of acquisition rate on prior context rewards should be
exactly the reverse of what is observed. To see this, consider
the statistical effect of seeing more prior context rewards on the
estimate of the rate of provision of rewards associated with
the context. The more rewards that are observed, the less uncertain
the subject should be about this rate (because the estimate of the
rate will be based on more examples). Given a more certain prior
rate of reward, a statistical test distinguishing this prior rate from
a current rate of reward will be more powerful—thus, the more
readily RET should be able to decide that the rate has changed, if
it does so. Therefore, if the rate of reward changes when the light
is introduced, the subject should be able to decide this after fewer
trials. Consequently, it should more quickly decide to allocate the
rewards to the light rather than the context and so acquire respond-
ing more quickly. Thus, under this interpretation of RET, the more
prior context rewards, the faster acquisition should be to the light.
The data in Figure 3B show exactly the opposite.

A further concern for RET comes from considering the certainty
that the reward rate with the light is greater than that of the
background at the time of acquisition. Consider a simple example
with T � 4 s and I � 20 s, for which the animals take about 60
rewards to commence responding. Finding the reward during the
4-s light rather than the 20-s context is just like rolling a six-sided
die and getting the answer 1 rather than 2–6, as T/(I � T) � 1/6.
Observing the consistent relation between the light and reward and
deciding that the light is associated with an increased reward rate
over the background is like throwing the die, observing a 1 each
time, and deciding that the die is unfairly biased. It would likely
take us a maximum of 5 or 6 rolls to draw the conclusion that the
die is loaded (with a chance of error of 10�4). Taking 60 die rolls
leaves a minuscule chance of around 10�45 that the die is fair. It
could be, of course, that animals are extremely conservative in
autoshaping compared with their much more reasonable inferential
behavior in other paradigms. However, the data from the prior
context manipulations (Figure 3B) show that the animals can make
detections at more reasonable speeds. Collectively, these data
suggest that RET’s inferential model is incorrect and inspire a
consideration of alternatives.

The Competitive Model

The problems just outlined with Gallistel and Gibbon (2000)
form the constraints governing our new model. Furthermore—and
this turns out to provide an important hint as to the construction of
the model—we used the extra constraint that pecking rates should
follow the form of data such as in Figure 4A. This plot shows the
development of responding to the light over the course of condi-
tioning. Gallistel and Gibbon’s acquisition criterion is satisfied
right at the beginning of learning (where the dotted line crosses the
solid line); RET is mute on the approach of the rate of responding
to its asymptote. Unfortunately, the latter phase of learning is not
well explored experimentally and is often obscured by the use of
a liberal measure of behavioral response (see the figure caption).
For comparison, Figure 4B shows similar curves from the exper-
iment of Balsam and Schwartz (1981) in which the number of prior

Figure 3. Context manipulations. A: Following extinction of the context
(not shown), a fixed number of rewards is given in its presence, and
without the conditioned stimulus. Subsequent autoshaping pairs the re-
wards with the light. B: The effects of such prior context reinforcements on
subsequent acquisition speed. The data are taken from two experiments,
both with I/T � 6, where I is the length of the intertrial interval and T is
the time during the trial for which the conditioned stimulus is presented.
(The data are from Balsam & Schwartz, 1981, p. 385, except for 0
and 1,200 prior context rewards, which are from Balsam & Gibbon, 1988,
p. 407.) Vertical lines depict standard errors of the means.

536 KAKADE AND DAYAN



rewards presented to a preextinguished context was controlled (to
be 2 or 20).

In order to satisfy all these constraints, we take a different tack
from RET. Our theory has two parts. The first part, described in the
Expert Predictions section, is that each stimulus (the light and the
context) is treated as an “expert,” learning independently about the
world and making an independent prediction of the rate of reward
delivery. These predictions are based on a model that is a statistical
generalization of standard conditioning theories such as the

Rescorla–Wagner (1972) rule, is designed to be consistent with
scalar expectancy theory (SET; Gibbon, 1977), and is closely
related to well-understood statistical and engineering methods for
prediction. The second part of the theory, described in the Com-
bining the Experts’ Predictions section, suggests that the predic-
tions made by different stimuli should compete (Grossberg, 1982;
Pearce & Hall, 1980) according to how reliable each stimulus is.

In our full model, learning is slow in standard autoshaping
paradigms because the context acts as a more reliable expert and,
under the model, blocks the expression of the prediction made by
the less established light. Extinguishing the context puts it and the
light on a more equal footing, allowing for much faster expression
of the learning associated with the light.

Expert Predictions

In this section, we specify how learning works for each stimulus
or expert by considering a simplified case that assumes that each
predicts the total rate at which rewards are delivered while that
stimulus is present. We start from the case that there is only one
stimulus, namely, just the context, and consider how it predicts the
reward rate, why this prediction is uncertain, and how the uncer-
tainty can satisfy the constraints suggested by SET.

The model (Dayan, Kakade, & Montague, 2000; Kakade &
Dayan, 2000) views the process of making predictions as one of
reverse engineering the way that the experimenter has pro-
grammed the experimental apparatus, using the observations of
rewards provided. That is, at time t, the subjects consider there to
be a parameter, �c(t), under the control of the experimenter, that
governs the rate at which rewards will actually be delivered to the
animal in the context. For convenience, we suppress the time
dependence where the dependence is clear. Here, the rate is just the
probability per unit time of delivery of reward. This rate is a
function of time, to reflect the possibility that the experimenter
might change the reward contingencies over the course of the
experiment. Rewards are presumed to be delivered statistically
independently of each other.

The subject has to use the actual deliveries of rewards in order
to figure out �c as best it can and thereby predict the current
relationship between the context and the rewards. Obviously, the
subject’s prediction, which we call �̂c, can be uncertain. For
instance, when the subject first encounters the context, it does not
know whether it is to be given a low or high rate of reward. This
uncertainty should be reduced as it makes observations about the
actual reward rate. Appendix A provides a full treatment of the
model. We consider just a didactic example, called a window
model, which has similar properties but is easier to understand.
Unlike the full model, the window model uses the notion of a trial,
and the estimate, �̂c, is the observed rate of delivery of the last �
rewards (the “window”). That is, �̂c � �/t�, where t� is the length
of time before t that it took for the previous � rewards to be
delivered. Note that this estimate will adapt to contingency
changes, because no information from before t� is being used to
construct the estimate. The estimate �̂c is based on � individual
reward times. If the reward rate is actually fixed at 1/C during this
time (where C � I � T is the total length of a trial), then it is a
standard result that the estimate �̂c is within a small factor of 1/C
and the standard deviation of the estimate is within a small factor
of 1/(C��). This means that the coefficient of variation of the

Figure 4. Acquisition of key pecking showing response rate versus
reinforcements. A: The standard acquisition criterion is satisfied when the
animal responds on three out of four consecutive trials when the response
curve crosses the acquisition criterion line shown. Data are averaged
from 11 animals, so the sharper transition from no conditioned response to
the initial responding is smoothed. Most often these data are obscured by
using a permissive measure of behavioral response such as the percentage
of trials within a session in which at least one response occurs. The
percentage of trials with at least one response often saturates, close to
100%, relatively quickly after the standard acquisition criterion is met. As
shown in the figure, the animals usually continue to increase their response
rates over a longer time scale. B: Longer term behavioral response for two
different pretraining cases. The top curve is for 2 prior context rewards; the
bottom curve is for 20 prior context rewards. Pretraining affects not only
the short time to acquisition but also the slower phase of learning. Data are
from Balsam and Schwartz (1981, p. 389). From “Associative Factors
Underlying the Pigeon’s Keypecking in Autoshaping Procedures,” by E. R.
Gamzu and D. R. Williams, 1973, Journal of the Experimental Analysis of
Behavior, 19, p. 227. Copyright 1973 by the Society for the Experimental
Analysis of Behavior. Adapted with permission.
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estimate, which is the standard deviation of the estimate divided by
its mean, is roughly 1/��, independent of the underlying rate �c.

The window model (and the full model of Appendix A) shows
how the subject might construct an estimate �̂c of the reward rate
and that this estimate is uncertain to the tune of 1/��. This form
of the uncertainty was inspired by SET, which notes that the
uncertainty of estimates of time intervals has an asymptotically
constant coefficient of variation. That is, no matter how many
trials are measured, subjects do not become arbitrarily certain
about time intervals but rather have an uncertainty that satisfies an
interval-independent relationship. The window model achieves the
same result for the rates by measuring the time for a fixed number
of rewards. The asymptotic uncertainty comes from the possibility
that the experimenter might change the rate, invalidating the in-
formation from very old trials. Here, � determines how many trials
are included in the total and so should be set in line with the
expected rate of change of �c. A small value of � will lead to
quickly adapting estimates. The price to be paid for a small � is
that each estimate is based on only a few rewards, and so the
estimates are highly variable.

Because the light and the context are treated as making inde-
pendent predictions, we similarly have a prediction �̂l � 1/T with
asymptotic standard deviation �l � 1/(T��). What remains to be
specified is how the conflicting estimates �̂c and �̂l are combined,
as both provide predictions when the light is on.

Combining the Experts’ Predictions

RET makes an assumption of additivity, that is, that the esti-
mates of reward rates of all stimuli present are added. By contrast,
our model assumes instead that the stimuli compete. This idea is
conventional in classical conditioning; however, it is most com-
monly applied to how much learning should be accorded to stimuli
(Mackintosh, 1975; Pearce & Hall, 1980) rather than how predic-
tions from different stimuli should be combined (but see Gross-
berg, 1982).

When only the context is present, that is, in the absence of
competition, the prediction of the mean overall reward rate is �̂*c �
�̂c. However, when both the light and the context are present, we
consider a model in which the joint prediction is a weighted
average of the individual predictions rather than the sum. As an
analogy, consider the task of estimating some fictitious value 	.
Expert 1 tells us the value of 	 is 	1, whereas Expert 2 tells us the
value is 	2. In constructing an estimate of 	, we must average the
two estimates based on how much we trust each expert. If we have
equal trust in both experts, then our estimate of 	 should just be the
equally weighted average, (1/2)	1 � (1/2)	2. If we know Expert 2
is highly unreliable, then our estimate should give little weight to
Expert 2 and should be roughly 	1.

When both the light and the context are present, the combined
prediction of reward, which we call �̂*l, is the weighted average

�̂*l � 
 l�̂ l � �1 � 
 l��̂c, (6)

where 0 � 
l � 1 controls the degree of competition between light
and context. We use an asterisk to denote the joint prediction made
by all present stimuli. Again, we are suppressing the time depen-
dence of the weighting 
l and the rates.

There are various ways that 
l might be determined (Dayan &
Long, 1997; Kruschke, 1997). We (Dayan et al., 2000; Dayan &

Long, 1997) have used the factorial experts model suggested by
Jacobs, Jordan, and Barto (1991). In this, 
l is derived from
underlying quantities called reliabilities, �c and �l for the context
and light, respectively, as


 l �
� l

� l � �c
. (7)

The term reliability is used because of the statistical roots of the
rule (Dayan et al., 2000; Dayan & Long, 1997; Jacobs, 1995). One
can interpret 1/�l as the expected distance of the true rate associ-
ated with the light from the true overall rate—the more reliable the
light as a predictor, the larger �l and the smaller the distance. Note
how the prediction made by the context can block the prediction
made by the light, provided that it is much more reliable (�c  �l).
This is a representational form of blocking (Grossberg, 1982)
rather than a learning form of blocking.

Unreliabilities and uncertainties are different, though related.
Even if the subject was completely certain about �̂l, it could accord
the light little reliability as a predictor, on the basis of past
experience, and so have a small value of �l. To be strictly accurate,
the uncertainties in the estimates �̂c and �̂l should decrease the
terms �c and �l in Equation 7, but this is typically only a small
correction. Ideally, we would be able to specify a statistically
normative model governing the setting of the reliabilities. Unfor-
tunately, as becomes apparent in the next section, there is presently
little evidence about the constraints on the model (unlike, for
instance, the evidence from SET about the uncertainties). There-
fore, we content ourselves with a phenomenological model for
them.

Modeling Acquisition and Extinction

We can now combine the two parts of the model to account for
the data on acquisition and extinction. Crudely, the predictions
associated with the context and the light both adapt quickly, within
� � 25 rewards. There is thus no blocking in the learning of the
prediction of the light because of the prediction made by the
context. However, the expression of the prediction associated with
the light happens slowly, because the context, particularly in the
face of hopper training, is treated as being more reliable. We do
not present a normative account of how the reliabilities change,
because of a lack of data on the slower phase of learning. Rather
we show that the model is capable of fitting the data with an
assumption of how the reliabilities do change. During extinction,
the reliability of the light is almost constant, so the speed is
determined just by �.

Acquisition

A fully normative model would come from a statistically correct
account of how the reliabilities should change over time. This, in
turn, would come from a statistical model of the expectations the
animal has of how the predictabilities of stimuli and rewards
change in the world. The best data for this come from the slow
phases of learning in Figure 4, because it is during this period that
the light is coming to be treated as more reliable. Unfortunately,
the slow phase is widely ignored in experiments. Further, as
Gallistel and Gibbon (2000) pointed out, the existing data pre-
sented are averaged over subjects, thus obscuring the behavior of
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individual subjects. We are therefore forced to make an assump-
tion to fit the acquisition data. We state this assumption in terms of
the combination weights 
l(n) rather than the reliabilities them-
selves. Here, n indexes the time the nth reward is presented, and,
for simplicity, 
l(n) is assumed constant between rewards.

Rather than using something purely arbitrary, we assume that
the animal’s response rate during the slow, postacquisition phase
of learning follows the estimated reward rate. As can be seen in
Figure 4, the response rate is sigmoidal and so is nicely modeled
by a tanh function. If we work backward, for this to be the form of
the estimated reward rate, the relative responsibility 
l(n) should
follow


 l�n� � tanh 
0n, (8)

where 
0 is a constant that is independent of I/T (which is essential
for the model to fit the data). Figure 5 shows the comparison of the
rate of key pecking in the model with the data from Figure 4A.
Slow acquisition to the light comes from slow changes in the
importance accorded to the long established predictions made by
the light.

A decision criterion for a subject turns its estimates of the rates
of reward into a time at which it starts responding reliably. Fol-
lowing Gallistel and Gibbon (2000), we assume that responding
commences when subjects expect a sufficiently higher response
rate with than without the light, that is, when they have good
reason to believe that

�*l � ��*c. (9)

From the Expert Predictions section, the estimated means of these
rates are

�̂*c �
1

C
, �̂*l �

1

C
� 
l�n��1

T
�

1

C� . (10)

If we use these in the decision criterion (which is a good approx-
imation), the threshold value becomes

n � �� � 1


0
�� I

T�
�1

, (11)

because 
l(n) � 
0n for early n, which gives the correct linear
dependency on I/T. Note that the constant of proportionality is
(� � 1)/
0 rather than the factor of � predicted by RET (Equation
5). Comparing Equations 1 and 11, we see that (� � 1)/
0 � 300.
For 
0 obtained by fitting the postacquisition behavioral response
curve (see Figure 4A), this gives a value of � � 2. This is a more
reasonable value of � that is not inconsistent with the data on the
provision of rewards during the context (Jenkins et al., 1981) and
implies that detection will occur for almost all reward rates asso-
ciated with the light that are larger than those for the context.

The data on preexposure of the context show that the number of
rewards provided before the light is shown exerts a strong effect on
the speed of acquisition. In the model, these prior rewards serve to
increase the reliability of the context in the early stages of condi-
tioning. From Equation 7, because �l(n) is small, the effect of this
on the weight 
l(n) of the light is to change the slope 
0. Figure
6A shows the effect on the predicted behavioral response of
varying 
0. The center dashed line is the same as the solid line in
Figure 5. The numbers labeling the curves are the values of 
0 as
multiples of the value of 
0 for the center curve. This figure shows
that by varying the initial weight by a multiplicative factor of
between 0.3 and 3, the acquisition speeds (judged at the criterion
line shown) due to between 1,200 and 0 prior context rewards can
be obtained, making the model consistent with the data in Figure 3.

Prior context manipulations also strongly affect the postacqui-
sition response curves as shown in Figure 4B. Figure 6A shows the
strong effects on the long-term response curves of varying 
0.
Figure 6B fits the overall response curves of Figure 4B (using

0 � 0.0023 and 
0 � 0.0085). Note that the lower curve looks
substantially far from its asymptote. These different values of 
0

are assumed to come from manipulations to the reliability of the
context and are affected by extinguishing the context and provid-
ing precisely controlled numbers of rewards in the context. The
rate at which the prior context rewards are provided has little effect
(Gibbon & Balsam, 1981), because the speed of adaptation to the
new rate of the prediction associated with the context is fast
(within around � � 25 rewards) compared with the speed of
change of the reliabilities.

Extinction

Figure 7 shows experimental data indicating that the number of
reinforcements that must be omitted, n� , to reach an extinction
criterion that the rate in responding to the light should halve,
satisfies

n� � 50. (12)

In striking contrast to acquisition, the I/T ratio has no effect on
extinction.

Because our model of acquisition explicitly allows contingen-
cies to change over time, it lends itself naturally to extinction. In
the model, the prediction of the current reward rate with the light
constantly decreases when the light is no longer reinforced. Con-
sider associating a decline to 50% of the preextinction rate of
responding as occurring when the current rate estimate of the
animal has decreased to being of the order of 50% of its preex-
tinction estimate. We make the crucial assumption that the reli-
ability of the light does not change significantly over the early
phase of extinction.

Figure 5. Fit to the behavioral response curve (Figure 4A), using Equa-
tion 8 with the constant 
0 � 0.0004. Here, the response to the light is
modeled as being proportional to the increased reward rate with the light,
that is, the difference between the estimated reward rate with the light,
�̂*l(n) and the estimated reward rate with the context, �̂*c(n). sec � seconds.
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Consider the simple window model in which rates are assessed
by calculating the total time that elapsed for the last � rewards
(extinction in the full model is treated in Appendix B). According
to this measure, the preextinction reward rate is �̂l

pre � 1/T. After
n� omitted rewards during extinction (i.e., at time n�T after the
beginning of extinction), the postextinction reward rate is �̂l(n�) �
�/(� � n�)T, because the last � rewards occurred in time �T � n�T.
The ratio between �̂l

pre and �̂l(n�) is 1/2 when

n� � �, (13)

which shows that the number of omitted rewards until extinction is
approximately the number of remembered rewards �. This is
clearly independent of I/T. Note that measuring the window size by
rewards, itself chosen in the light of SET, is crucial to obtain this
correct dependency. Equations 12 and 13 can be combined to

provide an estimate based on extinction of � � 50 that can be
compared with the estimate based on acquisition. This provides an
independent check on the model. This value is a little higher than
that implied by the data on acquisition. One potential source of
error is the assumption that there is a direct relationship between
the behavioral response and the estimated association between
light and reward. If the 50% decline in response occurs when the
current rate is about 30% of its preextinction rate, then we obtain
� � 25, which is just the same as that for acquisition. The general
dependence of this fractional drop of the estimated rate is dis-
cussed in Appendix B.

With � � 25, the same set of parameters are used to model both
acquisition and extinction. However, for acquisition, the crucial
parameter is 
0, which reflects the speed at which the reliabilities
change, whereas for extinction, the crucial parameter is �, which
reflects the speed at which the estimated contingency between the
light and reward could change.

Discussion

The speeds with which animals acquire and extinguish condi-
tioned responses in autoshaping conform to a set of simple quan-
titative relationships. Normative models suggest that such relation-
ships arise when animals make optimal inferences based on their
underlying statistical assumptions. Different statistical assump-
tions (which amount to different ecological expectations) lead to
different normative models and different predictions about the
speed of acquisition and extinction.

Gallistel and Gibbon (2000) were the first to suggest a norma-
tive account for the autoshaping data. Unfortunately, although
their model correctly captures the nature of the dependency of the
speed of learning on various parameters, its quantitative predic-
tions on the speed of acquisition and extinction are inconsistent
with the data. Further, the model has little to say about longer term
behavior during acquisition and extinction or about the effects of
extinguishing the context prior to the initiation of autoshaping.

We have suggested an alternative normative model to account
for both the data underlying Gallistel and Gibbon (2000) and the
results of other experiments. Although our model’s focus is on
acquisition and extinction, it is governed by a rich set of quanti-
tative constraints. First, because animals can be ideal detectors of
rates in some circumstances (e.g., Gallistel, Mark, King, &
Latham, 2001), we required an account under which their acqui-
sition of responding could be given a rational statistical basis. In
this sense, the rate of responding during learning should be based
on an optimal evaluation of the contingencies given the observa-
tions so far provided. Second, as in Gallistel and Gibbon (2000),
the number of reinforcements to acquisition should be governed by
the relationship n � 300(1/T)�1 as shown in Figure 1B. This also
implies that S, the partial reinforcement schedule, should be irrel-
evant. Third, pecking rates after the acquisition criterion is satis-
fied should rationally follow the form of Figure 4. However, as
insufficient data exist on this phase of learning, our model makes
specific assumptions to capture this constraint—and thus falls
short of providing a completely normative account. Fourth, the
overall learning speed should be strongly affected by the number
of prior context rewards (see Figure 2B), but not by the rate at
which they are presented. That is, regardless of the rate it predicts,
the context, as an established predictor, should be able substan-

Figure 6. Satisfaction of the constraints. A: Possible acquisition curves
showing the estimated reward rate with the light, �̂*l(n), versus n. I is the
length of the intertrial interval, T is the time during the trial for which the
conditioned stimulus is presented, and C � I � T. The dashed curve is the
same as in Figure 5. The parameters displayed are values for the constant

0 in Equation 8 in multiples of 
0 for the center curve. As only 
0 is
varied and not I or T, the speed of acquisition can be measured when the
curve crosses the acquisition criterion line shown. The 7 on the criterion
line denotes the range of acquisition speeds (between 15 to 120 reinforce-
ments) shown in Figure 3, as due to between 0 and 1200 prior context
rewards. B: The postacquisition response curves of Figure 2B are fit just as
in Figure 5. Here, 
0 � 0.0023 for the top curve and 
0 � 0.0085 for the
bottom curve. sec � seconds.
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tially to block a less established predictor. Fifth, the rate estimates
must not become arbitrarily accurate, and their asymptotic uncer-
tainty should be consistent with SET.

Our model is built on a set of statistical assumptions that take
explicit account of two central concerns for estimation, uncertainty
and unreliability. Uncertainty, also a facet of scalar expectancy
theory, comes because information from observations of reward is
traded off against the possibility that the reward rates might
change. Uncertainty governs the observed rate of extinction. Un-
reliability, a higher order property of a stimulus, comes as part of
an adaptive filtering strategy and changes only slowly. The most
unsatisfying aspect of the model is the lack of a normative account
of how unreliabilities should change—this is largely due to a lack
of experimental data on the slow phase of responding.

The model of unreliability derives from Dayan and Long (1997),
who, following Grossberg (1982), used it to account for data on a
set of paradigms, including downward unblocking (e.g., Holland,
1988). Dayan and Long’s model does not conform to the quanti-
tative timing relationships studied here. Kruschke (1997) sug-
gested an alternative competitive account derived from a different
statistical model called the mixture of Gaussians model (Jacobs,
Jordan, Nowlan, & Hinton, 1991). Models such as ours and Krus-
chke’s, in which stimuli are perfect competitors for each other and
their predictions are combined using a weighted average, lie at one
end of a spectrum and capture these blocking effects. At the other
end of the spectrum lies the Rescorla–Wagner rule (and also the
rate additivity assumption of RET), in which stimuli are perfect
cooperators and their predictions are simply summed. Additive
models cannot simply account for paradigms such as downward
unblocking (Holland, 1988). However, there is also experimental

evidence in favor of additive combination, particularly in para-
digms involving conditioned inhibition (see Rescorla, 1988) or
those involving signaled background reinforcers (Durlach, 1983),
which our competitive models cannot simply account for. Under-
standing the rules governing competitive and additive combination
is a major task for future theoretical work.

The model is also incomplete. For instance, data from Balsam
and Schwartz (1981) suggest the possibility of a sustained differ-
ence in maintenance response rates as a function of the amount of
pretraining. Our model leaves such a possibility open depending
on the asymptotic value of the weight, 
l, of the light’s prediction.
Equation 8 assumes that the asymptotic value of the combination
weight is one, which implicitly assumes that the context is treated
as being asymptotically much less reliable than the light (and so
the expression of its prediction is completely blocked). If this is not
true, then sustained differences in responding might occur, as the
combination weight’s asymptote will be lower. There are three
further complications in interpreting the long-run, maintenance
key-peck rates. First, Figure 5 and Figure 6B show that the number
of trials before asymptotic response behavior is apparent may be
extremely long, outside the realm of many experiments. Second,
data from Gibbon et al. (1977) argue that maintenance key-peck
rates depend on T more strongly than on I. This may also play a
role in the results of some autoshaping experiments (e.g., Holland,
2000) in which the linear dependence of acquisition times to I/T is
not valid across as wide a range as is evident in Figure 1, B and C.
Third, Pearce and Collins (1987) and Swan and Pearce (1987) have
suggested that these rates also reflect an orienting response to the
light whose strength depends on the accuracy with which its
consequences can be predicted. This last effect is of significance

Figure 7. Log-log extinction curves for various I/T ratios, where I is the length of the intertrial interval and T
is the time during the trial for which the conditioned stimulus is presented, and values of S. The main graph
shows trials to extinction versus S (different curves are for different I/T ratios); the inset shows omitted
reinforcements versus S. This shows that the number of omitted reinforcements until the extinction criterion is
approximately 50. I/T ratios go from 1.5:1 to 25:1. From “Time, Rate, and Conditioning,” by C. R. Gallistel and
J. Gibbon, 2000, Psychological Review, 107, p. 305. Copyright 2000 by the American Psychological Associa-
tion. Adapted with permission of the authors.
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primarily in the cases of partial reinforcement (for which S � 1).
Also, effects of changing the magnitude of reward (which can take
various forms; see, e.g., Allan & Zeigler, 1994; Balsam & Payne,
1979; Ploog & Zeigler, 1996) are not modeled.

Finally, we have so far not considered the strong evidence that
the animals can perform interval timing, that is, predicting the time
after the illumination of the light that the reward will be delivered.
This capacity is evident in the average pattern of responding, as
well as from other experiments such as the peak procedure (see
Gallistel & Gibbon, 2000, for a discussion). This implies that the
animals may be making predictions not about a single reward rate
during the light but rather about multiple reward rates during
separate portions of the light.

Other experiments could test the assumptions of the model. For
instance, one expectation is that the asymptotic prediction vari-
ance, which is closely tied to the learning rate, should depend on
the expected speed of change in the environment. It would be
interesting to present animals with a series of autoshaping tasks
with different values of I/T, changing between them either quickly
or slowly. We would predict that the animals should show fast and
slow adaptation to the rates accordingly. There is some evidence
for this sort of “metalearning” in other cases (e.g., Krebs,
Kacelnik, & Taylor, 1978).
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Appendix A

The Kalman Filter Model

In our model, the subject attempts to estimate the parameters governing
the experimental situation based on observations. Although the most nat-
ural parameters are the rates �c(t) and �l(t) themselves, we consider a
model couched in terms of the inverse rates sl(t) � 1/�l(t) and sc(t) �
1/�c(t), which are the times between rewards. We have confirmed with
simulations that this does not affect our conclusions. Because the light and
context act independently, we consider just the context and drop the
subscript. Because of the scalar property enshrined in SET, we assume that
we measure estimation time in terms of numbers of rewards rather than
clock time and so write s(n) rather than s(t).

To specify the model, we have to indicate how the current value of the
inverse rate s(n) leads to an observed interval o(n � 1) between rewards
(this is called the output model) and then how the inverse rate can change
(the dynamic model). We make simple Gaussian assumptions:

o�n � 1� � G�s�n�, s�n�2� �the output model �, (A1)

s�n � 1� � s�n� � ��n� �the d ynamic model �, (A2)

��n� � G�0, ��s�n��2� �the fluctuation model �. (A3)

The scalar property governs the form of the output model (Equation A1)
and also the variance of the fluctuations �(n) in the dynamic model. Here,
� 	 1 is a unitless parameter that sets the scale for how fast the rates can
change. Strictly speaking, s(n � 1) is truncated at 0, so that the inverse rate
is prevented from being negative, but this is in any case unlikely.

If the variances in Equations A1 and A3 were constant, then a com-
pletely standard Kalman filter (Anderson & Moore, 1979) would exactly
specify the probability distribution of the current estimate of s(n), in light
of the above equations and the observed rewards. We make the extra
approximation of using the standard Kalman filter but estimating the
variances using just the means, ŝ(n), and not worrying about the recursive
effects of uncertainty in ŝ(n) on the variance. Because the distribution for

s(n) is Gaussian, the Kalman filter only specifies update rules for the mean
ŝ(n) and variance v(n) of the estimate of s(n):

ŝ�n � 1� � ŝ�n� � ��n��o�n� � ŝ�n��, (A4)

v�n � 1� � �v�n� � ��ŝ�n��2��1 � ��n��. (A5)

Notice that the update rule for ŝ(n) is a delta rule, just like a Rescorla–
Wagner (1972) rule with �(n) acting as the learning rate parameter. This
learning rate is given by the following:

��n� �
�2 � v�n�/ŝ�n�2

�2 � 1 � v�n�/ŝ�n�2 . (A6)

The dependence of the learning rate on the output and fluctuation variances
is necessary to match the speed with which the world is expected to change
and the degree of certainty in the current estimate.

In this approximate model, the asymptotic variance is a constant multiple
of the mean. This satisfies the SET constraint of an asymptotically constant
coefficient of variation (as can be verified from Equation A5). In particular,
the choice of

�2 �
1

��� � 1�
(A7)

gives a terminal coefficient of variation of 1/��. This gives an asymptotic
learning rate of � � 1/�, as can be easily verified from Equation A6.

After observing n rewards, at time t � nC, the posterior distributions for
the inverse rates become

p�sc�n��data� � G�C, vc�n��, p�sl�n��data� � G�T, vl�n�� (A8)

and, in about � rewards, �vc(n) 3 C/�� and �vl(n) 3 T/��. This
satisfies the constraint suggested by SET and also allows rates to adapt
quickly under appropriate circumstances.

Appendix B

Extinction

The approximate model in Appendix A closely matches the full model
in the text, but it only provides estimates of the time between rewards at the
times that rewards are themselves delivered. In extinction, we are inter-
ested in the full model’s estimate of the reward rate at times when rewards
are not presented. We now specify an extension of this approximation that
estimates the rate in the period between rewards, and which also closely
matches the full model (again, as verified by simulations).

As discussed in the text, we assume that the light’s reliability changes
insignificantly over the early phase of extinction, and so the overall
predicted rate of reward during extinction while the light is present con-
tinues to be given by the light’s prediction alone.

Like Gallistel and Gibbon (2000), we measure time in terms of the
number of omitted rewards. We treat an observation of n� of these in time
n�T as an observation of a current reward rate of 1/n�T and use this
observation in conjunction with the previous estimate from the last actual

delivery (of t̂l
pre, and the previous asymptotic learning rate of 1/� according

to Equation A5):

t̂l�n�� � t̂ l
pre �

1

�
�n�T � t̂ l

pre�, (B1)

where t̂ l
pre is 1/�̂l

pre and 1/� is the asymptotic learning rate. From Equation

B1, an approximate estimate of the mean rate (1/t̂l(n�)) is as follows:

�̂ l�n� � � � �

� � n� � 1� 1

T
. (B2)

Notice this also agrees with the estimate from the didactic window model
described in the text.

As argued in the text, we model Gallistel and Gibbon’s (2000) extinction
criterion as occurring when

(Appendix continues)
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�̂ l�n� � � �e�̂l
pre, (B3)

where �e is a threshold less than one (which represents the fraction of the
preextinction rate the current estimate must fall below to justify a 50%
decline in the response rate). Of course, this is not a statistical decision
criterion for the animal, but instead it comes from measuring the extinction
speed using a comparison of the current response rate to the preextinction
response rate.

Solving this for n� using Equation (B2) gives

n� � �� 1

�e
� 1� � 1. (B4)

For �e � 1/3 and � � 25, this makes the estimate of n� � 50 as shown in
Figure 7.
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